

DATE: 14 November 2016

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report

For

Corning Optical Communication Wireless

Equipment under test:

ONE Distributed Antenna System

Remote Extender Unit RXU 2325

(WCS Section 2350-2360MHz Band)

Tested by:

M. Zohar

Approved by: Dlindhur

D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Corning Optical Communication Wireless ONE Distributed Antenna System

FCC ID: OJF1RXUN

This report concerns: Original Grant: X

Class II change: Class I change:

Equipment type: B21 – Part 20 Industrial Booster (CMRS)

Limits used: 47CFR Parts 2, 27

Measurement procedure used is KDB 971168 D03 v01 and KDB 935210 D05 v01r01

Substitution Method used as in ANSI/TIA-603-D: 2010

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

R. Pinchuck Habib Riazi

ITL (Product Testing) Ltd. Corning Optical Communication Wireless 1 Bat Sheva St. 13221 Woodland Park Rd., Suite #400

Lod 7120101 Herndon, VA. 20171

Israel U.S.A.

e-mail rpinchuck@itl.co.il Tel: +1-541-758-2880

Fax: +1-703-848-0260 e-mail: RiaziH@corning.com

TABLE OF CONTENTS

1.		ORMATION	
		ministrative Information	
		of Accreditations	
		duct Description	
		st Methodology	
		st Facility	
		asurement Uncertainty	
2.		CONFIGURATION	
		tification	
		T Exercise Software	
		ecial Accessoriesuipment Modifications	
		nfiguration of Tested System	
2		PHOTOS	
3.			
4.		T POWER	
		st Specification	
		st Procedurest Limit	
		st Results	
		st Equipment Used; Peak Output Power	
_		·	
5.		WER SPECTRAL DENSITY	
		st Specificationst Procedure	
		st Limit	
		st Results	
		st Equipment Used; Average Power Spectral Density	
6.		RAGE POWER RATIO	
О.		st Specification	
		st Procedure	
		st Limit	
		t Results	
		st Equipment Used; 0.1% PAPR	
7.		ANDWIDTH	
/.		st Specification	
		st Procedure	
		st Limit	
		t Results	
		t Equipment Used; Occupied Bandwidth	
8.	SPURIOUS EN	MISSIONS AT ANTENNA TERMINALS	29
٠.		et Specification	
		et Procedure	
		st Limit	
	8.4 Tes	st Results	29
	8.5 Tes	st Equipment Used; Out of Band Emission at Antenna Terminals	44
9.	BAND EDGE S	SPECTRUM	45
	9.1 Tes	st Specification	45
		st Procedure	
		st Limit	
		st Results	
	9.5 Tes	st Equipment Used; Band Edge Spectrum	49

10.	SPURIOU	S EMISSIONS (RADIATED)	50
	10.1	Test Specification	50
	10.2	Test Procedure	50
	10.3	Test Limit	51
	10.4	Test Results	
	10.5	Test Instrumentation Used, Radiated Measurements	52
11.	INTERMO	DULATION CONDUCTED	53
	11.1	Test Procedure	53
	11.2	Test Limit	53
	11.3	Test Results	
	11.4	Test Equipment Used; Intermodulation Conducted	59
12.	INTERMO	DULATION RADIATED	60
	12.1	Test Procedure	60
	12.2	Test Limit	61
	12.3	Test Results	62
	12.4	Test Instrumentation Used; Radiated Measurements Intermodulation	63
13.	OUT-OF-E	BAND REJECTION (WCS)	64
	13.1	Test Specification	64
	13.2	Test Procedure	64
	13.3	Test Limit	64
	13.4	Test Results	
	13.5	Test Equipment Used; Out-of-Band Rejection	65
14.	APPENDI	X A - CORRECTION FACTORS	66
	14.1	Correction factors for CABLE	66
	14.2	Correction factors for RF Cable for Semi Anechoic Chamber	67
	14.3	Correction factors for Horn ANTENNA	68
	14.4	Correction factors for Horn ANTENNA	
	14.5	Correction factors for ACTIVE LOOP ANTENNA	
	14.6	Correction factors for Biconical Antenna	
	14.7	Correction factors for Log Periodic Antenna	72

1. General Information

1.1 Administrative Information

Manufacturer: Corning Optical Communication

Wireless

Manufacturer's Address: 13221 Woodland Park Rd., Suite

#400

Herndon, VA. 20171

U.S.A.

Tel: +1-541-758-2880 Fax: +1-703-848-0260

Manufacturer's Representative: Habib Riazi

Equipment Under Test (E.U.T): ONE Distributed Antenna System

Equipment Model No.: Remote Extender Unit RXU 2325

Equipment Serial No.: 1016070009

Date of Receipt of E.U.T: July 03, 2016

Start of Test: July 11, 2016

End of Test: September 9, 2016

Test Laboratory Location: I.T.L (Product Testing) Ltd.

1 Batsheva St,

Lod,

Israel 7116002

Test Specifications: FCC Parts 2, 27

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by/registered with the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation Number IL1005.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-3006, R-2729, T-1877, G-245.
- 5. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025A-1, IC 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

The RxU2325 is an add-on module which plugs into the RAU (either RAU5x, RAU5 or RAU4) and enables support for two additional bands: 2.3 GHz WCS and 2.5 GHz LTE (TDD).

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in KDB 971168 D03 v01 and KDB 935210 D05 v01r01. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Both conducted and radiated emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 Measurement Uncertainty

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)

0.15 - 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

 \pm 3.44 dB

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site 30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

 $\pm 4.98 \, dB$

2. System Test Configuration

2.1 Justification

The test setup was configured to closely resemble the standard installation.

The EUT consists of the RXU2325 installed in RAU5X.

All source signals are represented in the setup by appropriate signal generators.

An "Exercise" SW on the computer was used to enable / disable transmission of the RXU2325, while the EUT output was connected to the spectrum analyzer.

All channels transmitted during the testing.

There is neither an intermediate amplified nor donor antenna in the uplink.

All components included in the UL path are connected by cables.

2.2 EUT Exercise Software

HCM SW Version: 2.2 B21

Embedded SW Version for RXU2325: rxut_ab64_22_12

2.3 Special Accessories

No special accessories were needed in order to achieve compliance.

2.4 Equipment Modifications

No modifications were needed in order to achieve compliance.

2.5 Configuration of Tested System

Product Name	ONE Distributed Antenna System
Model Name	RXU 2325
Working voltage	48.0VDC
Mode of operation	Industrial Booster for WCS band
Modulations	64QAM, 16QAM, QPSK
Assigned Frequency Range	2345.0MHz-2360.0MHz
Operating Frequency Range	2350.0MHz -2360.0MHz
Transmit power	~20.0dBm
Antenna Gain	12.5 dBi
DATA rate	N/A
Modulation BW	10.0MHz

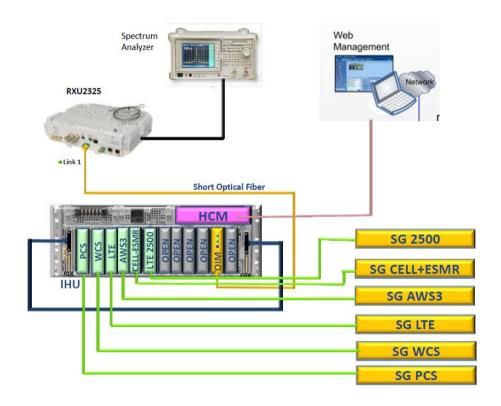


Figure 1. Test Set-Up - Conducted

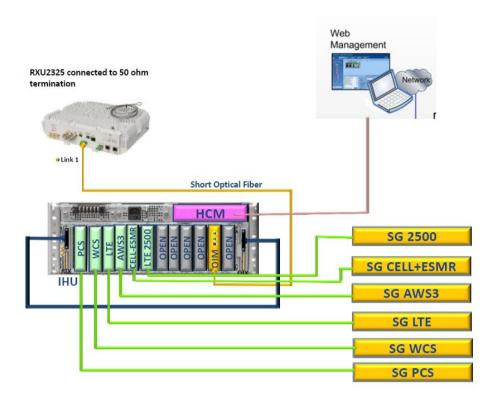


Figure 2. Test Set-Up - Radiated

3. Test Set-up Photos

Figure 3. Conducted Emission From Antenna Port Tests

Figure 4. Radiated Emission Test

Figure 5. Radiated Emission Test

Figure 6. Radiated Emission Test

Figure 7. Radiated Emission Test

Figure 8. Radiated Emission Test

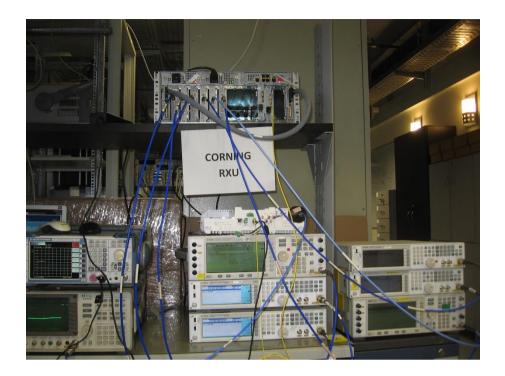


Figure 9. Intermodulation Conducted Emission Test

4. Peak Output Power

4.1 Test Specification

FCC Part 27, Subpart C, Section 27.50(a)(ii)

4.2 Test Procedure

(Temperature (22°C)/ Humidity (36%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (loss=31.0 dB). The E.U.T. RF output was modulated. Special attention was taken to prevent Spectrum Analyzer RF input overload.

4.3 Test Limit

Peak Power Output must not exceed 2000 Watts (63dBm).

4.4 Test Results

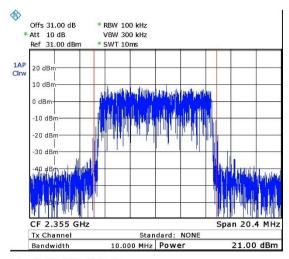
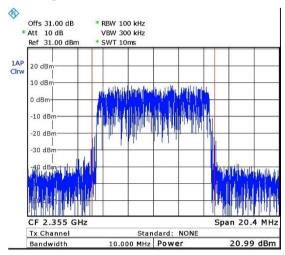

Modulation	Operation	Reading	Antenna	EIRP	Specification	Margin
	Frequency		Gain			
	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
64QAM	2355.0	21.0	12.5	33.5	63.0	-29.5
16QAM	2355.0	21.0	12.5	33.5	63.0	-29.5
QPSK	2355.0	20.8	12.5	33.3	63.0	-29.7

Figure 10 Peak Output Power

JUDGEMENT: Passed by 29.5 dB


See additional information in *Figure 11* to *Figure 13*.

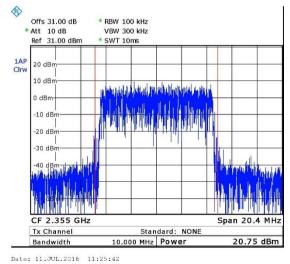

Date: 11.JUL.2016 11:24:08

Figure 11. — 2355.0 MHz -64QAM

Date: 11.JUL.2016 11:26:08

Figure 12. — 2355.0 MHz -16QAM

11100112010 111120112

Figure 13. — 2355.0 MHz QPSK

4.5 Test Equipment Used; Peak Output Power

				Calibration	
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Date
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017

Figure 14 Test Equipment Used

5. Average Power Spectral Density

5.1 Test Specification

FCC, Part 27, Subpart C, Section 27.50(a)(1)(A)

5.2 Test Procedure

(Temperature (22°C)/ Humidity (36%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (loss=31.0 dB). The E.U.T. RF output was modulated. Special attention was taken to prevent Spectrum Analyzer RF input overload. The Spectrum Analyzer was set to 1000 kHz RBW. The output power level was measured at each modulation.

For PSD in any 5MHz the equation: $10 \log \left(\frac{5MHz}{1MHz}\right) = 7dB$. This factor was added to the test results in 1MHz. The total results were compared to the PSD 5MHz limit as detailed below.

5.3 Test Limit

Average PSD in any 1 MHz must not exceed 400 Watts (56dBm) and in any 5MHz, must not exceed 2000 Watts (63dBm).

5.4 Test Results

Modulation	Operation	Reading	Antenna Gain	EIRP	Limit	Margin
	Frequency					
	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
64QAM	2355.0	21.9	12.5	34.4	56.0	-21.6
16QAM	2355.0	21.7	12.5	34.2	56.0	-21.8
QPSK	2355.0	21.7	12.5	34.2	56.0	-21.8

Figure 15 1 MHz - Average Power Spectral Density

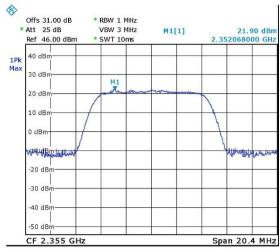
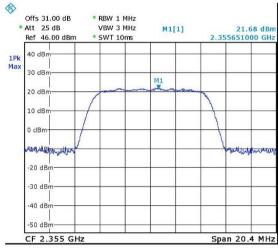

Modulation	Operation	Reading	Antenna Gain	EIRP	Limit	Margin
	Frequency					
	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
64QAM	2355.0	28.9	12.5	41.4	63.0	-21.6
16QAM	2355.0	28.7	12.5	41.2	63.0	-21.8
QPSK	2355.0	28.7	12.5	41.2	63.0	-21.8

Figure 16 5 MHz - Average Power Spectral Density

JUDGEMENT: Passed by 21.6 dB


See additional information in Figure 17 to Figure 19.

Date: 11.JUL.2016 11:31:59

Figure 17. — 2355.0 MHz -64QAM

Date: 11.JUL.2016 11:30:00

Figure 18. — 2355.0 MHz -16QAM

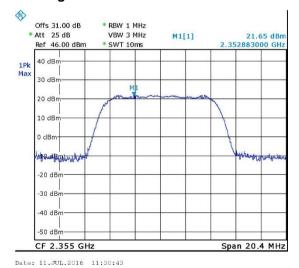


Figure 19. — 2355.0 MHz QPSK

5.5 Test Equipment Used; Average Power Spectral Density

			Serial	Calibration	
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Date
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017

Figure 20 Test Equipment Used

6. Peak to Average Power Ratio

6.1 Test Specification

FCC Part 27.50(a)(1)(B)

6.2 Test Procedure

(Temperature (22°C)/ Humidity (36%RH))
The method used is detailed in FCC KDB 971168 D03 v01
Measurements was using CCDF function for each modulation.

6.3 Test Limit

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB.

6.4 Test Results

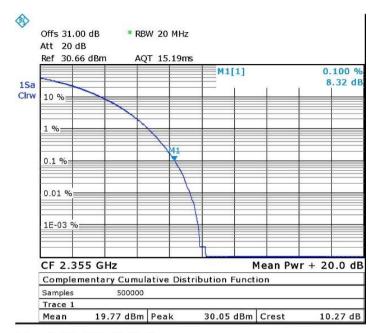
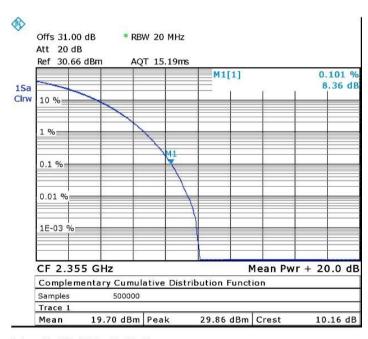
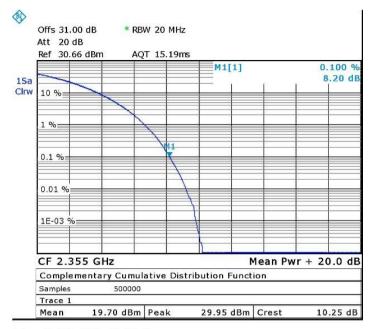

Modulation	Operation	0.1% PAPR	Limit	Margin
	Frequency			
	(MHz)	(dB)	(dB)	(dB)
64QAM	2355.0	8.3	13.0	-4.7
16QAM	2355.0	8.4	13.0	-4.6
QPSK	2355.0	8.2	13.0	-4.8

Figure 21 Test Results Peak to Average Power Ratio

JUDGEMENT: Passed


For additional information see Figure 22 to Figure 24.

Date: 11.JUL.2016 11:48:20


Figure 22. —64QAM, 2355.0 MHz

Date: 11.JUL.2016 11:49:49

Figure 23. — 16QAM, 2355.0 MHz

Date: 11.JUL.2016 11:50:41

Figure 24. — QPSK, 2355.0 MHz

6.5 Test Equipment Used; 0.1% PAPR

			Serial	Calibration	
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Date
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017

Figure 25 Test Equipment Used

7. Occupied Bandwidth

7.1 Test Specification

FCC Part 2, Section 1049

7.2 Test Procedure

(Temperature (22°C)/ Humidity (36%RH))

The E.U.T. was set to the applicable test frequency with modulation. The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable. The OBW function (99%) was used for this evaluation. RBW was set to 100 kHz.

Occupied bandwidth measured was repeated for each modulation.

7.1 Test Limit

N/A

7.2 Test Results

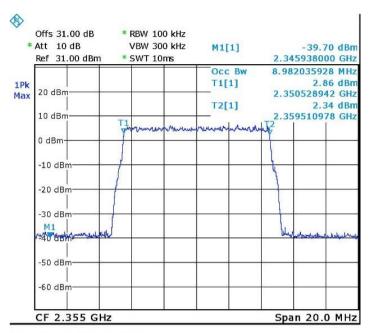
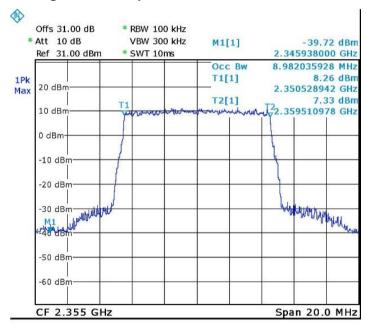
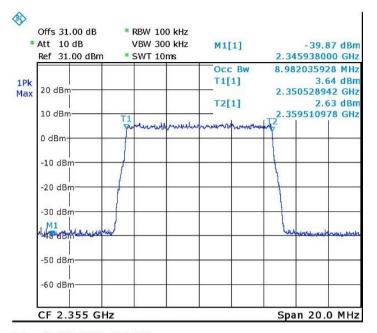

Modulation	Port	Operating	Reading
		Frequency	
	(Input/ Output)	(MHz)	(MHz)
64QAM	Input	2355.0	8.9
64QAM	Output	2355.0	8.9
16QAM	Input	2355.0	8.9
16QAM	Output	2355.0	8.9
QPSK	Input	2355.0	8.9
QPSK	Output	2355.0	8.9

Figure 26 Occupied Bandwidth

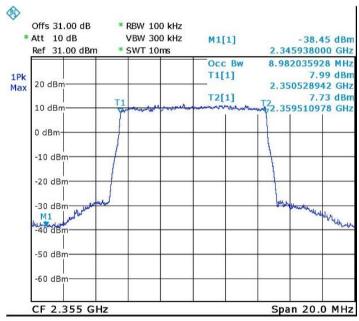
JUDGEMENT: Passed


See additional information in Figure 27 to Figure 32.

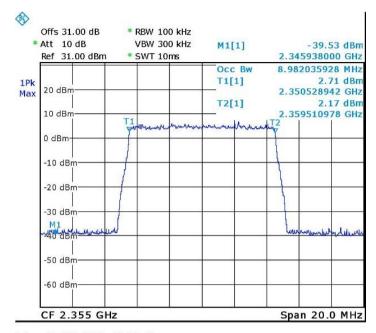
Date: 11.JUL.2016 12:17:33


Figure 27 Occupied Bandwidth INPUT, 64QAM

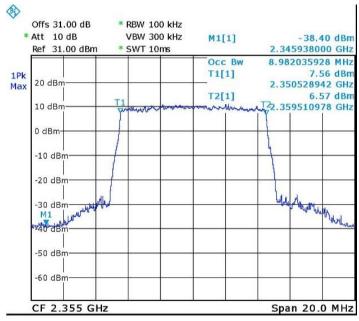
Date: 11.JUL.2016 12:12:41


Figure 28 Occupied Bandwidth OUTPUT, 64QAM

Date: 11.JUL.2016 12:16:17


Figure 29 Occupied Bandwidth INPUT, 16QAM

Date: 11.JUL.2016 12:10:41


Figure 30 Occupied Bandwidth OUTPUT, 16QAM

Date: 11.JUL.2016 12:15:40

Figure 31 Occupied Bandwidth INPUT, QPSK

Date: 11.JUL.2016 12:11:50

Figure 32 Occupied Bandwidth OUTPUT, QPSK

7.3 Test Equipment Used; Occupied Bandwidth

			Serial	Calibration	
Instrument	Manufacturer	nufacturer Model Ser Num		Last Calibration Date	Next Calibration Date
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017

Figure 33 Test Equipment Used

8. Spurious Emissions at Antenna Terminals

8.1 Test Specification

FCC Part 27, Section: 53(a)(1)

8.2 Test Procedure

(Temperature (23°C)/ Humidity (36%RH))

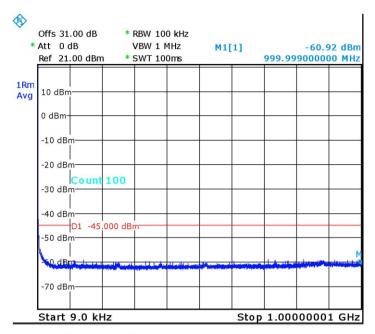
The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max loss 34.0 dB).

Testing was performed in the 9K-24GHz frequency band without band edges tests, and for each modulation separately.

8.3 Test Limit

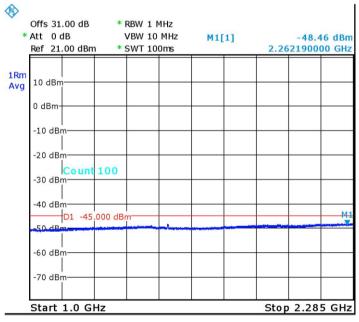
The power of any emission outside of the authorized operating frequency ranges (2345-2360 MHz) must be attenuated below the transmitting power (P) by a factor of at least as specified in this section.

Frequency Band	Calculated
(MHz)	Factor (dBc)
f<2285.0	75+10*log(0.1)=65.0
2285.0MHz <f<2287.5mhz< td=""><td>72+10*log(0.1)=62.0</td></f<2287.5mhz<>	72+10*log(0.1)=62.0
2287.5MHz <f<2300.0mhz< td=""><td>70+10*log(0.1)=60.0</td></f<2300.0mhz<>	70+10*log(0.1)=60.0
2300.0MHz <f<2305.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2305.0mhz<>	43+10*log(0.1)=33.0
2305.0MHz <f<2320.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2320.0mhz<>	43+10*log(0.1)=33.0
2320.0MHz <f<2345.0mhz< td=""><td>75+10*log(0.1)=65.0</td></f<2345.0mhz<>	75+10*log(0.1)=65.0
2345.0MHz <f<2360.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2360.0mhz<>	43+10*log(0.1)=33.0
2360.0MHz <f<2362.50mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2362.50mhz<>	43+10*log(0.1)=33.0
2362.5MHz <f<2365.0mhz< td=""><td>55+10*log(0.1)=45.0</td></f<2365.0mhz<>	55+10*log(0.1)=45.0
2365.0MHz <f<2367.5mhz< td=""><td>70+10*log(0.1)=60.0</td></f<2367.5mhz<>	70+10*log(0.1)=60.0
2367.5MHz <f<2370.0mhz< td=""><td>72+10*log(0.1)=62.0</td></f<2370.0mhz<>	72+10*log(0.1)=62.0
2370.0 <f< td=""><td>75+10*log(0.1)=65.0</td></f<>	75+10*log(0.1)=65.0

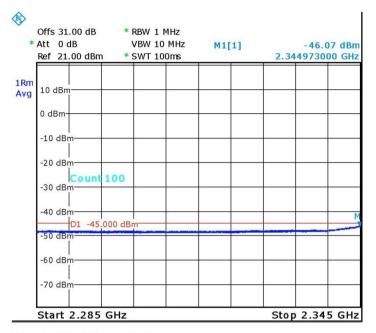

Figure 34 Mask Limit Table

8.4 Test Results

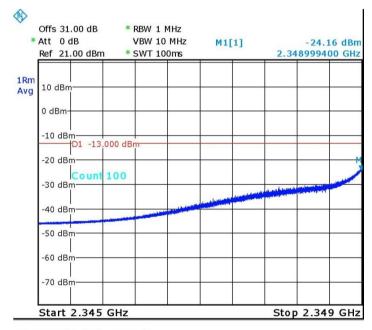
JUDGEMENT: Passed


See additional information in Figure 35 to Figure 61.

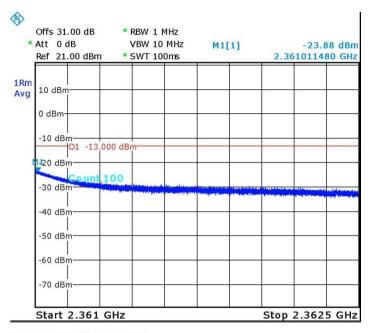
Date: 11.JUL.2016 15:22:44


Figure 35. — 0.009 MHz-1000.0 MHz -64QAM

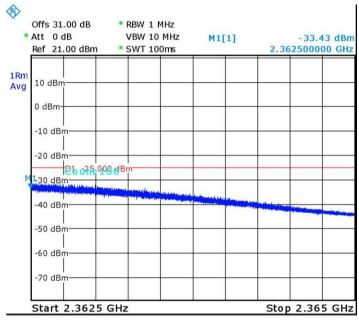
Date: 11.JUL.2016 15:24:05


Figure 36. — 1000 MHz-2285 MHz -64QAM

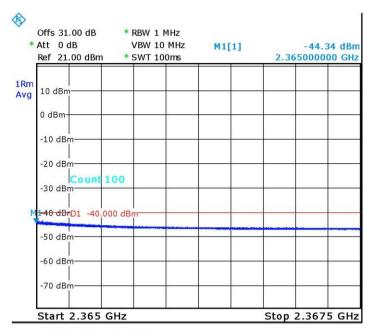
Date: 11.JUL.2016 15:08:18


Figure 37. — 2285 MHz-2345 MHz -64QAM

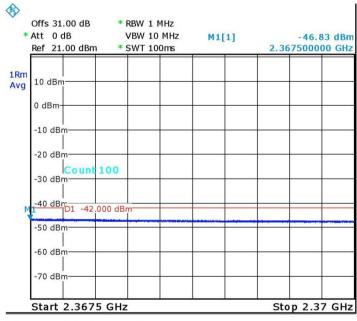
Date: 11.JUL.2016 15:10:34


Figure 38. — 2345 MHz-2349 MHz -64QAM

Date: 11.JUL.2016 15:40:45


Figure 39. — 2361.0 MHz-2362.5 MHz - LTE 64QAM

Date: 11.JUL.2016 15:13:07

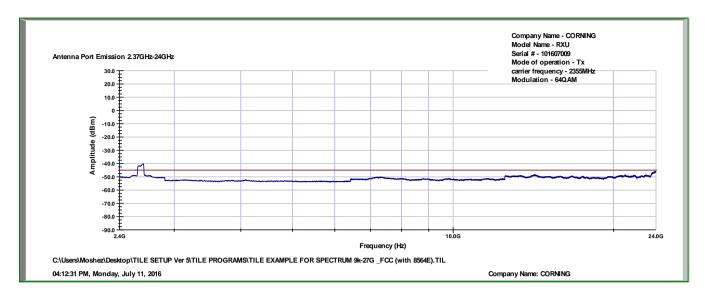
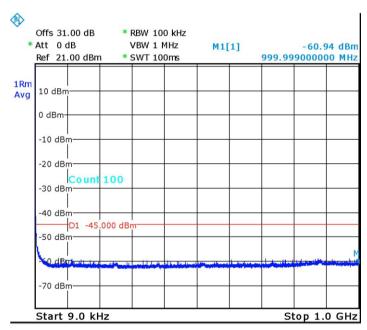

Figure 40. — 2362.5 MHz-2365.0 MHz - LTE 64QAM

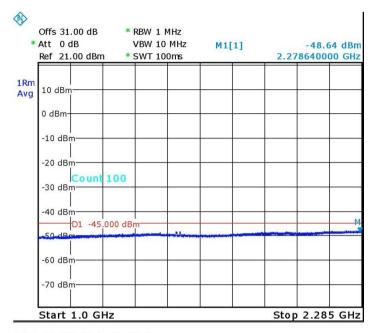
Date: 11.JUL.2016 15:14:27

Figure 41. — 2365.0 MHz-2367.5 MHz - LTE 64QAM

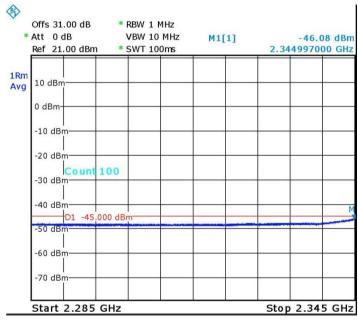
Date: 11.JUL.2016 15:15:36

Figure 42. — 2367.5 MHz-2370.0 MHz -64QAM

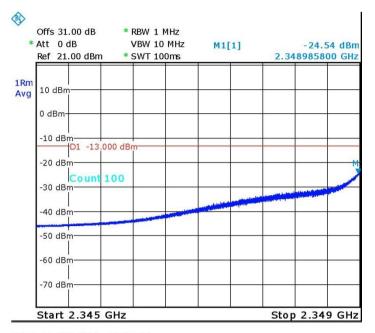




Figure 43. — 2370.0 MHz-24,000.0 MHz -64QAM

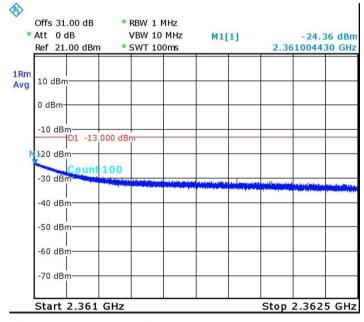
Date: 11.JUL.2016 15:46:33


Figure 44. — 0.009 MHz-1000.0 MHz - 16QAM

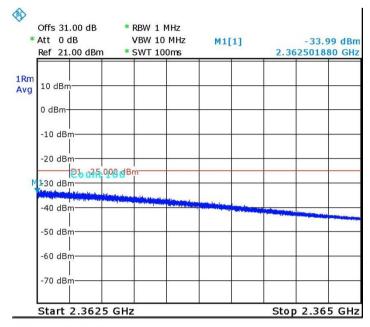
Date: 11.JUL.2016 15:47:45


Figure 45 — 1000.0 MHz-2285.0 MHz - 16QAM

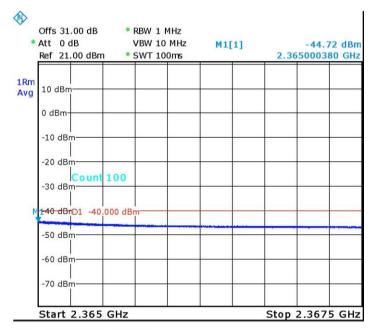
Date: 11.JUL.2016 15:50:48


Figure 46. — 2285.0 MHz-2345.0 MHz - 16QAM

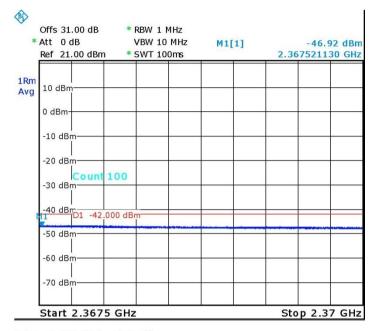
Date: 11.JUL.2016 15:52:00


Figure 47. — 2345 MHz-2349 MHz - 16QAM

Date: 11.JUL.2016 15:55:46


Figure 48. — 2361.0 MHz-2362.5 MHz - 16QAM

Date: 11.JUL.2016 15:57:01

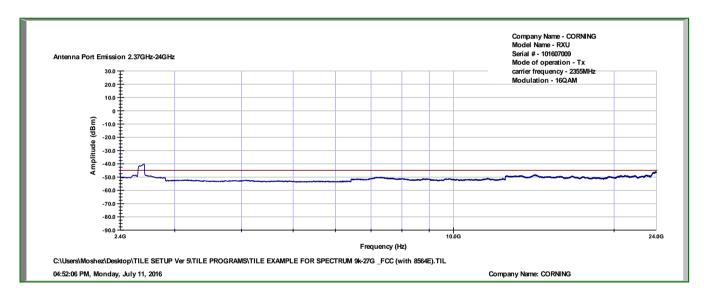
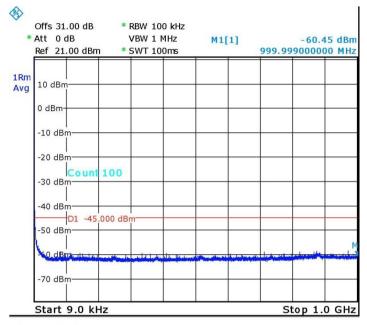

Figure 49. — 2362.5 MHz-2365.0 MHz - 16QAM

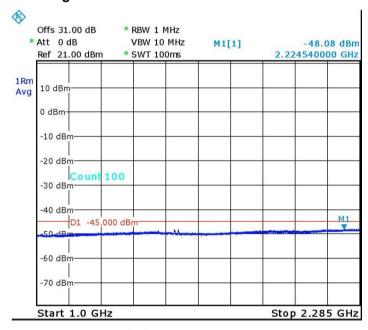
Date: 11.JUL.2016 16:00:14

Figure 50. — 2365.0 MHz-2367.5 MHz - 16QAM

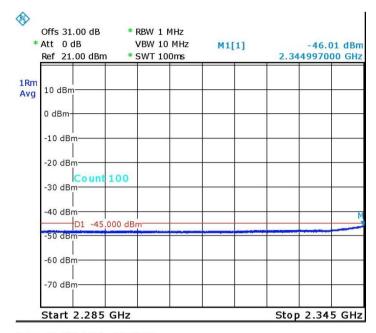
Date: 11.JUL.2016 16:01:26

Figure 51. — 2367.5 MHz-2370.0 MHz - 16QAM

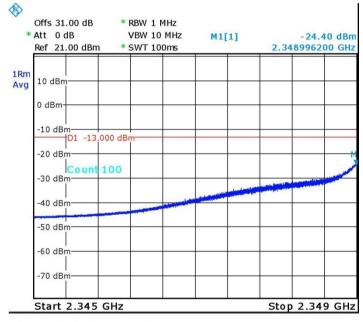




Figure 52. — 2370.0 MHz-24,000.0 MHz - 16QAM

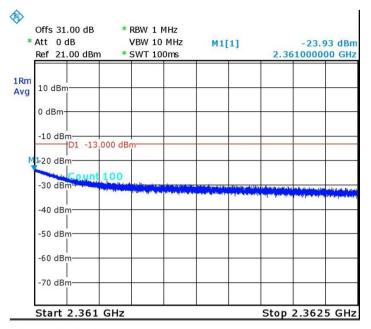
Date: 11.JUL.2016 15:45:56


Figure 53. — 0.009 MHz-1000.0MHz - QPSK

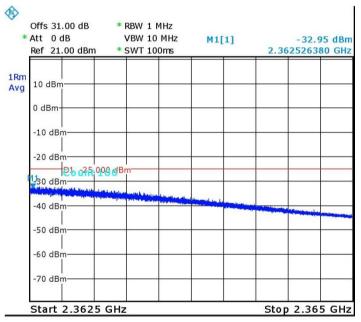
Date: 11.JUL.2016 15:48:33


Figure 54. — 1000.0 MHz-2285.0 MHz - QPSK

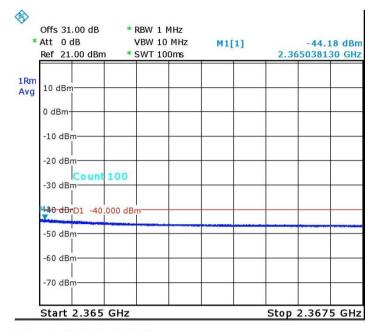
Date: 11.JUL.2016 15:49:47


Figure 55. — 2285.0 MHz-2345.0 MHz - QPSK

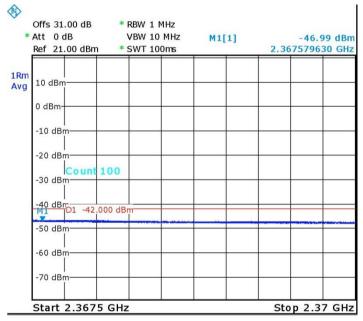
Date: 11.JUL.2016 15:52:42


Figure 56. — 2345.0 MHz-2349.0 MHz - QPSK

Date: 11.JUL.2016 15:54:14


Figure 57. — 2361.0 MHz-2362.5MHz - QPSK

Date: 11.JUL.2016 15:58:02


Figure 58. — 2362.5 MHz-2365.0MHz – QPSK

Date: 11.JUL.2016 15:59:29

Figure 59.—2365.0 MHz-2367.5MHz - QPSK

Date: 11.JUL.2016 16:02:01

Figure 60. — 2367.5 MHz-2370.0 MHz - QPSK

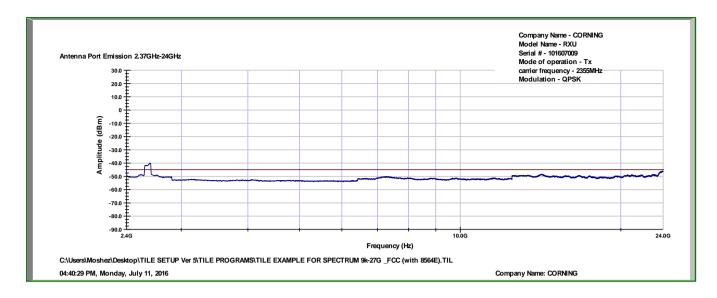


Figure 61. — 2370.0 MHz-24,000.0 MHz – QPSK

8.5 Test Equipment Used; Out of Band Emission at Antenna Terminals

			Cowiel	Calibration		
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due	
EXG Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017	
Spectrum Analyzer	НР	8564E	3442A00275	March 10, 2016	March 10, 2017	
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017	
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017	

Figure 62 Test Equipment Used

9. Band Edge Spectrum

9.1 Test Specification

FCC Part 27, Section 53(a)(1)

9.2 Test Procedure

(Temperature (22°C)/ Humidity (35%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (31.0 dB).

The spectrum analyzer RBW was set to at least 1% from OBW.

The evaluation was repeated for all modulations.

9.3 Test Limit

The power of any emission in the 1 MHz bands immediately outside and adjacent to the channel blocks (2350-2360MHz) was attenuated below the transmitting power (P) by a factor of at least 43 +10 log (P) dB, yielding – 13dBm.

9.4 Test Results

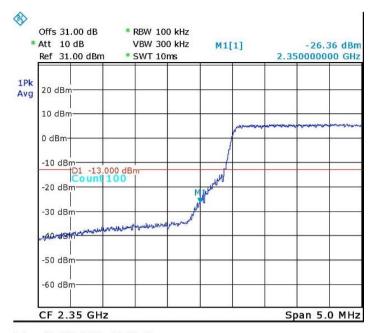
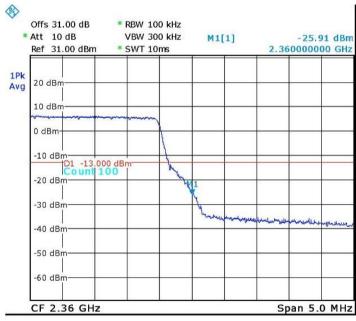
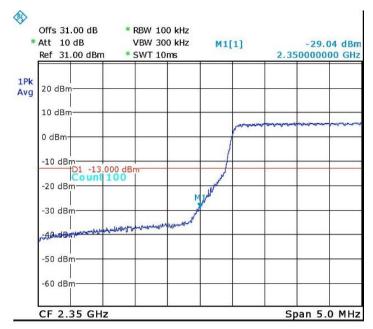

Modulation	Operation	Band Edge	Reading	Limit	Margin
	Frequency	Frequency			
	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
64QAM	2355.0	2350	-26.4	-13.0	-13.4
04QAM	2355.0	2360	-25.9	-13.0	-12.9
160AM	2355.0	2350	-29.0	-13.0	-16.0
16QAM	2355.0	2360	-28.5	-13.0	-15.5
QPSK	2355.0	2350	-27.0	-13.0	-14.0
	2355.0	2360	-30.4	-13.0	-17.4

Figure 63 Band Edge Spectrum Results

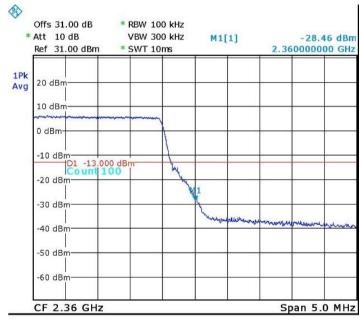
JUDGEMENT: Passed by 12.9 dB


See additional information in Figure 64 to Figure 69.

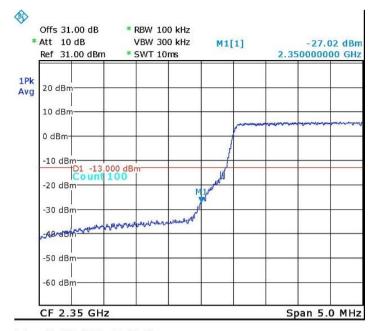
Date: 11.JUL.2016 14:22:45


Figure 64. — Lower Block Edge -1MHz -64QAM

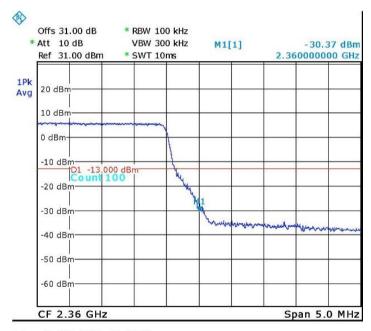
Date: 11.JUL.2016 14:22:09


Figure 65. — Upper Band Edge +1MHz -64QAM

Date: 11.JUL.2016 14:24:42


Figure 66. — Lower Block Edge -1MH - 16QAM

Date: 11.JUL.2016 14:25:16


Figure 67. — Upper Band Edge +1MHz - 16QAM

Date: 11.JUL.2016 14:26:58

Figure 68. — Lower Block Edge -1MHz – QPSK

Date: 11.JUL.2016 14:26:18

Figure 69. — Upper Band Edge +1MHz – QPSK

9.5 Test Equipment Used; Band Edge Spectrum

			Serial	Calibration		
Instrument	Manufactur er	Model	Number	Last Calibration Date	Next Calibration Date	
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017	
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017	
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017	

Figure 70 Test Equipment Used

10. Spurious Emissions (Radiated)

10.1 Test Specification

FCC Part 27.53

10.2 Test Procedure

(Temperature (23°C)/ Humidity (53%RH))

The test method was based on ANSI/TIA-603-D: 2010, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30.0MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-24.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -24.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using:

 $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dBd)$

 P_d = Dipole equivalent power (result).

 P_g = Signal generator output level.

A Peak detector was using for this test.

The test was performed in one operation frequency (2355.0MHz) with all modulations.

Testing was performed when the RF port was connected to 50 Ω termination.

The table below describe only results with the highest radiation.

10.3 Test Limit

Frequency Band (MHz)	Calculated Factor (dBc)
f<2285.0	75+10*log(0.1)=65.0
2285.0MHz <f<2287.5mhz< td=""><td>72+10*log(0.1)=62.0</td></f<2287.5mhz<>	72+10*log(0.1)=62.0
2287.5MHz <f<2300.0mhz< td=""><td>70+10*log(0.1)=60.0</td></f<2300.0mhz<>	70+10*log(0.1)=60.0
2300.0MHz <f<2305.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2305.0mhz<>	43+10*log(0.1)=33.0
2305.0MHz <f<2320.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2320.0mhz<>	43+10*log(0.1)=33.0
2320.0MHz <f<2345.0mhz< td=""><td>75+10*log(0.1)=65.0</td></f<2345.0mhz<>	75+10*log(0.1)=65.0
2345.0MHz <f<2360.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2360.0mhz<>	43+10*log(0.1)=33.0
2360.0MHz <f<2362.50mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2362.50mhz<>	43+10*log(0.1)=33.0
2362.5MHz <f<2365.0mhz< td=""><td>55+10*log(0.1)=45.0</td></f<2365.0mhz<>	55+10*log(0.1)=45.0
2365.0MHz <f<2367.5mhz< td=""><td>70+10*log(0.1)=60.0</td></f<2367.5mhz<>	70+10*log(0.1)=60.0
2367.5MHz <f<2370.0mhz< td=""><td>72+10*log(0.1)=62.0</td></f<2370.0mhz<>	72+10*log(0.1)=62.0
2370.0 <f< td=""><td>75+10*log(0.1)=65.0</td></f<>	75+10*log(0.1)=65.0

Figure 71 Mask Limit Table

10.4 Test Results

Carrier Channel	Freq.	Antenna Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	Effective Radiated Power Level	Limit	Margin
(MHz)	(MHz)	(V/H)	$(dB\mu V/m)$	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)
2355.0	4710.0	V	33.5	-69.7	0.5	10.8	-59.4	-45.0	-14.4
2333.0	4710.0	Н	34.0	-64.7	0.5	9.5	-55.7	-45.0	-10.7
2355.0	6145.0	V	43.8	-56.5	1.0	9.7	-47.8	-45.0	-2.8
2333.0	6145.0	Н	36.5	-68.1	1.0	10.0	-59.1	-45.0	-14.1
2355.0	7065.0	V	38.2	-65.3	1.0	10.0	-56.3	-45.0	-11.3
2333.0	7065.0	Н	38.0	-66.1	1.0	10.0	-57.1	-45.0	-12.1

Figure 72 Spurious Emission (Radiated)

JUDGEMENT; Passed by 2.8 dB

The E.U.T met the requirements of the FCC Part 27, Section 917; FCC Part 2.1053 specifications.

10.5 Test Instrumentation Used, Radiated Measurements

			Cartal	Calibration			
Instrument	Manufactur er	Model	Serial Number	Last Calibration Date	Next Calibration Due		
EMI Receiver	НР	85422E	3906A00276	March 3, 2016	March 3, 2017		
RF Filter Section	HP	85420E	3705A00248	March 3, 2016	March 3, 2017		
EMI Receiver	R&S	ESCI7	100724	February 29, 2016	March 1, 2017		
Spectrum Analyzer	НР	8593EM	3536A00120ADI	March 10, 2016	March 10, 2017		
Active Loop Antenna	EMCO	6502	9506-2950	November 5, 2015	November 30, 2016		
Antenna Biconical	EMCO	3110B	9912-3337	March 24, 2016	March 24, 2018		
Antenna Log Periodic	EMCO	3146	9505-4081	April 23, 2016	April 23, 2017		
Horn Antenna 1G-18G	ETS	3115	29845	May 19, 2015	May 19, 2018		
Horn Antenna 18G-26G	ARA	SWH-28	1007	March 30, 2014	September 30, 2016		
Low Noise Amplifier	Narda	LNA-DBS- 0411N313	013	March 1, 2015	September 30, 2016		
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	March 1, 2015	September 30, 2016		
MXG Vector Signal generator	Agilent	N5182A	MY49060440	July 1, 2016	July 1, 2017		
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A		
Antenna Mast	ETS	2070-2	-	N/A	N/A		
Turntable	ETS	2087	-	N/A	N/A		
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A		

Figure 73 Test Equipment Used

11. Intermodulation Conducted

11.1 Test Procedure

(Temperature (22°C)/ Humidity (37%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max loss = 34.0 dB). The spectrum analyzer was set to 1 kHz resolution BW for the frequency range 9.0-150.0 kHz, 10 kHz for the frequency range 150 kHz–1.0 MHz, 100 kHz for the frequency range 1.0 MHz – 30 MHz, and 1MHz for the frequency range 30 MHz - 24GHz.

2 input signals were sent simultaneously to the E.U.T. as follows:

WCS band: 2355.0MHz, 0 dBm

TDD 2.5G band: 2593.0MHz, 0 dBm

The frequency range of 9 kHz - 24.0 GHz was scanned for unwanted signals.

11.2 Test Limit

Frequency Band	Calculated
(MHz)	Factor (dBc)
f<2285.0	75+10*log(0.1)=65.0
2285.0MHz <f<2287.5mhz< td=""><td>72+10*log(0.1)=62.0</td></f<2287.5mhz<>	72+10*log(0.1)=62.0
2287.5MHz <f<2300.0mhz< td=""><td>70+10*log(0.1)=60.0</td></f<2300.0mhz<>	70+10*log(0.1)=60.0
2300.0MHz <f<2305.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2305.0mhz<>	43+10*log(0.1)=33.0
2305.0MHz <f<2320.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2320.0mhz<>	43+10*log(0.1)=33.0
2320.0MHz <f<2345.0mhz< td=""><td>75+10*log(0.1)=65.0</td></f<2345.0mhz<>	75+10*log(0.1)=65.0
2345.0MHz <f<2360.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2360.0mhz<>	43+10*log(0.1)=33.0
2360.0MHz <f<2362.50mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2362.50mhz<>	43+10*log(0.1)=33.0
2362.5MHz <f<2365.0mhz< td=""><td>55+10*log(0.1)=45.0</td></f<2365.0mhz<>	55+10*log(0.1)=45.0
2365.0MHz <f<2367.5mhz< td=""><td>70+10*log(0.1)=60.0</td></f<2367.5mhz<>	70+10*log(0.1)=60.0
2367.5MHz <f<2370.0mhz< td=""><td>72+10*log(0.1)=62.0</td></f<2370.0mhz<>	72+10*log(0.1)=62.0
2370.0 <f< td=""><td>75+10*log(0.1)=65.0</td></f<>	75+10*log(0.1)=65.0

Figure 74 Mask Limit Table

11.3 Test Results

JUDGEMENT: Passed

See additional information in Figure 75 to Figure 84.

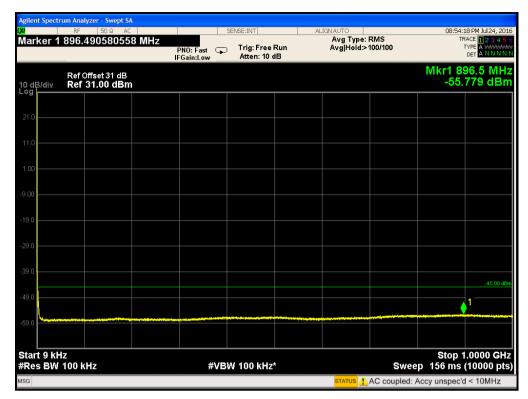


Figure 75 9kHz-1GHz

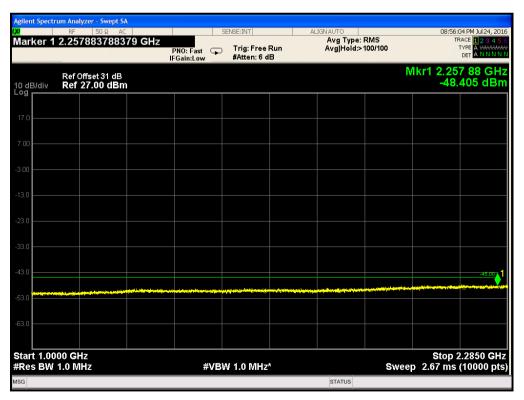


Figure 76 1GHz-2.285GHz

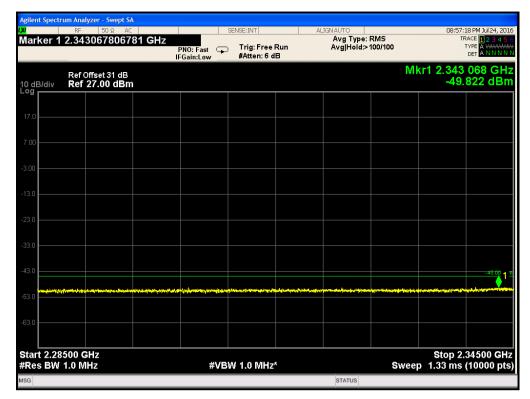


Figure 77 2.285GHz-2.345GHz

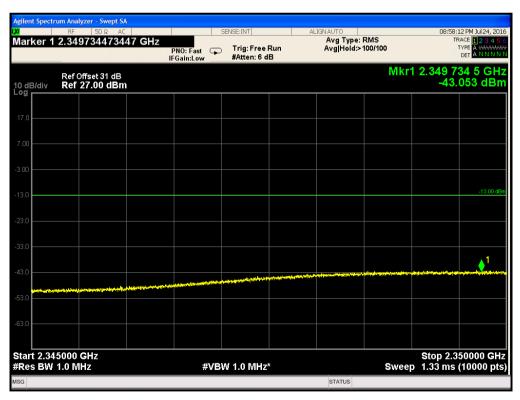


Figure 78 2.345GHz-2.35GHz

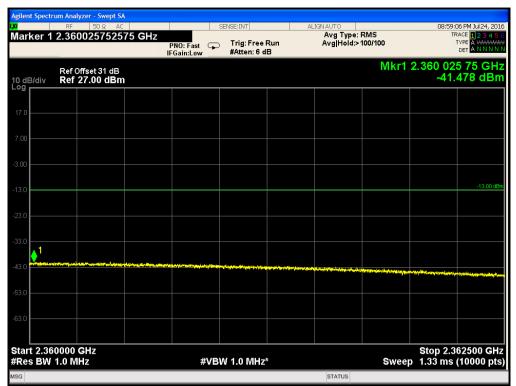


Figure 79 2.36GHz-2.3625GHz

Figure 80 2.3625GHz-2365GHz

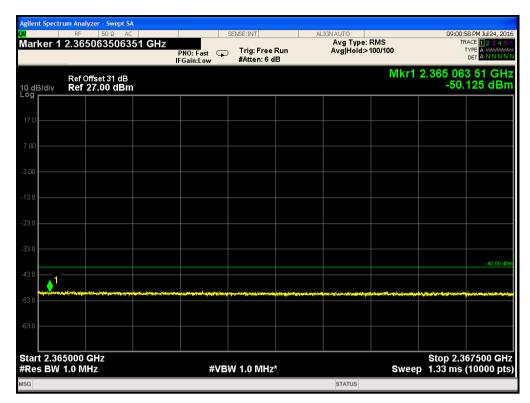


Figure 81 2.365GHz-2.3675GHz

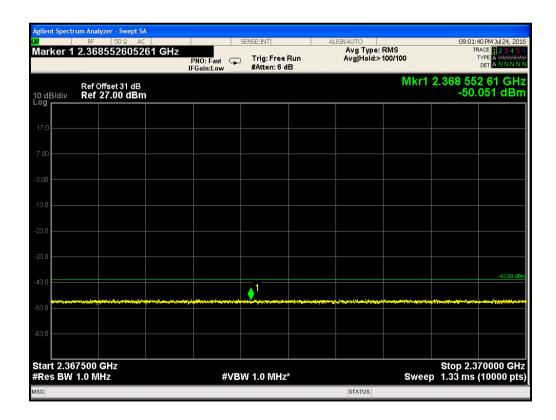


Figure 82 2.3675GHz-2.37GHz



Figure 83 2.37GHz-13.5GHz

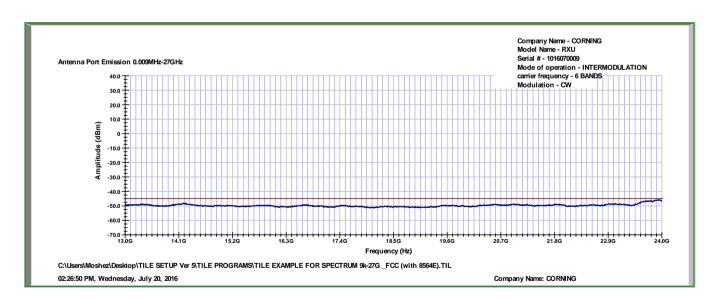


Figure 84 13GHz-24GHz

11.4 Test Equipment Used; Intermodulation Conducted

			G • 1	Calibration		
Instrument	Instrument Manufacturer Model Serial Number		Last Calibration Date	Next Calibration Date		
Spectrum Analyzer	НР	8564E	3442A00275	March 10, 2016	March 10, 2017	
EXA Signal Analyzer	Agilent	N9010A	MY52221237	February 12, 2015	February 12, 2017	
EXG Vector Signal Generator	Agilent	N5172B	TE4384	July 1, 2016	July 1, 2017	
EXG Vector Signal Generator	Agilent	N5172B	MY513500584	July 1, 2016	July 1, 2017	
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017	

Figure 85 Test Equipment Used

12. Intermodulation Radiated

12.1 Test Procedure

The test method was based on ANSI/TIA-603-D: 2010, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

For measurements between 0.009MHz-30.0MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.0 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-27.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -27.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using:

 $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dBd)$

 P_d = Dipole equivalent power (result).

 P_g = Signal generator output level.

A Peak detector was used for this test.

Testing was performed when the RF port was connected to 50 Ω termination.

The table below describe only results with the highest radiation.

2 input signals were sent simultaneously to the E.U.T. as follows:

WCS band: 2355.0MHz, 0 dBm

TDD 2.5G band: 2593.0MHz, 0 dBm

12.2 Test Limit

Frequency Band	Calculated
(MHz)	Factor (dBc)
f<2285.0	75+10*log(0.1)=65.0
2285.0MHz <f<2287.5mhz< td=""><td>72+10*log(0.1)=62.0</td></f<2287.5mhz<>	72+10*log(0.1)=62.0
2287.5MHz <f<2300.0mhz< td=""><td>70+10*log(0.1)=60.0</td></f<2300.0mhz<>	70+10*log(0.1)=60.0
2300.0MHz <f<2305.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2305.0mhz<>	43+10*log(0.1)=33.0
2305.0MHz <f<2320.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2320.0mhz<>	43+10*log(0.1)=33.0
2320.0MHz <f<2345.0mhz< td=""><td>75+10*log(0.1)=65.0</td></f<2345.0mhz<>	75+10*log(0.1)=65.0
2345.0MHz <f<2360.0mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2360.0mhz<>	43+10*log(0.1)=33.0
2360.0MHz <f<2362.50mhz< td=""><td>43+10*log(0.1)=33.0</td></f<2362.50mhz<>	43+10*log(0.1)=33.0
2362.5MHz <f<2365.0mhz< td=""><td>55+10*log(0.1)=45.0</td></f<2365.0mhz<>	55+10*log(0.1)=45.0
2365.0MHz <f<2367.5mhz< td=""><td>70+10*log(0.1)=60.0</td></f<2367.5mhz<>	70+10*log(0.1)=60.0
2367.5MHz <f<2370.0mhz< td=""><td>72+10*log(0.1)=62.0</td></f<2370.0mhz<>	72+10*log(0.1)=62.0
2370.0 <f< td=""><td>75+10*log(0.1)=65.0</td></f<>	75+10*log(0.1)=65.0

12.3 Test Results

Frequency	Antenna Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	Effective Radiated Power Level	Limit	Margin
(MHz)	(V/H)	$(dB\mu V/m)$	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)
1403.0	V	38.4	-61.2	0.5	6.0	-55.7	-45.0	-10.7
1403.0	Н	38.4	-61.1	0.5	6.0	-55.6	-45.0	-10.6
1641.0	V	38.5	-61.6	0.5	6.0	-56.1	-45.0	-11.1
1641.0	Н	38.6	-60.6	0.5	6.0	-55.1	-45.0	-10.1
1879.0	V	39.0	-60.6	0.5	6.0	-55.1	-45.0	-10.1
1879.0	Н	38.8	-60.4	0.5	6.0	-54.9	-45.0	-9.9
2117.0	V	39.3	-65.6	0.5	10.0	-56.1	-45.0	-11.1
2117.0	Н	39.1	-60.8	0.5	7.0	-54.3	-45.0	-9.3
2831.0	V	40.4	-64.3	0.5	10.0	-54.8	-45.0	-9.8
2831.0	Н	40.8	-63.5	0.5	10.0	-54.0	-45.0	-9.0
3069.0	V	42.5	-62.9	0.5	10.0	-53.4	-45.0	-8.4
3069.0	Н	42.4	-61.5	0.5	10.0	-52.0	-45.0	-7.0
3307.0	V	45.6	-59.9	0.5	10.0	-50.4	-45.0	-5.4
3307.0	Н	45.6	-58.5	0.5	10.0	-49.0	-45.0	-4.0
3545.0	V	47.3	-55.1	0.5	9.5	-46.1	-45.0	-1.1
3545.0	Н	47.4	-55.7	0.5	9.5	-46.7	-45.0	-1.7

Figure 86 Intermodulation Radiated Results

JUDGEMENT: Passed

12.4 Test Instrumentation Used; Radiated Measurements Intermodulation

	Intermou			Calibration			
Instrument	Manufactur er	Model	Serial Number	Last Calibration Date	Next Calibration Due		
EMI Receiver	НР	85422E	3906A00276	March 3, 2016	March 3, 2017		
RF Filter Section	HP	85420E	3705A00248	March 3, 2016	March 3, 2017		
EMI Receiver	R&S	ESCI7	100724	February 29, 2016	March 1, 2017		
Spectrum Analyzer	НР	8593EM	3536A00120ADI	March 10, 2016	March 10, 2017		
Active Loop Antenna	EMCO	6502	9506-2950	November 5, 2015	November 30, 2016		
Antenna Biconical	EMCO	3110B	9912-3337	March 24, 2016	March 24, 2018		
Antenna Log Periodic	EMCO	3146	9505-4081	April 23, 2016	April 23, 2017		
Horn Antenna 1G-18G	ETS	3115	29845	May 19, 2015	May 19, 2018		
Horn Antenna 18G-26G	ARA	SWH-28	1007	March 30, 2014	September 30, 2016		
Low Noise Amplifier	Narda	LNA-DBS- 0411N313	013	March 1, 2015	September 30, 2016		
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	March 1, 2015	September 30, 2016		
ESG Vector Signal generator	Agilent	E4438C	MY45094064	July 1, 2016	July 1, 2017		
Signal generator	Agilent	E4432B	GB40050998	July 1, 2016	July 1, 2017		
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A		
Antenna Mast	ETS	2070-2	-	N/A	N/A		
Turntable	ETS	2087	-	N/A	N/A		
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A		

Figure 87 Test Equipment Used

13. Out-of-Band Rejection (WCS)

13.1 Test Specification

KDB 935210 D05 v01r01, Section 3.3

13.2 Test Procedure

(Temperature (22°C)/ Humidity (37%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max Loss= 41.5 dB).

The signal and spectrum analyzer frequency range was set to $\pm 250\%$ of the passband, Dwell time set to approximately 10msec.

RBW was set between 1% to 5% of the E.U.T passband and VBW set to \geq 3*RBW.

13.3 Test Limit

N/A

13.4 Test Results

JUDGEMENT: Passed

Figure 88. — Out-of-Band Rejection Plot

13.5 Test Equipment Used; Out-of-Band Rejection

			Serial	Calibration		
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Date	
EXA Spectrum Analyzer	Agilent	N9010A	MY49061070	July 21, 2016	July 21, 2017	
EXG Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017	
40 dB Attenuator	Weinschel	WA 39-40-33	A1323	April 3, 2016	April 3, 2017	

Figure 89 Test Equipment Used

14. APPENDIX A - CORRECTION FACTORS

14.1 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

Frequency	Cable Loss
(MHz)	(dB)
0.010	0.4
0.015	0.2
0.020	0.2
0.030	0.3
0.050	0.3
0.075	0.3
0.100	0.2
0.150	0.2
0.200	0.3
0.500	0.4
1.00	0.4
1.50	0.5
2.00	0.5
5.00	0.6
10.00	0.8
15.00	0.9
20.00	0.8

Cable Loss
(dB)
1.2
0.7
2.1
2.3
2.9
3.8
4.8
5.4
6.7
9.0
9.4
9.9
10.2
11.2
12.1
13.1
13.5
14.5

NOTES:

- 1. The cable type is SPUMA400 RF-11N(X2) and 39m long
- 2. The cable is manufactured by Huber + Suhner

14.2 Correction factors for Chamber

RF Cable for Semi Anechoic

FREQ	LOSS
(MHz)	(dB) 1.5
1000.0	1.5
2000.0	2.1
3000.0	2.7
4000.0	3.1
5000.0	3.5
6000.0	4.1
7000.0	4.6
8000.0	4.9
9000.0	5.7
10000.0	5.7
11000.0	6.1
12000.0	6.1
13000.0	6.2
14000.0	6.7
15000.0	7.4
16000.0	7.5
17000.0	7.9
18000.0	8.1
19000.0	8.8
20000.0	9.1

14.3 Correction factors for Horn ANTENNA

Model: 3115

Antenna serial number: 29845
10 meter range

FREQUENCY	AFE	FREQUENCY	AFE
(MHz)	(dB/m)	(MHz)	(dB/m)
1000	22.4	10000	36.1
2000	25.2	11000	37.0
3000	31.1	12000	41.3
4000	30.2	13000	38.1
5000	34.2	14000	41.7
6000	31.6	15000	39.0
7000	34.7	16000	38.8
8000	34.8	17000	43.2
9000	36.2	18000	43.7

14.4 Correction factors for

Horn ANTENNA

Model: SWH-28

Antenna serial number: 1007

1 meter range

FREQUENCY	AFE	Gain
(GHz)	(dB/m)	(dBi)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

14.5 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

	Magnetic	Electric
FREQUENCY	Antenna	Antenna
	Factor	Factor
(MHz)	(dBs/m)	(dB/m)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	-42.3	9.2

14.6 Correction factors forBiconical Antenna EMCO Model 3110B serial 9912-3337

	AF
Frequency [MHz]	[dB/m]
30.0	14.18
35.0	13.95
40.0	12.84
45.0	11.23
50.0	11.10
60.0	10.39
70.0	9.34
80.0	9.02
90.0	9.31
100.0	8.95
120.0	11.53
140.0	12.20
160.0	12.56
180.0	13.49
200.0	15.27

14.7 Correction factors for

Log Periodic Antenna EMCO Model 3146 serial 9505-4081

	AF
Frequency [MHz]	[dB/m]
200.0	11.47
250.0	12.06
300.0	14.77
400.0	15.77
500.0	18.01
600.0	18.84
700.0	20.93
800.0	21.27
900.0	22.44
1000.0	24.10