

7. Band Edge Spectrum (CELL)

7.1 Test Specification

FCC Part 22 section 917(a), FCC Part 2.1051

7.2 Test Procedure

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + \log (P) dB$, yielding -13 dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (30.5 dB). RBW was set to 100 kHz.

The E.U.T was evaluated at the low and high channels of each modulation: LTE 64QAM, GSM, WCDMA.

7.3 Test Results

Modulation	Operation Frequency	Band Edge	Reading	Specification	Margin
	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
LTE	874.0	869.0	-39.5	-13.0	-26.5
64QAM	889.0	894.0	-34.0	-13.0	-21.0
	870.2	869.0	-48.4	-13.0	-35.4
GSM	892.8	894.0	-47.9	-13.0	-34.9
	871.5	869.0	-44.4	-13.0	-31.4
WCDMA	891.5	894.0	-43.2	-13.0	-30.2

Figure 49 Band Edge Spectrum Results CELL

See additional information in Figure 50 to Figure 55.

JUDGEMENT:

Passed by 21.0 dB

Date: 30.NOV.2015 13:39:43

Date: 30.NOV.2015 13:43:13

Figure 51. LTE 64QAM - 889.0 MHz

Date: 30.NOV.2015 13:53:41

Figure 52. GSM - 870.2 MHz

Date: 30.NOV.2015 13:56:10

Figure 53. GSM - 892.8 MHz

Date: 30.NOV.2015 13:57:52

Date: 30.NOV.2015 13:59:21

Figure 55. WCDMA - 891.5 MHz

7.4 Test Equipment Used; Band Edge Spectrum CELL

				Calibration	ı
Instrument	Manufacturer	Model	Serial		
Instrument	Wanutacturer	Widder	Number	Last Calibration Perio	Period
Spectrum Analyzer	R&S	FSL6	100194	January 1, 2015	1 year
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year

Figure 56 Test Equipment Used

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

8. Out of Band Emissions (Radiated) (CELL)

8.1 Test Specification

FCC Part 22, Section 917(a); FCC Part 2.1053

8.2 Test Procedure

The test method was based on ANSI/TIA-603-C: 2004, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$, yielding -13 dBm.

(a) The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 30MHz-1GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.0 meters above the ground. The frequency range 30MHz -1GHz was scanned and the list of the highest emissions was verified and updated accordingly. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 1GHz-22GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1GHz -22GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

(b) The E.U.T. was replaced by a substitution antenna driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using: $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dB)$ $P_d = Dipole$ equivalent power (result).

 $P_g = Signal$ generator output level.

Carrier Channel	Freq.	Antenna Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	EIRP	Spec.	Margin
(MHz)	(MHz)	(V/H)	$(dB\mu V/m)$	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
870.2	1432.1	V	39.8	-59.6	0.5	6.0	-54.1	-13.0	-41.1
870.2	1150.0	Н	38.5	-61.1	0.5	6.0	-55.6	-13.0	-42.6
881.0	1432.1	V	41.7	-57.6	0.5	6.0	-52.1	-13.0	-39.1
881.0	1150.0	Н	40.5	-59.6	0.5	6.0	-54.1	-13.0	-41.1
892.8	1432.1	V	41.6	-57.7	0.5	6.0	-52.2	-13.0	-39.2
892.8	1150.0	Н	40.5	-59.6	0.5	6.0	-54.1	-13.0	-41.1

8.3 Test Results

Figure 57 Out of Band Radiated (CELL) Test Results Table

The E.U.T met the requirements of the FCC Part 22, Section 917; FCC Part 2.1053 specifications.

JUDGEMENT; Passed by 39.1 dB

8.4 Test Instrumentation Used, Radiated Measurements CELL

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMC Analyzer	HP	8593EM	3536A00120ADI	February 24, 2015	1 year
EMI Receiver	HP	8542E	3906A00276	March 11, 2015	1 year
RF Filter Section	HP	85420E	3705A00248	March 19, 2015	1 year
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A
Active Loop Antenna	EMCO	6502	9506-2950	November 4, 2015	1 year
Biconical Antenna	EMCO	3104	2606	December 28, 2014	1 year
Log Periodic Antenna	EMCO	3146	9505-4081	December 28, 2014	1 year
Horn Antenna	ETS	3115	29845	May 19, 2015	3 years
Horn Antenna	ARA	SWH-28	1007	March 3, 2014	2 years
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	March 1, 2015	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	March 1, 2015	1 year
Antenna Mast	ETS	2070-2	-	N/A	N/A
Turntable	ETS	2087	-	N/A	N/A
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A

Figure 58 Test Equipment Used

9.1 Test Specification

FCC Rule Part 20.21

9.2 Test Procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through a 30 dB external attenuator and an appropriate coaxial cable (Loss = 30.5 dB). RBW was set to 1%-5% from the OBW. Special attention was taken to prevent Spectrum Analyzer RF input overload.

The E.U.T was evaluated at the low, mid and high channels (874.0, 8881.0 and 889.0) of the 3 modulations: LTE 64QAM, GSM, WCDMA.

Modulation	Operation	Reading
	Frequency	
	(MHz)	(dBm)
LTE 64QAM	864.5	16.8
	866.5	16.5
GSM	863.2	16.6
	867.8	15.6
WCDMA	864.5	16.7
	866.5	16.6

9.3 Test Results

Figure 59 Peak Output Power Test Results Table

See additional information in Figure 60 to Figure 65.

JUDGEMENT: Passed

Peak Output Power (ESMR)

E.U.T Description	ONE- Optical Network Evolution DAS
Туре	RAU-5x Remote Antenna Unit PN: RAU5xUS/RAU5xUS-A
Serial Number:	Not Designated

Date: 29.NOV.2015 11:58:22

Date: 29.NOV.2015 12:00:12

Figure 61. LTE 64QAM - 866.5 MHz

Peak Output Power (ESMR)

Serial Number:

Date: 29.NOV.2015 11:49:24

Figure 62. GSM - 863.2 MHz

Date: 29.NOV.2015 11:48:02

Figure 63. GSM - 867.8 MHz

Peak Output Power (ESMR)

Date: 29.NOV.2015 11:30:44

Date: 29.NOV.2015 11:31:45

Figure 65. WCDMA - 866.5 MHz

9.4 Test Equipment Used; Peak Power (ESMR)

				Calibration	1
Instrument	Manufacturer	Model	Serial Number	Last Calibration	Period
				Lust Cultoration	1 01100
Spectrum Analyzer	R&S	FSL6	100194	January 1, 2015	1 year
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year

Figure 66 Test Equipment Used Peak Output Power (ESMR)

10.1 Test Specification

FCC Parts 2.1049; 90.209

10.2 Test Procedure

The E.U.T. was set to the applicable test frequency with modulation. The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (at the output port test) and an appropriate coaxial cable. RBW was set to 1%-5% from OBW.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limit, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission.

The function 99% power bandwidth was used for this evaluation.

Occupied bandwidth measured was repeated in the input terminal of the E.U.T. The E.U.T was evaluated at the low, mid and high channels of the 3 modulations: LTE 64QAM, GSM and WCDMA.

10.3 Test Results

Modulation	port	Operating	Reading
		Frequency	
			(MHz)
LTE 64QAM	Input	864.5	4.53
LTE 64QAM	Output	864.5	4.53
LTE 64QAM	Input	866.5	4.55
LTE 64QAM	Output	866.5	4.53
GSM	Input	863.2	0.24
GSM	Output	863.2	0.24
GSM	Input	867.8	0.24
GSM	Output	867.8	0.24
WCDMA	Input	864.5	4.19
WCDMA	Output	864.5	4.17
WCDMA	Input	866.5	4.17
WCDMA	Output	866.5	4.15

Figure 67 Occupied Bandwidth Test Results Table (ESMR)

See additional information in Figure 68 to Figure 75.

JUDGEMENT: Passed

Not Designated

E.U.T Description ON Type RA

ONE- Optical Network Evolution DAS RAU-5x Remote Antenna Unit PN: RAU5xUS/RAU5xUS-A

Serial Number:

Date: 29.NOV.2015 17:10:31

Date: 29.NOV.2015 17:07:10

Figure 69. LTE 64QAM - 864.5MHz Output

Not Designated

E.U.T Description ONE- O Type RAU-5>

ONE- Optical Network Evolution DAS RAU-5x Remote Antenna Unit PN: RAU5xUS/RAU5xUS-A

Serial Number:

Date: 29.NOV.2015 17:09:47

Date: 29.NOV.2015 17:07:45

Figure 71. LTE 64QAM - 866.5MHz Output

Date: 29.NOV.2015 17:12:30

Date: 29.NOV.2015 17:00:01

Figure 73. GSM - 863.2MHz Output

Not Designated

E.U.T Description ONE-Type RAU-5

ONE- Optical Network Evolution DAS RAU-5x Remote Antenna Unit PN: RAU5xUS/RAU5xUS-A

Serial Number:

Date: 29.NOV.2015 17:13:25

Date: 29.NOV.2015 17:00:51

Figure 75. GSM - 867.8MHz Output

Not Designated

E.U.T Description	ONE- Opt
Туре	RAU-5x R

ONE- Optical Network Evolution DAS RAU-5x Remote Antenna Unit PN: RAU5xUS/RAU5xUS-A

Serial Number:

Date: 29.NOV.2015 17:14:48

Figure 76. WCDMA - 864.5MHz Input

Date: 29.NOV.2015 17:02:32

Figure 77. WCDMA - 864.5MHz Output

E.U.T Description	ONE- Op
Гуре	RAU-5x
	DAU5 _w 11

ONE- Optical Network Evolution DAS RAU-5x Remote Antenna Unit PN: RAU5xUS/RAU5xUS-A Not Designated

Serial Number:

Date: 29.NOV.2015 17:15:25

Date: 29.NOV.2015 17:04:08

Figure 79. WCDMA - 866.5MHz Output

10.4 Test Equipment Used; Occupied Bandwidth (ESMR)

		Serial		Calibration	
Instrument Manufacturer Mo	Model	Number	Last Calibration	Period	
Spectrum Analyzer	R&S	FSL6	100194	January 1, 2015	1 year
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year

Figure 80 Test Equipment Used Occupied Bandwidth (ESMR)

n

11. Out of Band Emissions at Antenna Terminals (ESMR)

11.1 Test Specification

FCC Part 90, Section 90.210

11.2 Test Procedure

The power of any emission outside of the authorized bandwidth must be attenuated below the transmitting power (P) by a factor of at least $43 + \log (P) dB$, yielding -13 dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max total Loss= 33.0 dB).

The resolution bandwidth was set to 1.0 kHz for the frequency range 9 kHz – 1 MHz, 100 kHz for the frequency range 1 MHz to 1 GHz, and 1 MHz in the frequency range 1 - 22 GHz.

The E.U.T was evaluated at the low, mid and high channels of each of the 3 modulations: LTE 64QAM, GSM, WCDMA.

11.3 Test Results

See additional information in Figure 81 to Figure 86.

JUDGEMENT: Passed

Out of Band Emissions at Antenna Terminals (ESMR)

E.U.T Description	ONE- Optical Network Evolution DAS
Туре	RAU-5x Remote Antenna Unit PN: RAU5xUS/RAU5xUS-A
Serial Number:	Not Designated

Figure 81. LTE 64QAM - 864.5 MHz

Figure 82. LTE 64QAM - 866.5 MHz

Figure 83. GSM - 863.2 MHz

Figure 84. GSM - 867.8 MHz

Figure 85. WCDMA - 864.5 MHz

Figure 86. WCDMA - 866.5 MHz

	Manufacturer	Model		Calibration	
Instrument			Serial Number	Last Calibration	Period
Spectrum Analyzer	HP	8592L	3826A01204	March 4, 2015	1 year
Vector Signal Generator Agilent N51		N5182A	MY48180244 July 16, 2015		1 year
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year

11.4 Test Equipment Used; Out of Band Emissions at Antenna Terminals (ESMR)

Figure 87 Test Equipment Used Out of Band Emissions at Antenna Terminals (ESMR)

12. Band Edge Spectrum (ESMR)

12.1 Test Specification

FCC Part 2.1051

12.2 Test Procedure

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + \log (P) dB$, yielding -13 dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (30.5 dB). RBW was set to 100 kHz.

The E.U.T was evaluated at the low and high channels of each modulation: LTE 64QAM, GSM, WCDMA.

Modulation	Operation Frequency	Band Edge	Reading	Specification	Margin
	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
	864.5	862.0	-30.4	-13.0	-17.4
LTE 64QAM	866.5	869.0	-29.1	-13.0	-16.1
	863.2	862.0	-48.9	-13.0	-35.9
GSM	867.8	869.0	-47.7	-13.0	-34.7
	864.5	862.0	-44.0	-13.0	-31.0
W-CDMA	866.5	869.0	-42.9	-13.0	-29.9

12.3 Test Results

Figure 88 Band Edge Spectrum Results ESMR

See additional information in Figure 89 to Figure 94.

JUDGEMENT: Passed by 16.1 dB

Date: 30.NOV.2015 14:10:41

Date: 30.NOV.2015 14:09:25

Figure 90— LTE 64QAM - 866.5 MHz

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

Date: 30.NOV.2015 14:05:40

Figure 91—GSM - 863.2MHz

Date: 30.NOV.2015 14:06:53

Figure 92—GSM - 867.8 MHz

Date: 30.NOV.2015 14:03:36

Date: 30.NOV.2015 14:02:18

Figure 94—WCDMA - 866.5 MHz

12.4 Test Equipment Used; Band Edge Spectrum ESMR

		Model		Calibration	
Instrument	Manufacturer		Serial Number	Last Calibration	Period
					1 01100
Spectrum Analyzer	R&S	FSL6	100194	January 1, 2015	1 year
Vector Signal Generator	Vector Signal Generator Agilent N5		MY48180244	July 16, 2015	
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year

Figure 95 Test Equipment Used

13. Out of Band Emissions (Radiated) (ESMR)

13.1 Test Specification

FCC, Part 90, Section 90.210

13.2 Test Procedure

The test method was based on ANSI/TIA-603-C: 2004, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$, yielding -13 dBm.

(a) The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 30MHz-1GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.0 meters above the ground. The frequency range 30MHz -1GHz was scanned and the list of the highest emissions was verified and updated accordingly. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 1GHz-22GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1GHz -22GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

(b) The E.U.T. was replaced by a substitution antenna driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a). The signals observed in step (a) were converted to radiated power using: $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dB)$ $P_d = Dipole equivalent power (result).$

 P_g = Signal generator output level.

13.3 Test Results

Channel	Freq.	Antenna	Maximum	Signal	Cable	Antenna	EIRP	Spec.	Margin
		Pol.	Peak Level	Generator RF	Loss	Gain			
				Output					
(MHz)	(MHz)	(V/H)	$(dB\mu V/m)$	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
863.2	1150.0	V	38.5	-61.1	0.5	6.0	-55.6	-13.0	-42.6
863.2	1150.0	Н	40.1	-59.5	0.5	6.0	-54.0	-13.0	-41.0
867.8	1150.0	V	38.3	-61.0	0.5	6.0	-55.8	-13.0	-42.8
867.8	1150.0	Н	40.5	-59.1	0.5	6.0	-53.6	-13.0	-40.6

Figure 96 Out of Band Radiated (ESMR) Test Results Table

JUDGEMENT:

Passed by 40.6 dB

The E.U.T met the requirements of the FCC, Part 90, Section 90.210 specifications.

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMC Analyzer	HP	8593EM	3536A00120ADI	February 24, 2015	1 year
EMI Receiver	HP	8542E	3906A00276	March 11, 2015	1 year
RF Filter Section	HP	85420E	3705A00248	March 19, 2015	1 year
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A
Active Loop Antenna	EMCO	6502	9506-2950	November 4, 2015	1 year
Biconical Antenna	EMCO	3104	2606	December 28, 2014	1 year
Log Periodic Antenna	EMCO	3146	9505-4081	December 28, 2014	1 year
Horn Antenna	ETS	3115	29845	May 19, 2015	3 years
Horn Antenna	ARA	SWH-28	1007	March 3, 2014	2 years
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	March 1, 2015	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	March 1, 2015	1 year
Antenna Mast	ETS	2070-2	-	N/A	N/A
Turntable	ETS	2087	-	N/A	N/A
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A

13.4 Test Equipment Used; Out of Band Emissions (Radiated) (ESMR)

Figure 97 Test Equipment Used Out of Band Emissions (Radiated) (ESMR)

14. Peak Output Power (PCS)

14.1 Test Specification

FCC Part 24, Subpart E

14.2 Test Procedure

Peak Power Output must not exceed 100 Watts (50dBm).

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (loss = 30.5 dB). The RBW was set to 1%-5% from the OBW. Special attention was taken to prevent Spectrum Analyzer RF input overload. RF output was modulated with LTE 64QAM GSM and WCDMA at low, mid and high channels of each modulation.

14.3 Test Results

Modulation	Operation	Reading	Specification	Margin
	Frequency			
	(MHz)	(dBm)	(dBm)	(dB)
	1935.0	21.8	50.0	-28.2
LTE 64QAM	1962.5	21.4	50.0	-28.6
	1990.0	21.6	50.0	-28.4
	1931.2	20.6	50.0	-29.4
GSM	1960.0	20.7	50.0	-37.3
	1993.8	20.5	50.0	-29.5
	1932.5	21.8	50.0	-28.2
WCDMA	1960.0	21.8	50.0	-28.2
	1992.5	21.2	50.0	-28.8

Figure 98 Peak Output Power PCS

See additional information in Figure 99 to Figure 107.

JUDGEMENT:

Passed by 28.2 dB

Date: 29.NOV.2015 12:07:15

Figure 99. 64QAM - 1935.0 MHz

Date: 29.NOV.2015 12:08:00

Figure 100. 64QAM - 1962.5 MHz

Date: 29.NOV.2015 12:08:56

Date: 29.NOV.2015 12:12:21

Figure 102. GSM -1931.2 MHz

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

Date: 29.NOV.2015 12:13:06

Figure 103. GSM - 1960.0 MHz

Date: 29.NOV.2015 12:13:55

Figure 104.GSM - 1993.8 MHz

Date: 29.NOV.2015 12:20:42

Date: 29.NOV.2015 12:21:58

Figure 106. WCDMA- 1960.0 MHz

Date: 29.NOV.2015 12:22:56

Figure 107. WCDMA - 1992.5 MHz

14.4 Test Equipment Used; Peak Output Power PCS

			C - mi - 1	Calibration	
Instrument	Manufacturer	Model	Number	Last Calibration	Period
Spectrum Analyzer	R&S	FSL6	100194	January 1, 2015	1 year
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year

Figure 108 Test Equipment Used

15. Occupied Bandwidth (PCS)

15.1 Test Specification

FCC Part 2, Section 1049

15.2 Test Procedure

The E.U.T. was set to the applicable test frequency with modulation. The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (at the output port test) and an appropriate coaxial cable. RBW was set to 1%-5% from OBW.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limit, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission.

The function 99% power bandwidth was used for this evaluation.

Occupied bandwidth measured was repeated in the input terminal of the E.U.T. The E.U.T was evaluated at the low, mid and high channels of the 3 modulations: LTE 64QAM, GSM and WCDMA.

15.3 Test Results

Modulation	port	Operating	Reading
		Frequency	
		(MHz)	(MHz)
	Input	1935.0	8.98
	Output	1935.0	8.98
LTE 64QAM	Input	1962.5	8.98
-	Output	1962.5	8.98
	Input	1990.0	8.98
	Output	1990.0	8.98
	Input	1931.2	0.24
	Output	1931.2	0.24
GSM	Input	1960.0	0.24
	Output	1960.0	0.24
	Input	1993.8	0.24
	Output	1993.8	0.24
	Input	1932.5	4.17
	Output	1932.5	4.15
WCDMA	Input	1960.0	4.17
	Output	1960.0	4.19
	Input	1992.5	4.17
	Output	1992.5	4.15

Figure 109 Occupied Bandwidth PCS

See additional information in Figure 110 to Figure 127.

JUDGEMENT: Passed

Date: 30.NOV.2015 08:48:14

Date: 30.NOV.2015 08:29:27

Date: 30.NOV.2015 0B:47:24

Date: 30.NOV.2015 08:30:10

Figure 113. LTE 64QAM - 1962.5 MHz Output

Date: 30.NOV.2015 0B:46:40

Date: 30.NOV.2015 08:31:03

Figure 115. LTE 64QAM - 1990.0 MHz Output

Date: 30.NOV.2015 0B:45:21

Figure 116. GSM - 1931.2 MHz Input

Date: 30.NOV.2015 08:32:36

Figure 117.GSM - 1931.2 MHz Output

Date: 30.NOV.2015 0B:44:11

Date: 30.NOV.2015 08:33:53

Figure 119. GSM - 1960.00 MHz Output

Date: 30.NOV.2015 08:43:25

Date: 30.NOV.2015 08:34:46

Figure 121.GSM - 1993.8 MHz Output

Date: 30.NOV.2015 0B:41:46

Date: 30.NOV.2015 08:36:28

Figure 123. WCDMA - 1932.5 MHz Output

Date: 30.NOV.2015 08:40:57

Date: 30.NOV.2015 08:37:06

Figure 125. WCDMA - 1960.0 MHz Output

Date: 30.NOV.2015 08:40:19

Date: 30.NOV.2015 08:37:47

15.4 Test Equipment Used; Occupied Bandwidth PCS

			Calibration		1
Instrument	Manufacturer	Model	Serial		[
mstrument	Wanutacturer	Widden	Number	Last Calibration	Period
Spectrum Analyzer	R&S	FSL6	100194	January 1, 2015	1 year
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year

Figure 128 Test Equipment Used

16. Out of Band Emissions at Antenna Terminals (PCS)

16.1 Test Specification

FCC Part 24, Subpart E, Section 238; FCC Part 2.1051

16.2 Test procedure

The power of any emission outside of the authorized bandwidth must be attenuated below the transmitting power (P) by a factor of at least

 $43 + \log(P) dB$, yielding -13 dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max total Loss= 33.0 dB).

The resolution bandwidth was set to 1.0 kHz for the frequency range 9 kHz - 1 MHz, 100 kHz for the frequency range 1 MHz to 1 GHz, and 1 MHz in the frequency range 1 - 22 GHz.

The E.U.T was evaluated at the low, mid and high channels of each of the 3 modulations: LTE 64QAM, GSM, WCDMA.

16.3 Test Results

See additional information in Figure 129 to Figure 137.

JUDGEMENT: Passed

Figure 130 64QAM - 1962.5 MHz

Figure 131 64QAM - 1990.0 MHz

Figure 133GSM - 1960.0 MHz

Figure 134 GSM - 1993.8 MHz

Figure 136 WCDMA - 1960.0 MHz

Figure 137 WCDMA - 1992.5 MHz

16.4 Test Equipment Used; Out of Band Emission at Antenna Terminals PCS

			Calibration		
Instrument	Manufacturer	Model	Serial Number	Last Calibration	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 4, 2015	1 year
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year

Figure	138	Test Equipment Used	ł
riguic	100	rest Equipment 0300	4

17. Band Edge Spectrum (PCS)

17.1 Test Specification

FCC Part 24, Subpart E, Section 238; FCC Part 2.1051

17.2 Test Procedure

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + \log (P) dB$, yielding -13 dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (30.5 dB). RBW was set to 100kHz.

The E.U.T was evaluated at the low and high channels of each modulation: LTE 64QAM, GSM, WCDMA.

Modulation	Operation	Band Edge	Reading	Specification	Margin
	Frequency	Frequency			
	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
LTE 640AM	1935.0	1930.0	-27.9	-13.0	-14.9
LILUQUI	1990.0	1995.0	-31.1	-13.0	-18.1
COM	1931.2	1930.0	-43.4	-13.0	-30.4
GSM	1993.8	1995.0	-42.5	-13.0	-29.5
	1932.5	1930.0	-25.4	-13.0	-12.4
WCDMA	1992.5	1995.0	-30.8	-13.0	-17.8

17.1 Test Results

Figure 139 Band Edge Spectrum Results PCS

See additional information in Figure 140 to Figure 145.

JUDGEMENT: Passed by 12.4dB

Date: 30.NOV.2015 14:16:02

Date: 30.NOV.2015 14:16:57

Figure 141— LTE 64QAM - 1990.0 MHz

Date: 30.NOV.2015 14:19:40

Date: 30.NOV.2015 14:18:37

Figure 143— GSM - 1993.8 MHz

Date: 30.NOV.2015 14:20:44

Date: 30.NOV.2015 14:21:32

17.2 Test Equipment Used; Band Edge Spectrum PCS

				Calibration		
Instrument	Manufacturer	Model	Serial Number	Last Calibration	Period	
					1 chibu	
Spectrum Analyzer	R&S	FSL6	100194	January 1, 2015	1 year	
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year	
30 dB Attenuator	Weinschel Engineering	49-30-34	PD426	January 14, 2015	1 year	

Figure 146 Test Equipment Used

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

18. Out of Band Emissions (Radiated) (PCS)

18.1 Test Specification

FCC, Part 24, Subpart E Section 238, FCC Part 2.1053

18.2 Test Procedure

The test method was based on ANSI/TIA-603-C: 2004, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$, yielding -13 dBm.

(a)The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 30MHz-1GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.0 meters above the ground. The frequency range 30MHz -1GHz was scanned and the list of the highest emissions was verified and updated accordingly. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 1GHz-22GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1GHz -22G was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

(b)The E.U.T. was replaced by a substitution antenna driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using:

 $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dB)$

 P_d = Dipole equivalent power (result).

 P_g = Signal generator output level.

18.3 Results Table

Carrier Channel	Freq.	Antenna Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	EIRP	Spec.	Margin
(MHz)	(MHz)	(V/H)	(dBµV/m)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1931.2	3862.4	V	41.2	-57.9	0.5	9.5	-48.9	-13.0	-35.9
1931.2	3862.4	Н	39.0	-59.5	0.5	9.5	-50.5	-13.0	-37.5
1960.0	3920.0	V	38.2	-60.9	0.5	9.5	-51.9	-13.0	-38.9
1960.0	3920.0	Н	39.2	-59.7	0.5	9.5	-50.7	-13.0	-37.7
1993.8	3987.6	V	38.9	-60.2	0.5	9.5	-51.2	-13.0	-38.2
1993.8	3987.6	Н	39.2	-59.7	0.5	9.5	-50.7	-13.0	-37.7

Figure 147 Out of Band (Radiated) PCS

The E.U.T met the requirements of the FCC, Part 24, Subpart E, Section 238; FCC Part 2.1053 specifications.

JUDGEMENT: Passed by 35.9 dB

18.4 Test Instrumentation Used, Radiated Measurements (PCS)

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMC Analyzer	HP	8593EM	3536A00120ADI	February 24, 2015	1 year
EMI Receiver	HP	8542E	3906A00276	March 11, 2015	1 year
RF Filter Section	НР	85420E	3705A00248	March 19, 2015	1 year
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A
Active Loop Antenna	EMCO	6502	9506-2950	November 4, 2015	1 year
Biconical Antenna	EMCO	3104	2606	December 28, 2014	1 year
Log Periodic Antenna	EMCO	3146	9505-4081	December 28, 2014	1 year
Horn Antenna	ETS	3115	29845	May 19, 2015	3 years
Horn Antenna	ARA	SWH-28	1007	March 3, 2014	2 years
Vector Signal Generator	Agilent	N5182A	MY48180244	July 16, 2015	1 year
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	March 1, 2015	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	March 1, 2015	1 year
Antenna Mast	ETS	2070-2	-	N/A	N/A
Turntable	ETS	2087	-	N/A	N/A
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A

Figure 148 Test Equipment Used

19. APPENDIX A - CORRECTION FACTORS

19.1 Correction factors for

CABLE from EMI receiver to test antenna at 3 meter range.

Frequency	Cable Loss	Fr
(MHz)	(dB)	
0.010	0.4	
0.015	0.2	1
0.020	0.2	1
0.030	0.3	2
0.050	0.3	
0.075	0.3	4
0.100	0.2	
0.150	0.2	1
0.200	0.3	1
0.500	0.4	2
1.00	0.4	2
1.50	0.5	3
2.00	0.5	3
5.00	0.6	4
10.00	0.8	4
15.00	0.9	5
20.00	0.8	5
		6

	Cable
Frequency	Loss
(MHz)	(dB)
50.00	1.2
100.00	0.7
150.00	2.1
200.00	2.3
300.00	2.9
500.00	3.8
750.00	4.8
1000.00	5.4
1500.00	6.7
2000.00	9.0
2500.00	9.4
3000.00	9.9
3500.00	10.2
4000.00	11.2
4500.00	12.1
5000.00	13.1
5500.00	13.5
6000.00	14.5

NOTES:

1. The cable type is SPUMA400 RF-11N(X2) and 39m long

2. The cable is manufactured by Huber + Suhner

19.2 Correction factors for Horn ANTENNA

Double Ridged Waveguide

Model: 3115 *Antenna serial number: 29845* 10 meter range

FREQUENCY	AFE	FREQUENCY	AFE
(MHz)	(dB/m)	(MHz)	(dB/m)
1000	22.4	10000	36.1
2000	25.2	11000	37.0
3000	31.1	12000	41.3
4000	30.2	13000	38.1
5000	34.2	14000	41.7
6000	31.6	15000	39.0
7000	34.7	16000	38.8
8000	34.8	17000	43.2
9000	36.2	18000	43.7

19.3 Correction factors for

Horn ANTENNA

Model: SWH-28 *Antenna serial number: 1007* 1 meter range

FREQUENCY	AFE	Gain
(GHz)	(dB /m)	(dB1)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

19.4 Correction factors for Biconical Antenna Model 3104 Serial No 2606

Frequency, MHz	Near free space antenna factor, dB/m	Geometry specific correction factor, dB	Free space antenna factor, dB/m ¹⁾
30	12.97	0.13	12.84
35	12.34	0.09	12.25
40	12.03	0.06	11.97
45	11.42	0.02	11.40
50	11.91	0.03	11.88
60	11.92	0.37	11.55
70	9.60	0.25	9.35
80	6.99	-0.45	7.44
90	10.87	-0.34	11.21
100	11.51	-0.06	11.57
120	13.30	0.20	13.10
140	12.56	-0.01	12.57
160	14.49	-0.12	14.61
180	16.53	0.05	16.48
200	15.30	0.15	15.15

CALIBRATION DATA

1) The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµV/m.

.

19.5 Correction factors for Log Periodic Model 3146 Serial No: 9505-4081

CALIBRATION DATA

Frequency, MHz	Antenna factor, dB/m 1)	
200	11.55	
250	11.60	
300	14.43	
400	15.38	
500	17.98	
600	18.78	
700	21.17	
800	21.16	
900	22.67	
1000	24.09	

1) The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµV/m.

19.6 Correction factors for Active Loop Antenna Model 6502 Serial No: 9506-2950

	Magnetic	Electric
FREQUENCY	Antenna	Antenna
	Factor	Factor
(MHz)	(dB)	(dB)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	42.3	9.2