

9. Peak Output Power (ESMR)

9.1 Test Specification

FCC Rule Part 20.21

9.2 Test Procedure

(Temperature (22°C)/ Humidity (38%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (loss = 31.0 dB). The E.U.T. RF output was modulated with W-CDMA, GSM and LTE 64QAM. Special attention was taken to prevent Spectrum Analyzer RF input overload.

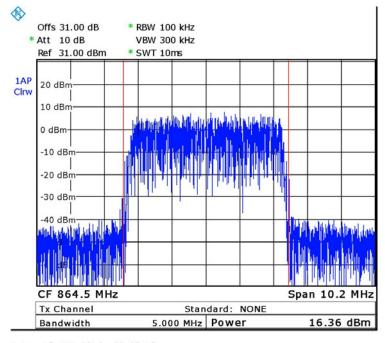
9.3 Test Results

Modulation	Operation	Reading
	Frequency	
	(MHz)	(dBm)
	864.5	16.4
LTE 64QAM	866.5	16.7
	863.2	15.7
GSM	867.8	16.4
	864.5	16.2
W-CDMA	866.5	16.7

Figure 61 Peak Output Power ESMR

JUDGEMENT: Passed

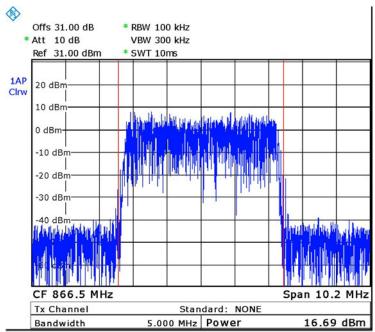
See additional information in *Figure 62* to *Figure 67*.


Peak Output Power (ESMR)

E.U.T Description ONE - Optical Network

Evolution DAS

Type RAU-5 Remote Antenna Unit

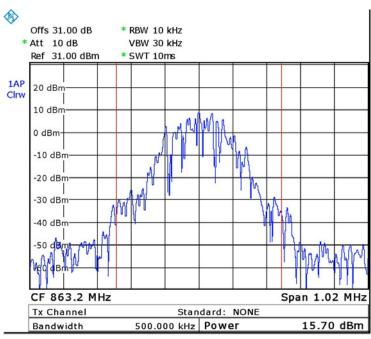

Serial Number: 05144900098

Date: 17.JUL.2016 08:27:15

Figure 62. — 864.5 MHz - LTE 64QAM

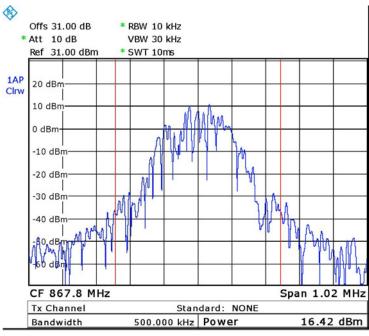
Date: 17.JUL.2016 08:28:10

Figure 63. — 866.5 MHz - LTE 64QAM



Peak Output Power (ESMR)

E.U.T Description ONE - Optical Network Evolution DAS


Type RAU-5 Remote Antenna Unit

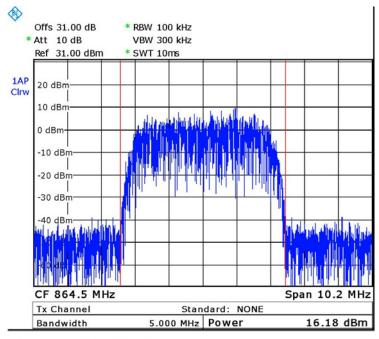
Serial Number: 05144900098

Date: 17.JUL.2016 08:32:22

Figure 64. — 863.2 MHz - GSM

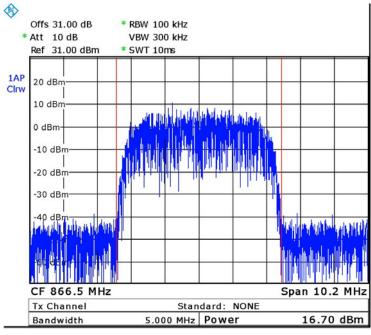
Date: 17.JUL.2016 08:33:11

Figure 65. — 867.8 MHz - GSM



Peak Output Power (ESMR)

E.U.T Description ONE - Optical Network Evolution DAS


Type RAU-5 Remote Antenna Unit

Serial Number: 05144900098

Date: 17.JUL.2016 08:30:43

Figure 66.—864.5 MHz – WCDMA

Date: 17.JUL.2016 08:30:05

Figure 67.— 866.5 MHz - WCDMA

9.4 Test Equipment Used; Peak Power (ESMR)

				Calibration		
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due	
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017	
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017	
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017	

Figure 68 Test Equipment Used Peak Output Power (ESMR)

10.1 Test Specification

FCC Parts 2.1049; 90.2.09

10.2 Test Procedure

(Temperature (22°C)/ Humidity (38%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (loss=31.0 dB). The spectrum analyzer was set to proper resolution B.W.

OBW function (99%) was employed for this evaluation Occupied bandwidth measured was repeated in the input terminal of the E.U.T.

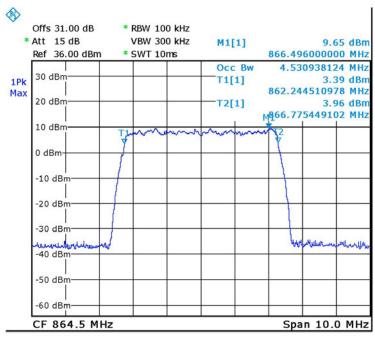
10.3 Test Limit

N/A

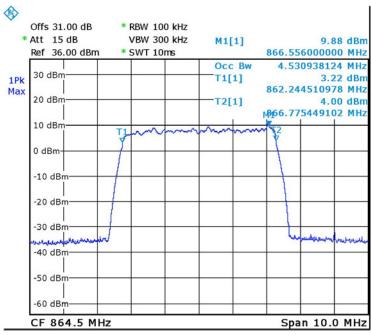
10.4 Test Results

Modulation	Port	Operating	Reading
		Frequency	
	(Input/ Output)	(MHz)	(MHz)
	Input	864.5	4.5
LTE 64QAM	Output	864.5	4.5
LIE 04QAM	Input	866.5	4.5
	Output	866.5	4.5
	Input	864.5	4.1
W-CDMA	Output	864.5	4.1
W-CDMA	Input	866.5	4.1
	Output	866.5	4.1
	Input	863.2	0.2
GSM	Output	863.2	0.2
GSM	Input	867.8	0.2
	Output	867.8	0.2

Figure 69 Occupied Bandwidth Test Results Table


See additional information in *Figure 70* to *Figure 81*.

E.U.T Description ONE - Optical Network Evolution DAS


Type RAU-5 Remote Antenna Unit

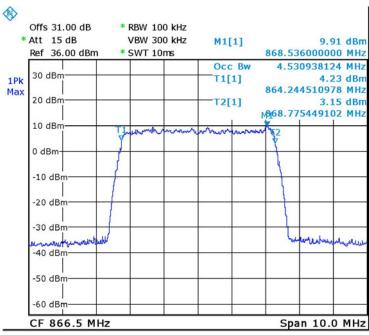
Serial Number: 05144900098

Date: 17.JUL.2016 08:50:42

Figure 70. — 864.5MHz LTE 64QAM Input


Date: 17.JUL.2016 08:41:51

Figure 71. — 864.5MHz LTE 64QAM Output

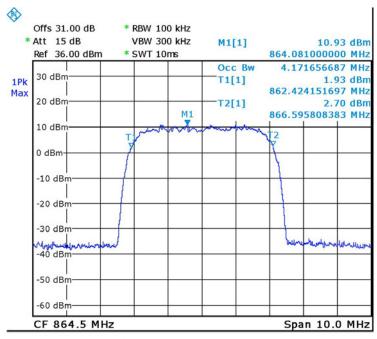

E.U.T Description ONE - Optical Network Evolution DAS

Type RAU-5 Remote Antenna Unit

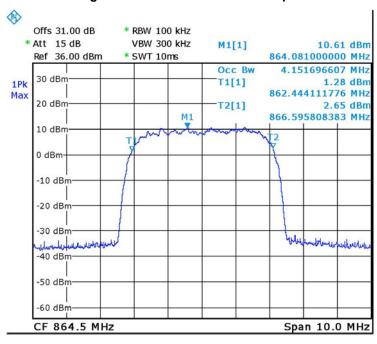
Date: 17.JUL.2016 08:49:51

Figure 72. — 866.5MHz LTE 64QAM Input

Date: 17.JUL.2016 08:42:26


Figure 73. — 866.5MHz LTE 64QAM Output

E.U.T Description ONE - Optical Network Evolution DAS

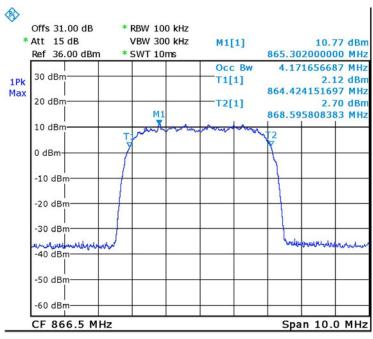

Type RAU-5 Remote Antenna Unit

Serial Number: 05144900098

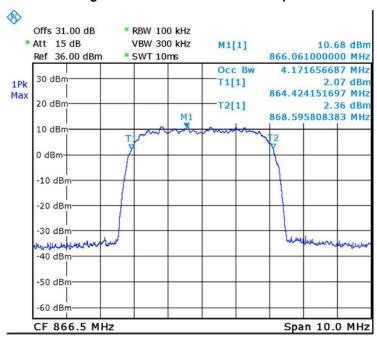
Date: 17.JUL.2016 08:48:31

Figure 74. — 864.5MHz WCDMA Input

Date: 17.JUL.2016 08:45:00


Figure 75. — 864.5MHz WCDMA Output

E.U.T Description ONE - Optical Network Evolution DAS

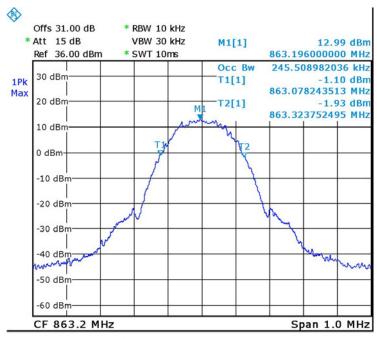

Type RAU-5 Remote Antenna Unit

Serial Number: 05144900098

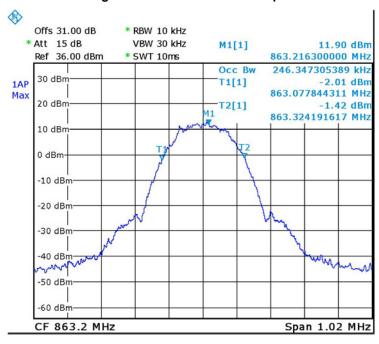
Date: 17.JUL.2016 08:49:10

Figure 76. — 866.5MHz WCDMA Input

Date: 17.JUL.2016 08:44:04


Figure 77. — 866.5MHz WCDMA Output

E.U.T Description ONE - Optical Network Evolution DAS

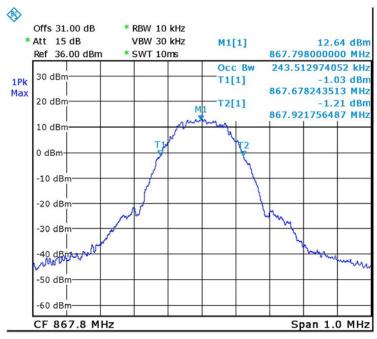

Type RAU-5 Remote Antenna Unit

Serial Number: 05144900098

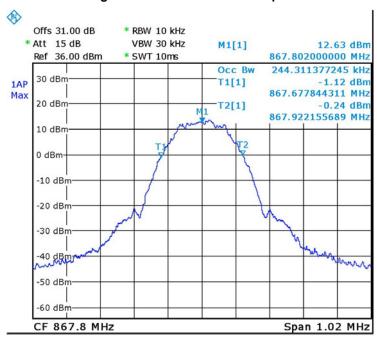
Date: 17.JUL.2016 08:52:09

Figure 78. — 863.2MHz GSM Input

Date: 17.JUL.2016 08:38:49


Figure 79. — 863.2MHz GSM Output

E.U.T Description ONE - Optical Network Evolution DAS


Type RAU-5 Remote Antenna Unit

Serial Number: 05144900098

Date: 17.JUL.2016 08:52:48

Figure 80. — 867.8MHz GSM Input

Date: 17.JUL.2016 08:38:02

Figure 81. — 867.8MHz GSM Output

10.5 Test Equipment Used; Occupied Bandwidth (ESMR)

				Calibration		
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due	
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017	
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017	
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017	

Figure 82 Test Equipment Used Occupied Bandwidth (ESMR)

11. Spurious Emissions at Antenna Terminals (ESMR)

11.1 Test Specification

FCC Part 90, Section 90.210

11.2 Test Procedure

(Temperature (22°C)/ Humidity (35%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max Loss= 31.5 dB).

The resolution bandwidth was set to 1.0 kHz for the frequency range 9 kHz - 1 MHz, 100 kHz for the frequency range 1 MHz to 1 GHz, and 1 MHz in the frequency range 1.0 - 10.0 GHz.

11.3 Test Limit

The power of any emission outside of the authorized operating frequency ranges(862-867MHz) must be attenuated below the transmitting power (P) by a factor of at least 43 + log (P) dB, yielding -13dBm.

11.4 Test Results

JUDGEMENT: Passed

See additional information in Figure 83 to Figure 88.

Spurious Emissions at Antenna Terminals (ESMR)

E.U.T Description ONE - Optical Network Evolution DAS

Type RAU-5 Remote Antenna Unit

Serial Number: 05144900098

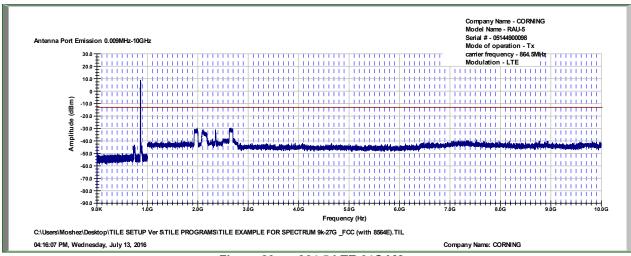


Figure 83. — 864.5 LTE 64QAM

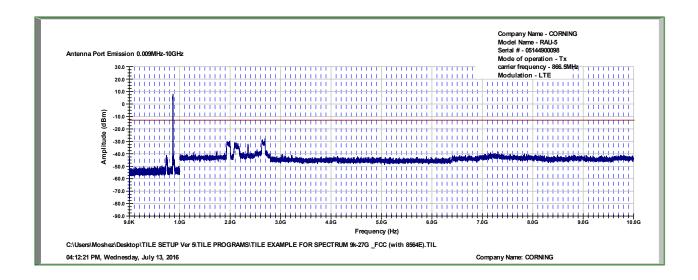


Figure 84. — 866.5 LTE 64QAM

Spurious Emissions at Antenna Terminals (ESMR)

E.U.T Description ONE - Optical Network Evolution DAS

Type RAU-5 Remote Antenna Unit

Serial Number: 05144900098

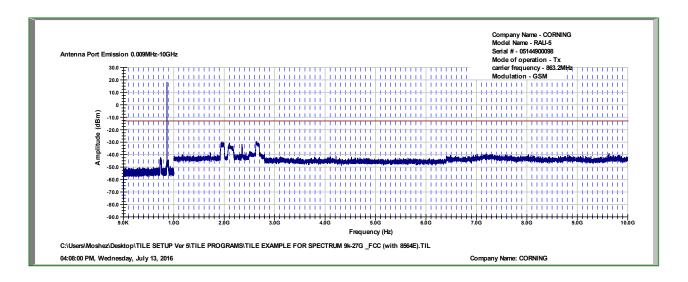


Figure 85. — 863.2 GSM

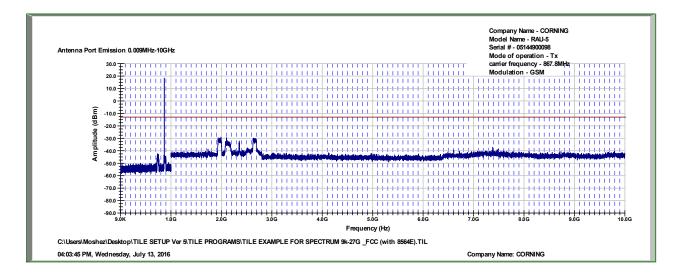


Figure 86. — 867.8 GSM

Spurious Emissions at Antenna Terminals (ESMR)

E.U.T Description ONE - Optical Network Evolution DAS

Type RAU-5 Remote Antenna Unit

Serial Number: 05144900098

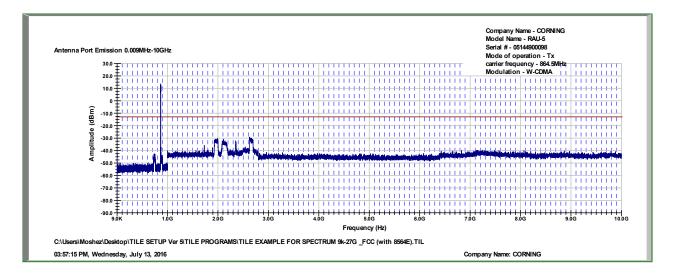


Figure 87. — 864.5 WCDMA

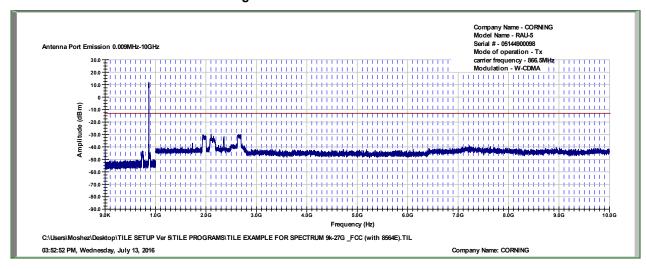


Figure 88. — 866.5 WCDMA

11.5 Test Equipment Used; Spurious Emissions at Antenna Terminals (ESMR)

				Calibr	ation
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017

Figure 89 Test Equipment Used

12. Band Edge Spectrum ESMR

12.1 Test Specification

FCC Part 2.1051

12.2 Test Procedure

(Temperature (22°C)/ Humidity (38%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (31.0 dB). The spectrum analyzer was set to 100 kHz R.B.W.

12.3 Test Limit

The power of any emission outside of the authorized operating frequency ranges (862 - 869 MHz) must be attenuated below the transmitting power (P) by a factor of at least $43 + \log (P) \, dB$, yielding $-13 \, dBm$.

12.4 Test Results

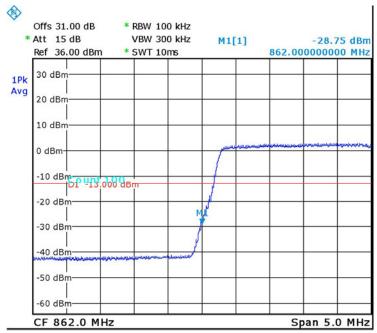
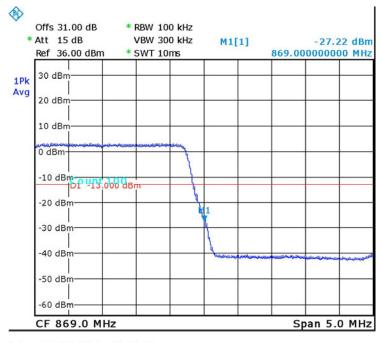
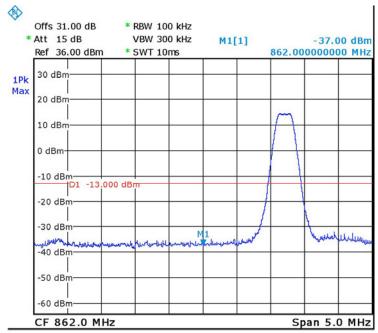

Modulation	Operation	Band Edge	Reading	Limit	Margin
	Frequency	Frequency			
	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
	864.5	862.0	-28.7	-13.0	-15.7
LTE 64QAM	866.5	869.0	-27.2	-13.0	-14.2
	863.2	862.0	-37.0	-13.0	-24.0
GSM	867.8	869.0	-34.5	-13.0	-21.5
	864.5	862.0	-35.8	-13.0	-22.8
W-CDMA	866.5	869.0	-33.3	-13.0	-20.3

Figure 90 Band Edge Spectrum Results ESMR

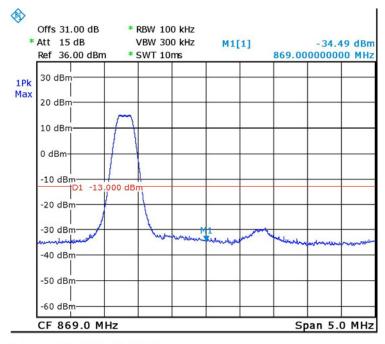
JUDGEMENT: Passed by 14.2 dB


See additional information in Figure 91 to Figure 96.

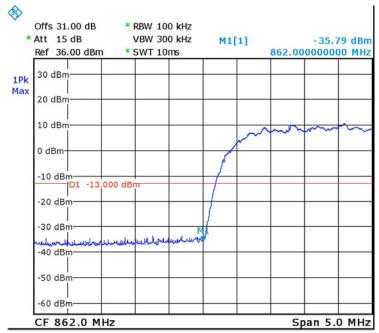
Date: 17.JUL.2016 09:26:03


Figure 91. — LTE 64QAM 864.5MHz

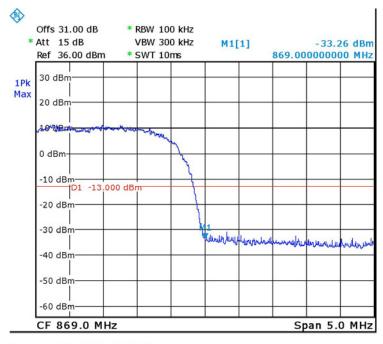
Date: 17.JUL.2016 09:25:27


Figure 92. — LTE 64QAM 866.5 MHz

Date: 17.JUL.2016 09:21:08


Figure 93. — GSM - 863.2MHz

Date: 17.JUL.2016 09:20:26


Figure 94. — GSM - 867.8 MHz

Date: 17.JUL.2016 09:27:48

Figure 95. — W-CDMA - 864.5 MHz

Date: 17.JUL.2016 09:28:31

Figure 96. — W-CDMA - 866.5 MHz

12.5 Test Equipment Used; Band Edge Spectrum ESMR

			G 1	Calibration			
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due		
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017		
Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017		
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017		

Figure 97 Test Equipment Used

13. Spurious Emissions (Radiated) (ESMR)

13.1 Test Specification

FCC, Part 90, Section 90.210

13.2 Test Procedure

(Temperature (23°C)/ Humidity (47%RH))

The test method was based on ANSI/TIA-603-D: 2010, Section 2.2.12

Unwanted Emissions: Radiated Spurious.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-10.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -10.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters

The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using:

 $P(dBm) = P_g(dBm) - Cable Loss(dB) + Substitution Antenna Gain(dBd)$

P = Equivalent Isotropic Radiated Power.

 P_g = Signal Generator Output Level.

A Peak detector was used for this test.

The test was performed in 3 operation frequencies: low, mid and high.

Testing was performed when the RF port was connected to $50~\Omega$ termination.

The table below describe only results with the highest radiation.

13.3 Test Results

JUDGEMENT: Passed 30.0 dB

The E.U.T met the requirements of the FCC, Part 90, Section 90.210 specifications.

Channel	Freq.	Antenna	Maximum	Signal	Cable	Antenna	Effective	Limit.	Margin
		Pol.	Peak Level	Generator RF	Loss	Gain	Radiated		
				Output			Power Level		
(MHz)	(MHz)	(V/H)	(dBµV/m)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)
863.2	1726.4	V	50.4	-50.2	0.5	7.0	-43.7	-13.0	-30.7
603.2	1726.4	Н	50.5	-49.5	0.5	7.0	-43.0	-13.0	-30.0
867.8	1735.9	V	50.5	-50.2	0.5	7.0	-43.7	-13.0	-30.7
007.8	1735.9	Н	50.5	-49.5	0.5	7.0	-43.0	-13.0	-30.0

Figure 98 Spurious Emission (Radiated) (ESMR) Test Results Table

13.4 Test Equipment Used; Spurious Emissions (Radiated) (ESMR)

			Serial	Calibration		
Instrument	Manufacturer Model Serial Number		Last Calibration Date	Next Calibration Due		
EMI Receiver	НР	85422E	3906A00276	March 3, 2016	March 3, 2017	
RF Filter Section	НР	85420E	3705A00248	March 3, 2016	March 3, 2017	
EMI Receiver	R&S	ESCI7	100724	February 29, 2016	March 1, 2017	
Spectrum Analyzer	НР	8593EM	3536A00120ADI	March 10, 2016	March 10, 2017	
Active Loop Antenna	EMCO	6502	9506-2950	November 5, 2015	November 30, 2016	
Antenna Biconical	EMCO	3110B	9912-3337	March 24, 2016	March 24, 2018	
Antenna Log Periodic	EMCO	3146	9505-4081	April 23, 2016	April 23, 2017	
Horn Antenna 1G-18G	ETS	3115	29845	May 19, 2015	May 19, 2018	
Horn Antenna 18G-26G	ARA	SWH-28	1007	March 30, 2014	September 30, 2016	
Low Noise Amplifier	Narda	LNA-DBS- 0411N313	013	March 1, 2015	September 30, 2016	
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	March 1, 2015	September 30, 2016	
MXG Vector Signal Generator	Agilent	N5182A	MY49060440	July 1, 2016	July 1, 2017	
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A	
Antenna Mast	ETS	2070-2	-	N/A	N/A	
Turntable	ETS	2087	-	N/A	N/A	
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A	

Figure 99 Test Equipment Spurious Emissions (Radiated) (ESMR)

14. Intermodulation Conducted

14.1 Test Procedure

(Temperature (22°C)/ Humidity (37%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max loss = 40.0 dB). The spectrum analyzer was set to 1 kHz resolution BW for the frequency range 9.0-150.0 kHz, 10 kHz for the frequency range 150 kHz–1.0 MHz, 100 kHz for the frequency range 1.0 MHz – 30 MHz, and 1MHz for the frequency range 30 MHz - 24GHz.

6 input signals were sent simultaneously to the E.U.T. as follows:

LTE band: 742.0 MHz, 0 dBm

CELL&ESMR band: 878.0 MHz, 0 dBm

PCS band: 1962.5 MHz, 0 dBm AWS band: 2132.5 MHz, 0 dBm WCS band: 2355.0MHz, 0 dBm TDD 2.5G band: 2593.0MHz, 0 dBm

The frequency range of 9 kHz – 24.0 GHz was scanned for unwanted signals.

14.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$, yielding -13dBm.

14.3 Test Results

JUDGEMENT: Passed

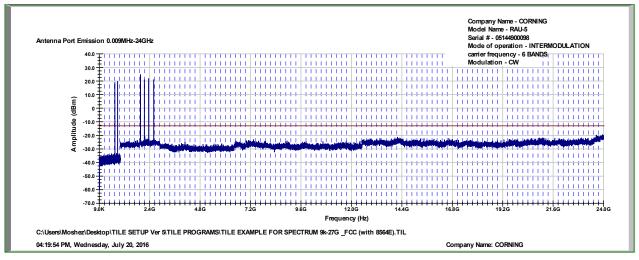


Figure 100 Intermodulation Conducted

14.4 Test Equipment Used; Intermodulation Conducted

			Serial	Calibration		
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Due	
Spectrum Analyzer	НР	8564E	3442A00275	March 10, 2016	March 10, 2017	
EXG Vector Signal Generator	Agilent	N5172B	TE4384	July 1, 2016	July 1, 2017	
EXG Vector Signal Generator	Agilent	N5172B	MY513500584	July 1, 2016	July 1, 2017	
MXG Vector Signal Generator	Agilent	N5182A	MY48180244	July 1, 2016	July 1, 2017	
MXG Vector Signal Generator	Agilent	N5182A	MY49060440	July 1, 2016	July 1, 2017	
Signal Generator	НР	E4432B	GB40050998	July 1, 2016	July 1, 2017	
ESG Vector Signal Generator	Agilent	E4438C	MY45094064	July 1, 2016	July 1, 2017	
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017	
6 dB Attenuator	Weinschel Associates	WA 40-6- 34	568	July 6, 2016	July 6, 2017	

Figure 101 Test Equipment Used

15. Intermodulation Radiated

15.1 Test Procedure

(Temperature (23°C)/ Humidity (47%RH))

The test method was based on ANSI/TIA-603-D: 2010, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between $0-360^{\circ}$, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-24.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -24.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using: $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dBd)$ $P_d = Dipole equivalent power (result).$

 P_g = Signal generator output level.

6 input signals were sent simultaneously to the E.U.T. as follows:

LTE band: 742.0 MHz, 0 dBm CELL band: 878.0 MHz, 0 dBm PCS band: 1962.5 MHz, 0 dBm AWS band: 2132.5 MHz, 0 dBm WCS band: 2355.0MHz, 0 dBm

TDD 2.5G band: 2593.0MHz, 0 dBm

A Peak detector was used for this test.

The test was performed in 3 operation frequencies: low, mid and high.

Testing was performed when the RF port was connected to 50 Ω termination.

The table below describe only results with the highest radiation.

15.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges (728-758; 869-894; 1930-1990; 2110-2155 MHz;2350-2360MHz) must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P)$ dB, yielding -13dBm.

15.3 Test Results

JUDGEMENT: Passed

Freq.	Antenna Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	Effective Radiated Power Level	Limit	Margin
(MHz)	(V/H)	(dBµV/m)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)
1792.5	V	51.9	-48.7	0.5	7.0	-42.2	-13.0	-29.2
1792.5	Н	52.5	-47.5	0.5	7.0	-41.0	-13.0	-28.0
2219.0	V	54.6	-46.1	0.5	7.0	-39.6	-13.0	-26.6
2219.0	Н	54.5	-45.5	0.5	7.0	-39.0	-13.0	-26.0
3223.5	V	56.1	-48.8	0.5	10.0	-39.3	-13.0	-26.3
3223.5	Н	56.1	-48.4	0.5	10.0	-38.9	-13.0	-25.9
3854.0	V	56.3	-42.8	0.5	9.5	-33.8	-13.0	-20.8
3854.0	Н	56.4	-42.3	0.5	9.5	-33.3	-13.0	-20.3
3978.5	V	56.3	-42.8	0.5	9.5	-33.8	-13.0	-20.8
3978.5	Н	56.3	-42.3	0.5	9.5	-33.3	-13.0	-20.3
4104.0	V	56.3	-42.8	0.5	9.5	-33.8	-13.0	-20.8
4104.0	Н	56.2	-42.3	0.5	9.5	-33.3	-13.0	-20.3
4201.0	V	56.4	-42.6	0.5	9.5	-33.6	-13.0	-20.6
4201.0	Н	56.5	-42.3	0.5	9.5	-33.3	-13.0	-20.3
4308.0	V	56.2	-42.6	0.5	9.5	-33.6	-13.0	-20.6
4308.0	Н	56.4	-42.3	0.5	9.5	-33.3	-13.0	-20.3
4439.0	V	56.3	-42.8	0.5	9.5	-33.8	-13.0	-20.8
4439.0	Н	56.4	-42.3	0.5	9.5	-33.3	-13.0	-20.3
5445.0	V	57.1	-46.2	0.5	10.8	-35.9	-13.0	-22.9
5445.0	Н	57.0	-45.0	0.5	10.8	-34.7	-13.0	-21.7

Figure 102 Intermodulation Radiated Results

15.4 Test Instrumentation Used; Radiated Measurements Intermodulation

			Serial	Calib	pration
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Due
EMI Receiver	НР	85422E	3906A00276	March 3, 2016	March 3, 2017
RF Filter Section	НР	85420E	3705A00248	March 3, 2016	March 3, 2017
EMI Receiver	R&S	ESCI7	100724	February 29, 2016	March 1, 2017
Spectrum Analyzer	НР	8593EM	3536A00120ADI	March 10, 2016	March 10, 2017
Active Loop Antenna	EMCO	6502	9506-2950	November 5, 2015	November 30, 2016
Antenna Biconical	EMCO	3110B	9912-3337	March 24, 2016	March 24, 2018
Antenna Log Periodic	ЕМСО	3146	9505-4081	April 23, 2016	April 23, 2017
Horn Antenna 1G-18G	ETS	3115	29845	May 19, 2015	May 19, 2018
Horn Antenna 18G-26G	ARA	SWH-28	1007	March 30, 2014	September 30, 2016
Low Noise Amplifier	Narda	LNA-DBS- 0411N313	013	March 1, 2015	September 30, 2016
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	March 1, 2015	September 30, 2016
Signal Generator	Marconi	2022D	119196015	March 1, 2016	March 1, 2017
Signal Generator	НР	8648C	3623A04126	February 29, 2016	March 1, 2017
Signal Generator	НР	ESG- 4000A/E4422 A	US36220118	February 29, 2016	March 1, 2017
MXG Vector Signal Generator	Agilent	N5182A	MY49060440	July 1, 2016	July 1, 2017
ESG Vector Signal Generator	Agilent	E4438C	MY45094064	July 1, 2016	July 1, 2017
Signal Generator	Agilent	E4432B	GB40050998	July 1, 2016	July 1, 2017
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A
Antenna Mast	ETS	2070-2	-	N/A	N/A
Turntable	ETS	2087	-	N/A	N/A
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A

Figure 103 Test Equipment Used

16. Out-of-Band Rejection (CELL&ESMR)

16.1 Test Specification

KDB 935210 D05 v01r01, Section 3.3

16.2 Test Procedure

(Temperature (21°C)/ Humidity (35%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max Loss= 31.0 dB).

The signal and spectrum analyzer frequency range was set to $\pm 250\%$ of the passband, Dwell time set to approximately 10msec.

RBW was set between 1% to 5% of the E.U.T passband and VBW set to \geq 3*RBW.

The test was done both for CELL and ESMR bands because they are consecutive bands.

16.3 Test Limit

N/A

16.4 Test Results

JUDGEMENT: Passed

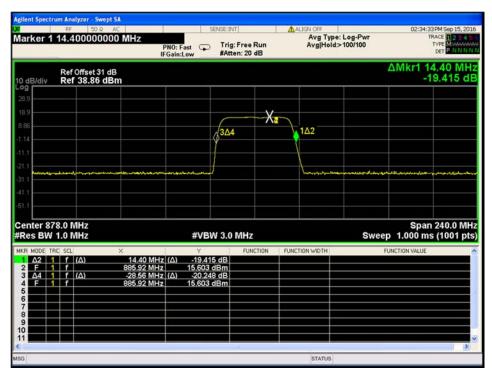


Figure 104. — Out-of-Band Rejection Plot

16.5 Test Equipment Used; Out-of-Band Rejection

	Manufacturer	Model	Serial Number	Calibration	
Instrument				Last Calibration Date	Next Calibration Date
EXA Spectrum Analyzer	Agilent	N9010A	MY48030391	March 16, 2016	March 16, 2018
EXG Vector Signal Generator	Agilent	N5172B	MY49060440	November 19, 2014	November 19, 2017
30 dB Attenuator	Itl:1776	BW-S30W5	533	July 5, 2016	July 5, 2017

Figure 105 Test Equipment Used

17. APPENDIX A - CORRECTION FACTORS

17.1 Correction factors for RF OATS Cable 35m ITL #1784

Frequency (MHz)	Cable loss (dB)
10.0	0.3
20.0	0.2
50.0	-0.1
100.0	-0.6
200.0	-1.2
500.0	-2.3
1000.0	-3.6

17.2 Correction factors for RF OATS Cable 10m ITL #1794

Frequency(MHz)	Cable loss(dB)
10.0	-0.3
20.0	-0.3
50.0	-0.5
100.0	-0.7
200.0	-1.1
500.0	-1.8
1000.0	-2.7

17.3 Correction factors for

Horn Antenna Model: SWH-28 at 1 meter range.

	4 777	ζ.
FREQUENCY	AFE	Gain
(GHz)	(dB/m)	(dB1)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

17.4 Correction factors for

Horn ANTENNA

Model: 3115

Antenna serial number: 29845

3 meter range

	. = (!= ()	o.//s
f(GHz)	AF(dB/m)	GA(dB)
0.75	25	3
1G	23.5	7
1.5G	26	8
2G	29	7
2.5G	27.5	10
3G	30	10
3.5G	31.5	10
4G	32.5	9.5
4.5G	32.5	10.5
5G	33	10.5
5.5G	35	10.5
6G	36.5	9.5
6.5G	36.5	10
7G	37.5	10
7.5G	37.5	10
8G	37.5	11
8.5G	38	11
9G	37.5	11.5
9.5G	38	11.5
10G	38.5	11.5
10.5G	38.5	12
11G	38.5	12.5
11.5G	38.5	13
12G	38	13.5
12.5G	38.5	13
13G	40	12
13.5G	41	12
14G	40	13
14.5G	39	14
15G	38	15.5
15.5G	37.5	16
16G	37.5	16
16.5G	39	15
17G	40	15
17.5G	42	13.5
18G	42.5	13

17.5 Correction factors for

Log Periodic Antenna EMCO, Model 3146, Serial #9505-4081

	AF
Frequency [MHz]	[dB/m]
200.0	11.47
250.0	12.06
300.0	14.77
400.0	15.77
500.0	18.01
600.0	18.84
700.0	20.93
800.0	21.27
900.0	22.44
1000.0	24.10

17.6 Correction factors for

Biconical Antenna EMCO, Model 3110B, Serial #9912-3337

	AF
Frequency [MHz]	[dB/m]
30.0	14.18
35.0	13.95
40.0	12.84
45.0	11.23
50.0	11.10
60.0	10.39
70.0	9.34
80.0	9.02
90.0	9.31
100.0	8.95
120.0	11.53
140.0	12.20
160.0	12.56
180.0	13.49
200.0	15.27

17.7 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

f(MHz)	MAF(dBs/m)	AF(dB/m)
0.01	-33.1	18.4
0.02	-37.2	14.3
0.03	-38.2	13.3
0.05	-39.8	11.7
0.1	-40.1	11.4
0.2	-40.3	11.2
0.3	-40.3	11.2
0.5	-40.3	11.2
0.7	-40.3	11.2
1	-40.1	11.4
2	-40	11.5
3	-40	11.5
4	-40.1	11.4
5	-40.2	11.3
6	-40.4	11.1
7	-40.4	11.1
8	-40.4	11.1
9	-40.5	11
10	-40.5	11
20	-41.5	10
30	-43.5	8