

5.5 Test Equipment Used; Occupied Bandwidth

Lastration	Magazfaaturaa	M - 1-1	Serial	Calibration	
Instrument	Manufacturer	Widdei	Number	Last Calibration Date	Next Calibration Due
EXA signal Analyzer	Agilent Technologies	N9010A	MY52220686	November 28, 2018	November 28, 2020
Vector Signal Generator	R&S	SMBV100B	1423.1003K02 -101470-XE	October 2, 2019	October 2, 2022
40 dB Attenuator	Weinschel	WA 39-40-33	A1323	July 7, 2020	July 31, 2021
RF Cable	Huber Suner	Sucofelex	27504/4PEA	August 23, 2020	August 31, 2021

 Table 14 Test Equipment Used

6 Spurious Emissions at Antenna Terminals

6.1 Test Specification

FCC Part 27, Subpart C, Sections 27.53(a)(1)

6.2 Test Procedure

(Temperature (22°C)/ Humidity (36%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max loss 44.0 dB). The evaluation was performed in the frequency band from 9.0kHz-24.0GHz.

6.3 Test Limit

The power of any emission outside of the authorized operating frequency ranges (2350-2360 MHz) must be attenuated below the transmitting power (P) by a factor of at least as specified in this section.

Frequency Band	Calculated Factor	Absolute Limit
(MHz)	(dBc)	(dBm)
f<2285.0	75+10*log(2)=78.0	-45
2285.0MHz <f<2287.5mhz< td=""><td>72+10*log(2)=75.0</td><td>-42</td></f<2287.5mhz<>	72+10*log(2)=75.0	-42
2287.5MHz <f<2300.0mhz< td=""><td>70+10*log(2)=73.0</td><td>-40</td></f<2300.0mhz<>	70+10*log(2)=73.0	-40
2300.0MHz <f<2305.0mhz< td=""><td>43+10*log(2)=46.0</td><td>-13</td></f<2305.0mhz<>	43+10*log(2)=46.0	-13
2305.0MHz <f<2320.0mhz< td=""><td>43+10*log(2)=46.0</td><td>-13</td></f<2320.0mhz<>	43+10*log(2)=46.0	-13
2320.0MHz <f<2345.0mhz< td=""><td>75+10*log(2)=78.0</td><td>-45</td></f<2345.0mhz<>	75+10*log(2)=78.0	-45
2345.0MHz <f<2360.0mhz< td=""><td>43+10*log(2)=46.0</td><td>-13</td></f<2360.0mhz<>	43+10*log(2)=46.0	-13
2360.0MHz <f<2362.5mhz< td=""><td>43+10*log(2)=46.0</td><td>-13</td></f<2362.5mhz<>	43+10*log(2)=46.0	-13
2362.5MHz <f<2365.0mhz< td=""><td>55+10*log(2)=58.0</td><td>-25</td></f<2365.0mhz<>	55+10*log(2)=58.0	-25
2365.0MHz <f<2367.5mhz< td=""><td>70+10*log(2)=60.0</td><td>-40</td></f<2367.5mhz<>	70+10*log(2)=60.0	-40
2367.5MHz <f<2370.0mhz< td=""><td>72+10*log(2)=62.0</td><td>-42</td></f<2370.0mhz<>	72+10*log(2)=62.0	-42
2370.0 <f< td=""><td>75+10*log(2)=65.0</td><td>-45</td></f<>	75+10*log(2)=65.0	-45

6.4 Test Results

```
JUDGEMENT:
```

Passed

See additional information in Figure 117 to Figure 218.

6.5 Test Equipment Used; Spurious Emissions at Antenna Terminals

Turstering			Serial	Calibration	
Instrument	wanuracturer	Model	Number	Last Calibration Date	Next Calibration Due
EXA signal Analyzer	Agilent Technologies	N9010A	MY52220686	November 28, 2018	November 28, 2020
Vector Signal Generator	R&S	SMBV100B	1423.1003K02 -101470-XE	October 2, 2019	October 2, 2022
40 dB Attenuator	Weinschel	WA 39-40-33	A1323	July 7, 2020	July 31, 2021
RF Cable	Huber Suner	Sucofelex	27504/4PEA	August 23, 2020	August 31, 2021

Table 15 Test Equipment Used

7 Spurious Radiated Emission

7.1 Test Specification

FCC, Part 27, Subpart C, Section 27.53 (a)(1

7.2 Test Procedure

(Temperature (23°C)/ Humidity (47%RH))

The test method was based on ANSI/TIA-603-D: 2010, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between $0-360^{\circ}$, and the antenna polarization. The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-24.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -24.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters. The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator.

The height was readjusted for maximum reading. The signal

generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using:

$$\label{eq:pd} \begin{split} P_d(dBm) &= P_g(dBm) - Cable \ Loss \ (dB) + Substitution \ Antenna \ Gain \ (dBd) \\ P_d &= Dipole \ equivalent \ power \ (result). \end{split}$$

 $P_g = Signal$ generator output level.

A Peak detector was used for this test.

Testing was performed when the RF port was connected to 50 Ω termination.

Evaluation was performed for all possible modulations, bandwidths, and sub carriers.

7.3 Test Limit

The power of any emission outside of the authorized operating frequency ranges(2350.0-2360.0MHz) must be attenuated below the transmitting power (P) by a factor of at least 43 + log (P) dB, yielding -13dBm.

Frequency Band	Calculated Factor	Absolute Limit
(MHz)	(dBc)	(dBm)
f<2285.0	75+10*log(2)=78.0	-45
2285.0MHz <f<2287.5mhz< td=""><td>72+10*log(2)=75.0</td><td>-42</td></f<2287.5mhz<>	72+10*log(2)=75.0	-42
2287.5MHz <f<2300.0mhz< td=""><td>70+10*log(2)=73.0</td><td>-40</td></f<2300.0mhz<>	70+10*log(2)=73.0	-40
2300.0MHz <f<2305.0mhz< td=""><td>43+10*log(2)=46.0</td><td>-13</td></f<2305.0mhz<>	43+10*log(2)=46.0	-13
2305.0MHz <f<2320.0mhz< td=""><td>43+10*log(2)=46.0</td><td>-13</td></f<2320.0mhz<>	43+10*log(2)=46.0	-13
2320.0MHz <f<2345.0mhz< td=""><td>75+10*log(2)=78.0</td><td>-45</td></f<2345.0mhz<>	75+10*log(2)=78.0	-45
2345.0MHz <f<2360.0mhz< td=""><td>43+10*log(2)=46.0</td><td>-13</td></f<2360.0mhz<>	43+10*log(2)=46.0	-13
2360.0MHz <f<2362.5mhz< td=""><td>43+10*log(2)=46.0</td><td>-13</td></f<2362.5mhz<>	43+10*log(2)=46.0	-13
2362.5MHz <f<2365.0mhz< td=""><td>55+10*log(2)=58.0</td><td>-25</td></f<2365.0mhz<>	55+10*log(2)=58.0	-25
2365.0MHz <f<2367.5mhz< td=""><td>70+10*log(2)=60.0</td><td>-40</td></f<2367.5mhz<>	70+10*log(2)=60.0	-40
2367.5MHz <f<2370.0mhz< td=""><td>72+10*log(2)=62.0</td><td>-42</td></f<2370.0mhz<>	72+10*log(2)=62.0	-42
2370.0 <f< td=""><td>75+10*log(2)=65.0</td><td>-45</td></f<>	75+10*log(2)=65.0	-45

Figure 219 Mask Limit Table

7.4 Test Results

JUDGEMENT: Passed

No emissions were detected above the EMI receiver noise level which is at least 6 dB margin below the lowest limit(-45dBm) and 20dB margin below the highest limit(-13dBm)

7.5 Test Instrumentation Used; Radiated Measurements

				Calibration	
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
EMI Receiver	HP	8542E	3906A00276	March 03, 2020	March 03, 2021
RF Filter Section	HP	85420E	3705A00248	March 03, 2020	March 03, 2021
Spectrum Analyzer	HP	8593EM	3536A00120ADI	March 10, 2020	March 10, 2021
Active Loop Antenna	ЕМСО	6502	9506-2950	February 5, 2019	February 28, 2021
Antenna Biconical	ЕМСО	3110B	9912-3337	May 21, 2019	May 31, 2021
Antenna Log Periodic	ЕМСО	3146	9505-4081	May 31, 2018	May 31, 2021
Horn Antenna 1G-18G	ETS	3115	29845	May 31, 2018	May 31, 2021
Horn Antenna 18G-26.5G	ARA	SWH-28	1007	December 13, 2017	December 31, 2020
Low Noise Amplifier	Narda	LNA-DBS- 0411N313	013	December 24, 2019	December 31, 2020
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	December 24, 2019	December 31, 2020
Vector Signal Generator	VIAVI	MTS 5800	WMNK0071690263	July 1, 2018	July 1, 2021
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	-	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast & Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

Table 16 Test Equipment Used

8 APPENDIX A - CORRECTION FACTORS

8.1 Correction factors for RF OATS Cable 35m ITL #1784

Frequency (MHz)	Cable loss (dB)
10.0	0.3
20.0	0.2
50.0	-0.1
100.0	-0.6
200.0	-1.2
500.0	-2.3
1000.0	-3.6

8.2 Correction factors for RF OATS Cable 10m ITL #1794

Frequency(MHz)	Cable loss(dB)
10.0	-0.3
20.0	-0.3
50.0	-0.5
100.0	-0.7
200.0	-1.1
500.0	-1.8
1000.0	-2.7

8.3 Correction factors for

Horn Antenna Model: SWH-28 at 1 meter range.

FREQUENCY	AFE	Gain
(GHz)	(dB /m)	(dB1)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

8.4 Correction factors for Horn Antenna

Model: 3115 Antenna serial number: 29845 3 meter range

	<u>3 m</u>	eter rang
f(GHz)	AF(dB/m)	GA(dB)
0.75	25	3
1G	23.5	7
1.5G	26	8
2G	29	7
2.5G	27.5	10
3G	30	10
3.5G	31.5	10
4G	32.5	9.5
4.5G	32.5	10.5
5G	33	10.5
5.5G	35	10.5
6G	36.5	9.5
6.5G	36.5	10
7G	37.5	10
7.5G	37.5	10
8G	37.5	11
8.5G	38	11
9G	37.5	11.5
9.5G	38	11.5
10G	38.5	11.5
10.5G	38.5	12
11G	38.5	12.5
11.5G	38.5	13
12G	38	13.5
12.5G	38.5	13
13G	40	12
13.5G	41	12
14G	40	13
14.5G	39	14
15G	38	15.5
15.5G	37.5	16
16G	37.5	16
16.5G	39	15
17G	40	15
17.5G	42	13.5
18G	42.5	13

8.5 Correction factors for Log Periodic Antenna EMCO, Model 3146, Serial #9505-4081

	AF
Frequency [MHz]	[dB/m]
200.0	11.47
250.0	12.06
300.0	14.77
400.0	15.77
500.0	18.01
600.0	18.84
700.0	20.93
800.0	21.27
900.0	22.44
1000.0	24.10

8.6 Correction factors for Biconical Antenna EMCO, Model 3110B, Serial #9912-3337

	AF
Frequency [MHz]	[dB/m]
30.0	14.18
35.0	13.95
40.0	12.84
45.0	11.23
50.0	11.10
60.0	10.39
70.0	9.34
80.0	9.02
90.0	9.31
100.0	8.95
120.0	11.53
140.0	12.20
160.0	12.56
180.0	13.49
200.0	15.27

8.7 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

f(MHz)	MAF(dBs/m)	AF(dB/m)
0.01	-33.1	18.4
0.02	-37.2	14.3
0.03	-38.2	13.3
0.05	-39.8	11.7
0.1	-40.1	11.4
0.2	-40.3	11.2
0.3	-40.3	11.2
0.5	-40.3	11.2
0.7	-40.3	11.2
1	-40.1	11.4
2	-40	11.5
3	-40	11.5
4	-40.1	11.4
5	-40.2	11.3
6	-40.4	11.1
7	-40.4	11.1
8	-40.4	11.1
9	-40.5	11
10	-40.5	11
20	-41.5	10
30	-43.5	8