

RE: FCC ID: OJBAB-ACCESS-SU01
Attention: Juan Martinez

1. Please note that the grantee for this product is AXXCELERA WIRELESS Inc (grantee code OJB). Please note that the listed contact person for AXXCELERA WIRELESS is Jamal Handani. It is not clear what role Dennis McCarthy of Micro Wave Data Systems (grantee code E5M) has with this application. Please explain the relationship and provide evidence that Mr. McCarthy has the authority to act for the grantee of this device. This would take the form of something like a letter from AXXCELERA authorizing this PC2 or some other evidence that the grantee is aware of this PC2 by Micro Wave Data or that Mr. McCarthy is the responsible party for the grantee.

Response: A letter has been uploaded.

2. Please note that the test antenna appears to have been resident in a wooden crate during testing. As wood and other substances may begin to affect wave propagation at 5GHz, this may cause problems depending on existing conditions. Please explain what measures were taken to account for any variations of performance that may have been caused the test setup as shown in the application.

Response: The following was performed to make sure the wood had no affect on the fundamental:

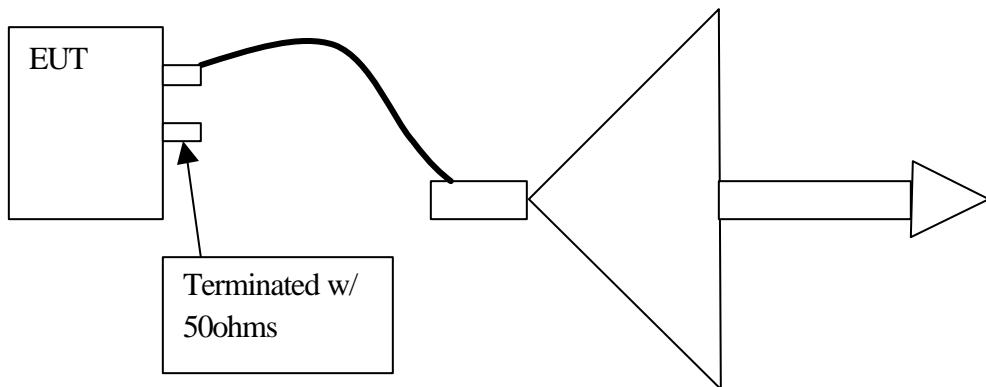
Measured Fundamental (RBW: 1MHz): 137dBuV/m @ 3 meters

12.87dBm (Conducted power) + 37.6 dBi = 50.47 dBm (EIRP)

50.47dBm + 95.3dB = 145.77 dBuV/m @ 3 meters (Theoretical Calculation)

137 dBuV/m + 10 log (B), B = 30 MHz

137 dBuV/m + 14.77 = 151.11 dBuV/m (Measured w/ bandwidth correction factor)


Conclusion, the difference from both calculated and measured is 6-dB difference. This shows that the wood crate does not have a dramatic difference on the measurements. Also, there is a previous application (FCC ID: E5MDS-CW500) where the radiated test was performed with the antenna inside the wooden crate due to no supporting pole, as it happened to us for this pending project.

3. Please explain the results of your MPE calculations. With a 37.5dBi antenna being driven by 12.87dBm at the antenna terminal the calculated safe distance would be about 94cm. As no manual or no installation guide was provided, it is not clear why you used 2 meters in the calculation. Please explain. Also, please note that the calculations were done using a 37.2dBi antenna gain and not the 37.5 dBi gain as mentioned in the test report (page 6). Please be consistent in documentation.

Response: The correct gain is 37.6dBi. Both report and MPE have been revised to reflect the correct antenna gain.

4. Please provide some information (i.e. installation guide) on how the antenna connects to the transmitter.

Response: There are two antenna ports (N-type) on the transmitter. During initial setup the ports were measured with a power meter. The one active was the upper N-type connector and the bottom one was 50 ohm terminated. The shortest possible coaxial cable was used (.5meters) to connect the transmitter (N-type) and antenna (N-type).

5. With respect to item 4, please provide internal photos showing how this antenna is connected to the transmitter.

Response: These have been uploaded.

Regards,

Juan Martinez
Sr. EMC Engineer