Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA

Tel: 888-847-8027

STMCFH-WR2305TX

Issued: March 10, 2023

EMC Test Report

regarding

USA: CFR Title 47, Part 15.231 (Emissions)
Canada: IC RSS-210v10/GENv5 (Emissions)

for

MCFH315A

Category: RKE Transmitter

Judgments:

15.231 / RSS-210v10 Compliant

Testing Completed: March 10, 2023

Prepared for:

Strattec Security Corporation

3333 West Good Hope Road, Milwaukee Wisconsin United States Phone: 248 824-7580, Fax: 414 247-3329 Contact: Rich Messina, rmessina@strattec.com

Data Rec./Rev. by:

John Nantz

Rpt. Auth. by:

Joseph Brunett, EMC-002790-NE

Rpt. Prep./Rev. by:

John Nantz

Date of Issue:

March 10, 2023

Revision History

Rev. No.		Date	Details	Revised By	
	c0 ·1	March 10, 2023 April 5, 2023	Initial Release. Fix HVIN reference.	J. Brunett J. Brunett	
\mathbf{C}	contents				
\mathbf{R}	evision History	<i>I</i>			2
Ta	able of Conten	${f ts}$			2
1	 1.1 Laborator 1.2 Report Re 1.3 Subcontra 1.4 Test Data 1.5 Limitatior 1.6 Copyright 1.7 Endorsem 1.8 Test Loca 1.9 Traceabili 	ents	ed		4 4 4 4 4 4 4 5 5
4			Procedures		6
3	3.1 Descriptio 3.1.1 EU 3.1.2 Mc 3.1.3 Va 3.1.4 Te 3.1.5 Fu 3.1.6 Mc 3.1.7 Pre	n and Declarations	of the Equipment Under Test		7 7 8 8 8 8 8 8 8 8
4	4.1.1 Ra 4.1.2 Co 4.1.3 Po 4.2 Intentiona 4.2.1 Fu 4.2.2 Fu 4.2.3 Fu 4.3 Unintentic 4.3.1 Tra	diated Test Setup and nducted Emissions Tewer Supply Variation I Emissions I Emission I	Pulsed Operation Bandwidth Field Strength S Emissions		1 2 6 8 9
5	Measurement	Uncertainty and A	Accreditation Documents	2	1

List of Tables

1	Test Site List	-
2	Equipment List.	٠
3	EUT Declarations	7
4	Fundamental Emission Pulsed Operation	2
5	Fundamental Emission Bandwidth	ϵ
6	Fundamental Emission Field Strength	8
7	Transmit Chain Spurious Emissions	Ć
8	Measurement Uncertainty	
1	of Figures Photos of EUT	7
1		
2	EUT Test Configuration Diagram	
3	Radiated Emissions Diagram of the EUT	
4		(
5	Radiated Emissions Test Setup Photograph(s)	•
	Radiated Emissions Test Setup Photograph(s)	
5		٠
5 5	Fundamental Emission Pulsed Operation	2
	Fundamental Emission Pulsed Operation. 1 Fundamental Emission Pulsed Operation. 1	4

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until April 2033.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratory's scope of accreditation. Any data in this report that is not covered under the laboratory's scope is clearly identified.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.

Description	Location	Quality Num.
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	${\bf Manufacturer/Model}$	$\mathbf{S}\mathbf{N}$	Quality Num.	Cal/Ver By / Date Due
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2023
Log Periodic Antenna	EMCO / 3146	9305-3614	LOGEMCO01	Keysight / Aug-2023
BNC-BNC Coax	WRTL / $RG58/U$	001	CAB001-BLACK	AHD / Sept-2023
3.5-3.5MM Coax	PhaseFlex / PhaseFlex	001	CAB015-PURP	AHD / Jun-2023
Spectrum Analyzer	R & S / FSV30	101660	RSFSV30001	RS / Apr-2023
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2024

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of Strattec Security Corporation is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Strattec Security Corporation MCFH315A for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	CFR Title 47, Part 15.231
Canada	ISED Canada	IC RSS-210v10/GENv5

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a Remote Keyless Entry transmitter. The EUT is approximately 9.5 x 4 x 2 cm in dimension, and is depicted in Figure 1. It is powered by 3 VDC Lithium cell battery. In use, this device is a transceiver intended for remote control of automobile door locks, trunk, and remote start functionality. Table 3 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 3: EUT Declarations.

General Declarations

Equipment Type: RKE Transmitter

Country of Origin: USA Nominal Supply: 3 VDC

Oper. Temp Range: -40°C to +85°C
Frequency Range: 314 – 314.9 MHz
Antenna Dimension: Not Declared
Antenna Type: PCB Trace
Antenna Gain: Integral
Number of Channels: 3

Number of Channels: 3 Channel Spacing: 450 kHz Alignment Range: Not Declared

Type of Modulation: FSK

United States

FCC ID Number: OHT3731687

Classification: DSC

Canada

IC Number: 5461A-3731687

Classification: Remote Control Device, Vehicular Device

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

EUT Strattec PMN: MCFH315A HVIN: MCF3STNA, MCF3DRKA FCC ID:OHT3731687 IC: 5461A-3731687

Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

These EUT is capable of transmitting in manual activated mode (normal button press) or in two (2) automatically activated modes (Passive Entry Passive Start, Comfort) wherein it responds to an LF encoded signal. All three modes are evaluated herein, with the worst case (greatest) on time is demonstrated in the RKE mode. The EUT employs between one (1) and three (3) sequentially operated channels in a given transmission set. Operating channels are at 314.00 MHz, 314.45 MHz, and 314.90 MHz.

3.1.3 Variants

There are two variants of the EUT with the only difference being their housing color: Satin Chrome and Dark Chrome chassis. Both employ the exact same PCB and circuitry.

3.1.4 Test Samples

Two samples of each EUT variant were provided for testing: a Satin Chrome (HVIN: MCF3STNA) CW (SN: 1662) and normal (SN: 1659) sample, and a Dark Chrome (HVIN: MCF3DKRA) CW (SN: 1663) and normal (SN: 1658) sample.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of transmitted signal.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

None.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

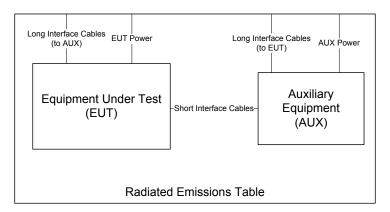


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broad-band probes are used depending on the regulation. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, 10cm diameter single-axis broadband probes meeting the requirements of ISED SPR-002 section 5.2 are employed. Measurements are repeated and summed over three axes, and the entire frequency range is measured with and without the EUT transmitting.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

The EUT is not subject to measurement of power line conducted emissions as it is powered solely by its internal battery.

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case the EUT is designed for operation from a battery power source, the extreme test voltages are evaluated over the range specified in the test standard; no less than $\pm 10\%$ of the nominal battery voltage declared by the manufacturer. For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

4.2 Intentional Emissions

4.2.1 Fundamental Emission Pulsed Operation

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Duty cycle is reported for all relevant modes of operation. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 4. Plots showing the measurements made to obtain these values are provided in Figure 5.

Table 4: Fundamental Emission Pulsed Operation.

				Test Date:	6-Mar-23
Detector	Span	IF Bandwidth	Video Bandwidth	Test Engineer:	J. Nantz
Pk	0	1 MHz	3 MHz	EUT:	MCFH FOB
				EUT Mode:	Normal Operating
				Meas, Distance:	10 cm

										FCC/IC	
	(MHz) EUT Test Mode Rate (sec) of Frames Length (sec) Max. No. of Frames Length (sec) Length (ms) Period (ms) Frame Encoding Button Act RKE Frame subfigure (a) subfigure (a) = single subfigure (b) subfigure (c) = 12	Internal Frame Characteristics									
RO	Test Freq.								Compute	ed Duty Cycle	
	_										
	(MHz)	EUT Test Mode	Rate (sec)	of Frames	Length (sec)	Length (ms)	Period (ms)	Frame Encoding	(%)	(dB)	
RI	315		single	12	0.85	266.70	68.5	EUT transmits 4 FSK frames per channel (3 Channels) for worst case RKE function (Trunk). Worst case on time for a single channel is 67.84 ms.	67.8	-3.4	
R2	315	Button Act Comfort Frame subfigure (b)	single	8	0.86	40.90		EUT transmits the comfort message when a button is held after the RKE message is sent. EUT transmits maximum 8 FSK comfort frames without an LF trigger to continue transmission. Each frame is 40.9 ms long with an on time of 6.7 ms. Worst case on time within 100 ms is 20.1 ms.	20.1	-13.9	
R3	315	Manual LF Act Frames subfigure (c)	single	4	0.28	91.86	19.6	EUT transmits 4 FSK frames per each LF request with a worst case on time within any 100 ms window of 35 ms.	35.0	-9.1	
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	

Example Calculation: 67.8 ms / 100 ms = 67.8 % on-time.

NORMAL RKE

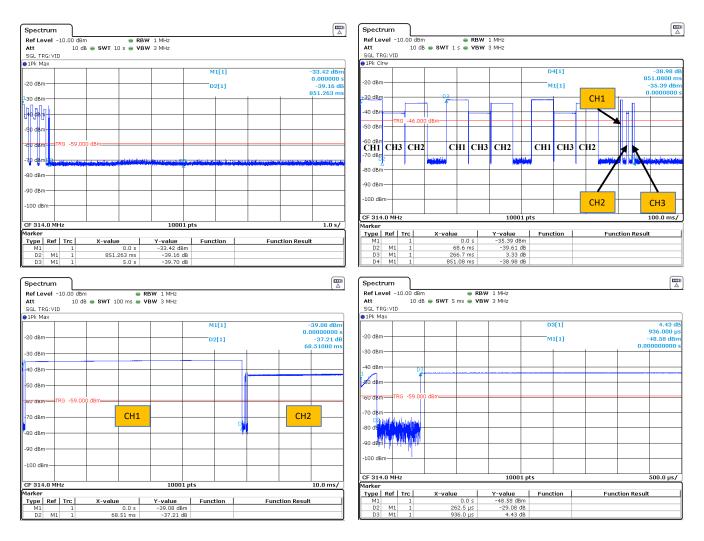


Figure 5(a): Fundamental Emission Pulsed Operation.

COMFORT RKE

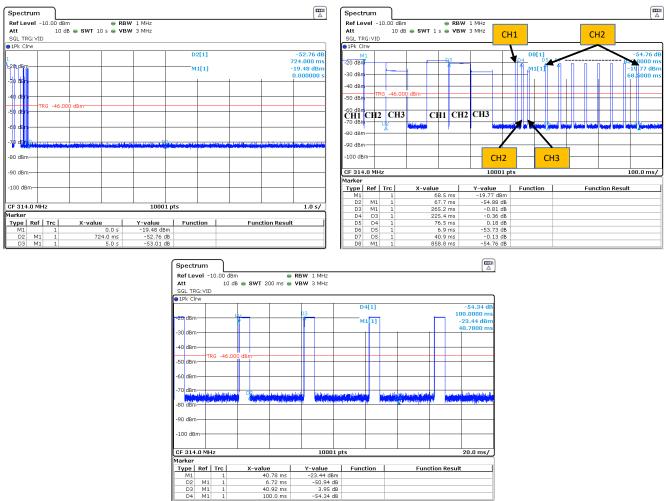


Figure 5(b): Fundamental Emission Pulsed Operation.

MANUAL LF - PEPS

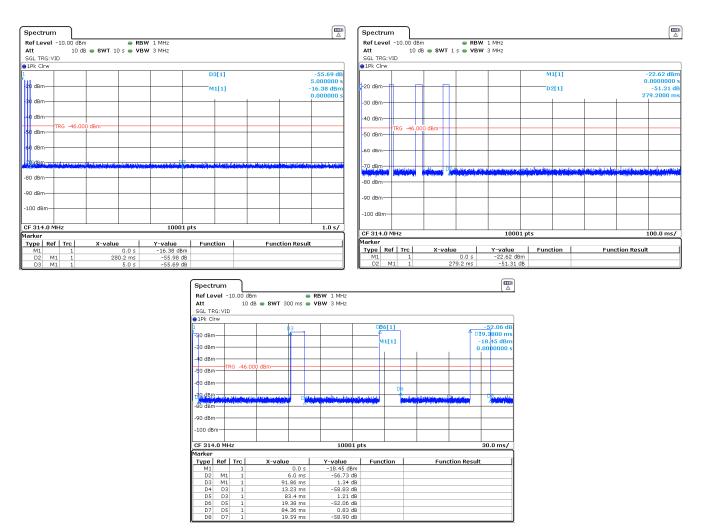


Figure 5(c): Fundamental Emission Pulsed Operation.

4.2.2 Fundamental Emission Bandwidth

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available frame length and minimum frame spacing. The 20 dB EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. For complex modulations other than ASK and FSK, the 99% emission bandwidth per IC test procedures has a different result, and is also reported. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 5. Plots showing the measurements made to obtain these values are provided in Figure 6.

Table 5: Fundamental Emission Bandwidth.

			Test Date:	6-Mar-23
Detector	IF Bandwidth	Video Bandwidth	Test Engineer:	J. Nantz
Pk	10 kHz	100 kHz	EUT:	MCFH FOB
			EUT Mode:	Normal Operating
			Meas. Distance:	10 cm

							FCC/IC
R0		Center Frequency	20 dB EBW	EBW Limit	99% OBW	Accum. 20dB OBW	
KU	Mode	(MHz)	(MHz)	(MHz)	(kHz)	(MHz)	Pass/Fail
R1	RKE-CH1	314.00	0.063		58.611		
R2	RKE-CH2	314.45	0.060	0.785	57.887	0.184	Pass
R3	RKE-CH3	314.90	0.061		55.716		
R4	LF	314.00	0.062	0.785	68.432	0.062	Pass
#	C1	C2	C3	C4	C5	C7	C8

(ROW) (COLUMN) NOTE:

R0 C4 Worst case bandwidth used (0.25% of lowest channel frequency)

R1-R3 C7 Sum of all channels 20dB bandwidths per KDB Guidance 926416

R4 C7 Only one RF channel is used for LF functions

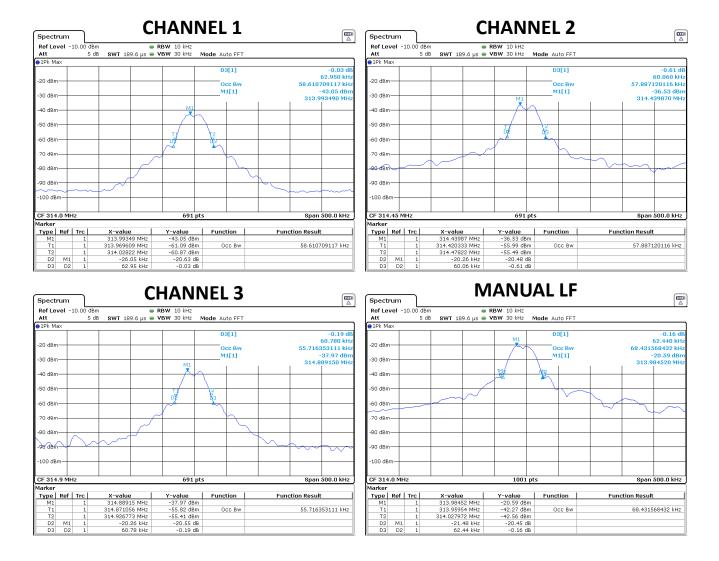


Figure 6: Fundamental Emission Bandwidth.

4.2.3Fundamental Emission Field Strength

Date: March 10, 2023

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Fundamental emissions are measured at the regulatory distance on our OATS. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 6.

Table 6: Fundamental Emission Field Strength.

	EUT Modes:	al	CW (SN: 1662) - Chrome Color - No Key Inserted	a5
		a2	CW (SN: 1662) - Chrome Color - With Key Inserted	a6
Test Date(s):	03/01/23	a3	CW (SN: 1663) - Dark Color - No Key Inserted	a7
Test Engineer:	J Nantz	a4	CW (SN: 1663) - Dark Color - With Key Inserted	a8

	Free	quency			Sit	e				EUT			Test A	ntenna		Cable		Rec	eiver			Field	Stren	gth @	DR		EH	RР	Details
	Start	Stop	Temp.	Table	MR	DR	N/F	CF				Pol.	Ant.	Dim.	Ka	Kg	Rx P	ower	Band	width		Pk			pk / A	vg	Pk	i	
R0			(C)	Angle					Mode	Volt.	Dim		Height				Pk	Avg	RBW	VBW	Meas.	Li	mit	Calc.	Li	mit	Calc.	i	Pass
			Hum.						see													USA	CAN		USA	CAN		1	Fail
	MHz	MHz	%	deg		m	•	dB	table	(V)	cm	H/V	m	cm	dB/m	dB	dE	3m	M	Hz			dBu	V/m	-		dB	m	dB
R1	SE	TUP			OAT	SC		•	Stratte	c MCF	H FOB		EMCC	LOG	-	CAB001		RSFSV	V30001		H-POL	- FLA	T, V-I	OL E	ND W	orst Ca	Case Orient		
R2	314.0	314.0	2 / 69	90.0	3.0	_		0.0	al	3.0	7.5	Н	1.0	100.0	14.1	-0.1			0.12	0.30	76.2	95.6	95.6	72.8	75.6	75.6	-18.9	ш	2.7
R3	314.0	314.0	2 / 69	180.0	3.0	_		0.0	al	3.0	7.5	V	2.0	100.0	14.1	-0.1			0.12	0.30	71.9	95.6	95.6	_			-23.2	ш	7.0
R4	314.0	314.0	2 / 69	90.0	3.0			0.0	a2	3.0	7.5	Н	1.0	100.0	14.1	-0.1			0.12	0.30	77.0	95.6			75.6		-18.1	ш	1.9
R5	314.0	314.0	2 / 69	180.0	3.0	3.0		0.0	a2	3.0	7.5	V	2.0	100.0	14.1	-0.1			0.12	0.30	71.8	95.6	95.6	68.4	75.6	75.6	-23.3	ш	7.1
R6																													
R7	314.0	314.0	2 / 69	90.0	3.0	3.0		0.0	a3	3.0	7.5	Н	1.0	100.0	14.1	-0.1			0.12	0.30	76.1	95.6	95.6	72.7	75.6	75.6	-19.0	ш	2.8
R8	314.0	314.0	2 / 69	180.0	3.0	_		0.0	a3	3.0	7.5	V	2.0	100.0	14.1	-0.1			0.12	0.30	73.5	95.6	95.6		75.6	75.6		Ш	5.4
R9	314.0	314.0	2 / 69	90.0	3.0	3.0		0.0	a4	3.0	7.5	Н	1.0	100.0	14.1	-0.1			0.12	0.30	76.3	95.6	95.6	72.9	75.6	75.6	-18.8	ш	2.6
R10	314.0	314.0	2 / 69	180.0	3.0	3.0		0.0	a4	3.0	7.5	V	2.0	100.0	14.1	-0.1			0.12	0.30	73.5	95.6	95.6	70.1	75.6	75.6	-21.6	ш	5.4
R11																												ш	
R12	314.9	314.9	2 / 69	90.0	3.0			0.0	al	3.0	7.5	Н	1.0	100.0	14.1	-0.1			0.12	0.30	75.8	95.6	95.6			75.6		ш	3.2
R13	314.9	314.9	2 / 69	180.0	3.0			0.0	al	3.0	7.5	V	2.0	100.0	14.1	-0.1			0.12	0.30	71.7	95.6	95.6			75.6		ш	7.3
R14	314.9	314.9	2 / 69	90.0	3.0			0.0	a2	3.0	7.5	Н	1.0	100.0	14.1	-0.1			0.12	0.30	75.2		95.6	_				ш	3.8
R15		314.9	2 / 69	180.0	3.0	3.0		0.0	a2	3.0	7.5	V	2.0	100.0	14.1	-0.1			0.12	0.30	72.0	95.6	95.6	68.6	75.6	75.6	-23.1	ш	7.0
R16																												ш	
R17		314.9	2 / 69	90.0		3.0		0.0	a3	3.0	7.5	Н	1.0	100.0	14.1	-0.1			0.12	0.30	77.3	95.6			75.6			ш	1.7
R18		314.9	2 / 69	180.0	3.0			0.0	a3	3.0	7.5	V	2.0	100.0	14.1	-0.1			0.12	0.30	73.7	95.6		70.3			-21.4	ш	5.3
R19	314.9	314.9	2 / 69	90.0	3.0			0.0	a4	3.0	7.5	Н	1.0	100.0	14.1	-0.1			0.12	0.30	75.9	95.6						ш	3.1
R20	314.9	314.9	2 / 69	180.0	3.0	3.0		0.0	a4	3.0	7.5	V	2.0	100.0	14.1	-0.1			0.12	0.30	73.2	95.6	95.6	69.8	75.6	75.6	-21.9	ш	5.8
R21			<u> </u>																								Ш	\sqcup	
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29

(ROW) (COLUMN) NOTE:

RΩ C5 MR is Measurement Range, which is reduced from DR to achieve necessary SNR. R0

C6 DR is the regulatory Desired Range measurement distant

R0 C7 N/F is Near-Field / Far-Field distance computed for max of EUT Antenna Dimension (C10) computed above 1 GHz.

R0 C8 CF is computed using a 20 dB/decade Decay Rate.

C17/18 When E-field or EIRP is reported directly from Spectrum Analyzer, Antenna Factors and Cable losses are included directly in SA settings and Pr is not reported.

4.3 Unintentional Emissions

4.3.1 Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7.

Table 7: Transmit Chain Spurious Emissions.

	EUT Modes: a1		a5
	a2	CW (SN: 1662) - Chrome Color - With Key Inserted	a6
Test Date(s): 03/06/23	a3		a7
Test Engineer: J. Nantz	a4	CW (SN: 1663) - Dark Color - With Key Inserted	a8

Name		n ou name					_				T	n .				P. U.S. d. O.D.						Emp								
Reg		i	, ,	Т	LTILL	1	1 1	NI/E	CE		EUT	ı	D-1	1	1	l v.	Cable			i		Field Strength @ DR				Ell	(I'	Details		
No.		Start	Stop			MK	DK	N/F	CF	l., , l	***	n.	Pol.		Dim.	Ka	Kg		1					.		,	_			
MHz	R0			. /	Angle						Wit.	Dim		Height				Pk	Avg	RBW	VBW	Meas.		-				Calc.		
R1 SETUP			,,,,,		١.											ID.	IID.	١.,		١,,			USA			JSA	CAN			
R2 6280 6280 44 67 2200 30 30 0.0 a2 3.0 8.0 H 1.0 1000 10.5 -0.1 0.12 0.30 37.0 75.6 75.6 33.6 55.6 55.6 582 220	D.1			%	deg	0.470			dB	_	_ ` /	_	H/V			dB/m					Hz									dB
R8 G280 G280 44 67 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q										_						_			RSFS										Irient	
R4 942.0 942.0 467 200 30 30 0.0 a2 3.0 8.0 H 1.0 1000 166 -0.2 0.12 0.30 3.22 756 756 28.8 556 556 63.0 26.8 R5 942.0 942.0 467 0.0 3.0 3.0 0.0 a2 3.0 8.0 V 1.0 1000 166 -0.2 0.12 0.30 3.22 756 756 28.8 556 556 63.0 22.8 R5 S55			02010																	-		0710								
R5 9420 9420 4467 00 3.0 3.0 0.0 a2 3.0 8.0 V 1.0 1000 16.6 -0.2 0.12 0.30 362 75.6 75.6 32.8 55.6 55.6 -59.0 22.8							-			_								-		-										
RF SETUP SITURE		,	,	,					0.0	_			_	_			_	-				0.2.2	_					00.0		
R7 12560 12560 4/67 all 30 30 0.2 0.0 a2 3.0 8.0 H/V all 15.0 21.4 -2.8 1.00 3.00 34.7 75.6 75.6 31.3 55.6 55.6 -60.5 24.3			,	4/ 67	0.0	_			0.0				V	_		16.6				_	0.30							-59.0		22.8
R8	-					_	_																				_			
R840 18840 4 67 all 30 30 0.3 0.0 a2 3.0 8.0 H/V all 15.0 27.8 3.6 1.00 3.00 48.7 75.6 75.6 45.3 55.6 55.6 46.5 10.3 R10 21980 21980 4 67 all 3.0 3.0 0.3 0.0 a2 3.0 8.0 H/V all 15.0 29.7 4.0 1.00 3.00 39.2 74.0 74.0 35.8 54.0 54.0 56.0 18.2 R12 22120 25120 4 67 all 3.0 3.0 0.4 0.0 a2 3.0 8.0 H/V all 15.0 30.9 4.3 1.00 3.00 39.2 74.0 74.0 35.8 54.0 54.0 56.0 18.2 R12 28260 28260 4 67 all 3.0 3.0 0.4 0.0 a2 3.0 8.0 H/V all 15.0 31.5 4.7 1.00 3.00 48.6 75.6 75.6 40.2 55.6								_		_			+		-															
RIO 2198.0 2198.0 4/67 all 3.0 3.0 0.3 0.0 a2 3.0 8.0 H/V all 15.0 29.7 4.0 1.00 3.00 39.2 74.0 74.0 35.8 54.0 54.0 -56.0 18.2					all	_				_		_	_		_	_							_	$\overline{}$			-			
RII 25120 25120 4/67 all 30 30 0.4 0.0 a2 3.0 8.0 H/V all 15.0 30.9 4.3 1.00 3.00 43.6 75.6 75.6 40.2 55.6	R9	1884.0		4/ 67	all				0.0			8.0	_	all	15.0	27.8	-3.6			1.00	3.00	48.7								
R12 28260	_												_																	
RI3 31400 31400 4 67 all 30 3.0 0.5 0.0 a2 4.0 8.0 H/V all 150 31.8 -5.0 1.00 3.00 38.6 75.6 75.6 35.2 55.6 -55.6 -56.6 20.4 RI4 SETUP COATSC Strattec MCFH FOB EMCOLOG CAB001 RSFSV3001 NOTES: H-POL-FLAT, V-POLEND Worst Case Orient RI5 SETUP COATSC CAB001 RSFSV3001 NOTES: H-POL-FLAT, V-POLEND Worst Case Orient RI6 629.8 629.8 4 67 20.0 3.0 3.0 0.0 a4 3.0 8.0 H 1.0 1000 10.5 -0.1 0.12 0.30 38.0 75.6 75.6 35.6 55.6 55.6 -55.6 -55.6 RI8 944.7 944.7 4 67 220.0 3.0 3.0 0.0 a4 3.0 8.0 H 1.0 1000 16.7 -0.2 0.12 0.30 38.0 75.6 75.6 23.5 55.6 55.6 -55.6 -20.4 RI9 944.7 944.7 4 67 0.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 16.7 -0.2 0.12 0.30 38.0 75.6 75.6 23.5 55.6 55.6 -20.4 RI9 944.7 944.7 4 67 0.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 16.7 -0.2 0.12 0.30 38.0 75.6 75.6 23.5 55.6 55.6 -20.4 RI9 944.7 944.7 4 67 0.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 16.7 -0.2 0.12 0.30 38.0 75.6 75.6 23.5 55.6 55.6 55.6 20.4 RI9 944.7 944.7 4 67 0.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 16.7 -0.2 0.12 0.30 38.0 75.6 75.6 23.5 55.6 55.6 55.6 20.4 RI9 944.7 944.7 4 67 0.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 16.7 -0.2 0.12 0.30 38.0 75.6 75.6 20.5 55.6 55.6 56.6 20.4 RIP 944.7 944.7 4 67 0.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 16.7 -0.2 0.12 0.30 38.0 75.6 75.6 20.5 55.6 55.6 55.6 20.4 RIP 944.7 944.7 4 67 0.0 3.0 3.0 0.0 a4 3.0 8.0 H/V all 15.0 21.5 -2.8 1.00 3.00 35.7 75.6 75.6 32.3 55.6 55.6 55.6 50.5 RIP 944.7 944.7 4 67 all 3.0 3.0 0.0 a4 3.0 8.0 H/V all 15.0 21.5 -2.8 1.00 3.00 35.7 75.6 75.6 32.3 55.6 55.6 60.6 RIP 944.7 944.7 944.7 944.7 944.7 945.7 0.0 10.0 10.0 10.5 RIP 944.7 944.7 944.7 944.7 944.7 944.7 944.7 945.7 0.0 10.0 10.0 10.5 RIP 944.7 944.7 944.7 944.7 944.7 944.7 945.7 0.0 10.0 10.0 10.5 RIP 944.7 94	R11	2512.0	2512.0	4/ 67	all	3.0	3.0	0.4	0.0	a2	3.0	8.0	-	all	15.0	30.9	-4.3			1.00	3.00	43.6	75.6	75.6	_	55.6	55.6	-51.6		15.4
RI4 SETUP OATSC Strattec MCFH FOB EMCOLOG CABOOI RSFSV30001 NOTES: H-POL-FLAT, V-POLEND West Case Orient RI5 SETUP OATSC Strattec MCFH FOB EMCOLOG CABOOI RSFSV30001 NOTES: H-POL-FLAT, V-POLEND West Case Orient RI7 629.8 629.8 4/67 20.0 3.0 3.0 0.0 a4 3.0 8.0 H 1.0 100.0 10.5 -0.1 0.12 0.30 38.2 75.6 75.6 34.8 55.6 55.6 -57.2 21.0 RI8 944.7 944.7 4/67 220.0 3.0 3.0 0.0 a4 3.0 8.0 H 1.0 100.0 16.7 -0.2 0.12 0.30 38.2 75.6 75.6 34.8 55.6 55.6 -57.0 20.8 RI9 944.7 944.7 4/67 220.0 3.0 3.0 0.0 a4 3.0 8.0 H 1.0 100.0 16.7 -0.2 0.12 0.30 38.2 75.6 75.6 55.6 55.6 62.3 26.1 RE9 SETUP OATSC STRATEC MCFH FOB HENSINGOR CABOIS RSFSV30001 NOTES: H-POL-FLAT, V-POLEND West Case Orient RE9 4/67 6/1 8	R12	2826.0	2826.0	4/ 67	all	3.0	3.0	0.4	0.0	a2	3.0	8.0	H/V	all	15.0	31.5	-4.7			1.00	3.00	42.6	74.0	74.0	39.2	54.0	54.0	-52.6		14.8
RI5 SETUP OATSC Strattec MCFH FOB EMCOLOG CAB001 RSFSV3000 NOTES: H-POL-FLAT, V-POL-IND Worst Case Orient	R13	3140.0	3140.0	4/ 67	all	3.0	3.0	0.5	0.0	a2	4.0	8.0	H/V	all	15.0	31.8	-5.0			1.00	3.00	38.6	75.6	75.6	35.2	55.6	55.6	-56.6		20.4
R16 629.8 629.8 4/67 220.0 3.0 3.0 0.0 a4 3.0 8.0 H 1.0 100.0 10.5 -0.1 0.12 0.30 38.0 75.6 75.6 34.6 55.6 55.6 57.2 21.0 R17 629.8 629.8 4/67 0.0 3.0 3.0 0.0 a4 3.0 8.0 W 1.0 100.0 10.5 -0.1 0.12 0.30 38.2 75.6 75.6 34.8 55.6 55.6 55.6 57.0 20.8 R18 944.7 944.7 4/67 20.0 3.0 3.0 0.0 a4 3.0 8.0 W 1.0 100.0 16.7 -0.2 0.12 0.30 32.9 75.6 75.6 32.8 55.6 55.6 -62.3 26.1 R19 944.7 944.7 4/67 0.0 3.0 3.0 0.0 a4 3.0 8.0 W 1.0 100.0 16.7 -0.2 0.12 0.30 38.6 75.6 75.6 32.8 55.6 55.6 -62.3 R29 944.7 944.7 4/67 0.0 3.0 3.0 0.0 a4 3.0 8.0 W 1.0 100.0 16.7 -0.2 0.12 0.30 38.6 75.6 75.6 35.2 55.6 55.6 -62.3 R29 944.7 9	R14																													
RIF 6298 6298 4/67 0.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 10.5 0.1 0.12 0.30 382 75.6 75.6 34.8 55.6 55.6 6.77.0 20.8 RIF 944.7 944.7 4/67 220.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 16.7 0.2 0.12 0.30 3.9 75.6 75.6 29.5 55.6 55.6 6.23 26.1 RIF 944.7 944.7 4/67 20.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 16.7 0.2 0.12 0.30 3.9 75.6 75.6 75.6 55.6 55.6 6.23 26.1 RED SETUP	-									Stratte			EMCOLOG			CAB001														
RIS 944.7 944.7 44.67 220.0 3.0 3.0 0.0 a4 3.0 8.0 H 1.0 1000 16.7 -0.2 0.12 0.30 32.9 75.6 75.6 29.5 55.6 55.6 -62.3 26.1 RIS 944.7 944.7 44.67 0.0 3.0 3.0 0.0 a4 3.0 8.0 W 1.0 1000 16.7 -0.2 0.12 0.30 38.6 75.6 75.6 29.5 55.6 55.6 -56.6 20.4 RED SETUP OATSC Stratec MCFH FOB HRNSINGOR CABOIS RSFS/3000 NOTES: maxill orientations FUT RE1 1259.6 1259.6 4/67 all 3.0 3.0 0.2 0.0 a4 3.0 8.0 H/V all 15.0 25.2 -3.2 1.00 3.0 45.2 74.0 74.0 41.8 54.0 54.0 -50.0 12.2 RE2 1889.4 1889.4 4/67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 27.9 -3.6 1.00 3.00 32.7 75.6 75.6 32.3 55.6 55.6 -50.6 -50.6 12.2 RE3 1889.4 1889.4 4/67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 27.9 -3.6 1.00 3.00 32.7 75.6 75.6 32.3 55.6 55.6 -50.6 -50.6 12.2 RE3 1889.4 1889.4 4/67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 27.9 -3.6 1.00 3.00 32.7 75.6 75.6 32.3 55.6 55.6 -50.6 12.3 RE2 204.3 204.3 204.3 4/67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 29.7 4.0 1.00 3.00 32.7 40 74.0 35.8 54.0 54.0 55.0 18.2 RE3 25 2519.2 2519.2 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 3.0 4.3 1.00 3.00 44.7 75.6 75.6 43.3 55.6 55.6 -50.5 14.3 RE2 28341 28341 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 3.0 4.4 7 1.00 3.00 44.7 75.6 75.6 40.3 31.5 40.5 55.6 55.6 55.5 15.8 RE3 28341 28341 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 3.0 4.4 7 1.00 3.00 44.7 75.6 75.6 40.3 31.5 40.5 55.6 55.6 55.5 15.5 15.9 RE3 28341 3894 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 3.0 4.4 7 1.00 3.00 44.7 75.6 75.6 40.3 31.5 40.5 55.6 55.6 55.5 15.5 55.6 55.5 15.5 55.6 55.5 55.5	R16	629.8	629.8	4/ 67	220.0	3.0	3.0		0.0	a4	3.0	8.0	Н	1.0	100.0	10.5	-0.1			0.12	0.30	38.0		_		55.6	55.6			
RI9 9447 9447 4 67 0.0 3.0 3.0 0.0 a4 3.0 8.0 V 1.0 1000 167 -0.2 0.12 0.30 38.6 75.6 75.6 35.2 55.6 55.6 -56.6 20.4 R20 SETUP OATSC Strates MCH FOB HRNSINGR CABOIS RSFS/3000 NOTES: max21 orientations of EUT R21 1299.6 1259.6 4 67 all 3.0 3.0 0.2 0.0 a4 3.0 8.0 H/V all 15.0 21.5 -2.8 1.00 3.0 35.7 75.6 75.6 32.2 85.6 55.6 -50.5 59.5 23.3 R22 1574.5 1574.5 4 67 all 3.0 3.0 0.2 0.0 a4 3.0 8.0 H/V all 15.0 25.2 -3.2 1.00 3.0 34.6 75.6 75.6 31.2 55.6 55.6 -50.6 -20.4 R23 1889.4 1889.4 4 67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 27.9 -3.6 1.00 3.0 34.6 75.6 75.6 31.2 55.6 55.6 -60.6 24.4 R24 2204.3 2204.3 4 67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 29.7 -4.0 1.00 3.0 39.2 74.0 74.0 35.8 54.0 54.0 -56.0 18.2 R25 2519.2 2519.2 4 67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 30.9 44.3 1.00 3.0 44.7 75.6 75.6 41.8 54.0 55.0 55.6 55.0 55.0 14.3 R26 2834.1 2834.1 4 67 all 3.0 3.0 0.3 0.0 a4 4.0 a4 3.0 8.0 H/V all 15.0 30.9 44.3 1.00 3.0 44.7 75.6 75.6 41.8 54.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0	R17		629.8	4/ 67	0.0		3.0		0.0	a4	3.0	8.0	V	1.0	100.0	10.5	-0.1			0.12	0.30	38.2	$\overline{}$	$\overline{}$		\rightarrow	_			
R20 SETUP OATSC Strattec MCFH FOB HRNSNOQR CAB015 RSFSV3001 NOTES: maxill orientations of EUT	R18	944.7	944.7	4/ 67	220.0	3.0	3.0		0.0	a4	3.0	8.0	Н	1.0	100.0	16.7	-0.2			0.12	0.30	32.9	75.6	75.6	29.5	55.6	55.6	-62.3		
R21 12596 12596 4/67 all 3.0 3.0 0.2 0.0 a4 3.0 8.0 H/V all 15.0 21.5 -2.8 1.00 3.00 35.7 75.6 75.6 32.3 55.6 55.6 59.5 23.3 R22 1574.5 1574.5 4/67 all 3.0 3.0 0.2 0.0 a4 3.0 8.0 H/V all 15.0 25.2 -3.2 1.00 3.00 45.2 74.0 74.0 41.8 54.0 54.0 -50.0 12.2	R19	944.7	944.7	4/ 67	0.0	3.0	3.0		0.0	_			V	1.0	100.0	16.7					0.30	38.6	75.6	75.6	35.2	55.6	55.6	-56.6		20.4
R22 1574.5 1574.5 4/67 all 3.0 3.0 0.2 0.0 a4 3.0 8.0 H/V all 15.0 25.2 -3.2 1.00 3.00 45.2 74.0 74.0 41.8 54.0 50.0 12.2 R23 1889.4 4/67 all 3.0 3.0 a4 3.0 8.0 H/V all 15.0 27.9 -3.6 1.00 3.00 34.6 75.6 75.6 31.2 55.6 -60.6 24.4 R24 2204.3 260.3 4/67 all 3.0 3.0 a4 3.0 8.0 H/V all 15.0 29.7 -4.0 1.00 3.00 32.7 74.0 74.0 75.6 75.6 35.6 55.6 -60.6 18.2 225 192.2 2519.2 24/67 all 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 3.0 4.3 1.00	R20		TUP				SC			Stratte	c MCF	H FOB	HRNSINGQR				CAB015	RSFSV30001				NOTES: max all orientations of EUT					Γ			
R23 1889.4 1889.4 4/67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 27.9 -3.6 1.00 3.00 34.6 75.6 75.6 31.2 55.6 55.6 -60.6 24.4 R24 2204.3 2204.3 4/67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 29.7 4.0 1.00 3.00 39.2 74.0 75.6 75.6 31.2 55.6 55.6 -60.6 24.4 R24 2204.3 2204.3 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 30.9 4.3 1.00 3.00 39.2 74.0 75.6 75.6 75.6 31.2 55.6 55.6 -50.5 18.2 R25 2519.2 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 30.9 4.3 1.00 3.00 44.7 75.6 75.6 75.6 41.3 \$1.50 55.6 50.5 14.3 R26 2334.1 2334.1 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 31.6 4.7 1.00 3.00 44.7 75.0 75.6 75.6 41.3 \$1.50 55.6 50.5 51.9 \$1.50 55.0 \$1.50 55.0 \$1.50 55.0 \$1.50 55.0 \$1.5	R21	1259.6	1259.6	4/ 67	all	3.0	3.0	0.2	0.0	a4	3.0	8.0	H/V	all	15.0	21.5	-2.8			1.00	3.00	35.7	75.6	75.6	32.3	55.6	55.6	-59.5		23.3
R24 22043 22043 4/67 all 3.0 3.0 0.3 0.0 a4 3.0 8.0 H/V all 15.0 29.7 4.0 1.00 3.00 39.2 74.0 74.0 35.8 54.0 54.0 -56.0 18.2 R25 2519.2 2519.2 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 30.9 4.3 1.00 3.00 44.7 75.6 75.6 41.3 55.6 55.6 -50.5 14.3 R26 2834.1 2834.1 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 31.6 4.7 1.00 3.00 41.5 74.0 74.0 38.1 54.0 54.0 -53.7 15.9 R27 3149.0 3149.0 4/67 all 3.0 3.0 0.5 0.0 a4 4.0 8.0 H/V all 15.0 31.8 -5.0 1.00 3.00 38.4 75.6 75.6 35.0 55.6 55.6 56.8 20.6	R22	1574.5	1574.5	4/ 67	all	3.0	3.0	0.2	0.0	a4	3.0	8.0	_	all	15.0	25.2	-3.2			1.00	3.00	45.2	74.0	74.0	41.8	54.0	54.0	-50.0		
R25 2519.2 2519.2 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 30.9 4.3 1.00 3.00 44.7 75.6 75.6 41.3 55.6 55.6 50.5 14.3 R26 2834.1 2834.1 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 31.6 4.7 1.00 3.00 41.5 74.0 74.0 38.1 54.0 55.6 55.6 50.5 15.9 R27 3149.0 3149.0 4/67 all 3.0 3.0 0.5 0.0 a4 4.0 8.0 H/V all 15.0 31.8 5.0 1.00 3.00 3.0 3.0 3.0 3.0 3.0 3.0 55.6 55.6 55.6 50.5 14.3 15.9 R27 3149.0 3149.0 4/67 all 3.0 3.0 0.5 0.0 a4 4.0 8.0 H/V all 15.0 31.8 5.0 1.00 3.00 3.0 3.0 3.0 3.0 3.0 55.6 55.6 55.6 55.8 20.6	R23	1889.4	1889.4	4/ 67	all	3.0	3.0	0.3	0.0	a4	3.0	8.0	H/V	all	15.0	27.9	-3.6			1.00	3.00	34.6	75.6	75.6	31.2	55.6	55.6	-60.6		24.4
R26 2834.1 2834.1 4/67 all 3.0 3.0 0.4 0.0 a4 3.0 8.0 H/V all 15.0 31.6 4.7 1.00 3.00 41.5 74.0 74.0 38.1 54.0 53.7 15.9 R27 3149.0 3149.0 4/67 all 3.0 3.0 0.5 0.0 a4 4.0 8.0 H/V all 15.0 31.8 -5.0 1.00 3.00 38.4 75.6 75.6 35.0 55.6 55.6 -56.8 20.6	R24	2204.3	2204.3	4/ 67	all	3.0	3.0	0.3	0.0	a4	3.0	8.0	H/V	all	15.0	29.7	-4.0			1.00	3.00	39.2	74.0	74.0	35.8	54.0	54.0	-56.0		18.2
R27 3149.0 3149.0 4/67 all 3.0 3.0 0.5 0.0 a4 4.0 8.0 H/V all 15.0 31.8 -5.0 1.00 3.00 384 75.6 75.6 35.0 55.6 55.6 56.8 20.6	R25	2519.2	2519.2	4/ 67	all	3.0	3.0	0.4	0.0	a4	3.0	8.0	H/V	all	15.0	30.9	-4.3			1.00	3.00	44.7	75.6	75.6	41.3	55.6	55.6	-50.5		14.3
	R26	2834.1	2834.1	4/ 67	all	3.0	3.0	0.4	0.0	a4	3.0	8.0	H/V	all	15.0	31.6	-4.7			1.00	3.00	41.5	74.0	74.0	38.1	54.0	54.0	-53.7		15.9
# C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29	R27	3149.0	3149.0	4/ 67	all	3.0	3.0	0.5	0.0	a4	4.0	8.0	H/V	all	15.0	31.8	-5.0			1.00	3.00	38.4	75.6	75.6	35.0	55.6	55.6	-56.8		20.6
	#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29

(ROW)	(COLUMN)	NOTE:
R0	C5	MR is Measurement Range, which is reduced from DR to achieve necessary SNR.
R0	C6	DR is the regulatory Desired Range measurement distance.
R0	C7	N/F is Near-Field / Far-Field distance computed for max of EUT Antenna Dimension (C10) computed above 1 GHz.
R0	C8	CF is computed using a 20 dB/decade Decay Rate.
R0	C17/18	When E-field or EIRP is reported directly from Spectrum Analyzer, Antenna Factors and Cable losses are included directly in SA settings and Pr is not reported.
The c	691	

4.3.2 Radiated Digital Spurious

The results for the measurement of digital spurious emissions are not reported herein as all digital emissions were greater than 20 dB below the regulatory limit. Radiation from digital components was measured to 1 GHz, or to five times the maximum digital component operating frequency, whichever is greater.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k=2.

Table 8: Measurement Uncertainty.

Measured Parameter	${\bf Measurement~Uncertainty}^{\dagger}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \mathrm{MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \mathrm{MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \mathrm{MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \mathrm{MHz})$	$\pm 3.7\mathrm{dB}$

†Ref: CISPR 16-4-2:2011+A1:2014

Figure 7: Accreditation Documents