

FCC Test Report

Equipment	:	Rugged Tablet Computer
Brand Name	:	AAEON
Model No.	:	xRTC-700Bx (x - Where x may be any combination of alphanumeric characters or "-"or blank.)
FCC ID	:	OHBRTC700BWBGH
Standard	:	47 CFR FCC Part 15.225
Operating Band	:	13.553 – 13.567 MHz
Applicant / Manufacturer	:	AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd.,Taipei, Taiwan

The product sample received on Jul. 29, 2016 and completely tested on Aug. 18, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	8
1.3	Testing Applied Standards	8
1.4	Testing Location Information	8
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	Test Channel Frequencies Configuration	10
2.3	The Worst Case Measurement Configuration	11
2.4	Test Setup Diagram	12
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	Emission Bandwidth	17
3.3	Field Strength of Fundamental Emissions and Spectrum Mask	19
3.4	Transmitter Radiated Unwanted Emissions	21
3.5	Frequency Stability	
4	TEST EQUIPMENT AND CALIBRATION DATA	

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 13.56MHz 43.59(Margin 16.41dB) - QP 43.82(Margin 6.18dB) - AV	FCC 15.207	Complied		
3.2	15.215(c)	Emission Bandwidth	20dB Bandwidth 2.76 [kHz] F _L : 13.55898 MHz F _H : 13.56174 MHz	Fall in band F _L ≥ 13.553 MHz F _H ≤ 13.567 MHz	Complied		
3.3	15.225(a)~(d)	Field Strength of Fundamental Emissions and Spectrum Mask	Fundamental Emissions peak: 57.58 dBuV/m at 3m Device complies with spectrum mask – refer to test data	124 dBuV/m at 3m	Complied		
3.4	15.225(d)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 39.700MHz 34.85 (Margin 5.15dB) - PK	FCC 15.209	Complied		
3.5	15.225(e)	Frequency Stability	36.14 ppm	± 0.01% (100ppm)	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR671417AR	Rev. 01	Initial issue of report	Sep. 09, 2016

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information						
Frequency Range Modulation Ch. Frequency (MHz) Channel Number Field Strength (dBuV/m)						
13.553 – 13.567 MHz ISO 14443-3A (ASK) 13.56 1 57.58						
Note 1: Field strength performed peak level at 3m.						

1.1.2 Antenna Information

	Antenna Category				
	Equipment placed on the market without antennas				
\square	Integral antenna (antenna permanently attached)				
	External antenna (dedicated antennas)				

	Antenna General Information				
No.	No. Ant. Cat. Ant. Type Brand Name				
1	Integral	Loop Antenna	-		

1.1.3 Type of EUT

	Identify EUT			
EUT	EUT Serial Number N/A			
Pre	sentation of Equipment	Production ; D Pre-Production ; Prototype		
	Type of EUT			
\square	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System - Brand Name / Model No.:			
	Other:			

1.1.4 Test Signal Duty Cycle

Duty Cycle Operation Restriction				
The transmitter is used for	transmitter is used for The transmitter is operated			
Inductive applications	\boxtimes	Automatically triggered		
Duty cycle fixed mode	\boxtimes	Duty cycle random mode		
Duty cycle mode - NFC-A (ISO 14443-3A)				
Declare transmitter duty cycle / 1 hour =	100%	, 0		
Duty cycle Limit				
Class 1 - < 0.1 %		Class 2 - < 1.0 %		
Class 3 - < 10 %	\boxtimes	Class 4 - Up to 100 %		
Duty cycle mode - NFC-B (ISO 14443-3B)				
Declare transmitter duty cycle / 1 hour =	100%	0		
Duty cycle Limit				
Class 1 - < 0.1 %		Class 2 - < 1.0 %		
Class 3 - < 10 %		Class 4 - Up to 100 %		
Duty cycle mode - NFC-F (ISO 18092)				
Declare transmitter duty cycle / 1 hour =	100%	0		
Duty cycle Limit				
Class 1 - < 0.1 %		Class 2 - < 1.0 %		
Class 3 - < 10 %		Class 4 - Up to 100 %		
Duty cycle mode - NFC-V (ISO 15693)				
Declare transmitter duty cycle / 1 hour = 100%				
Duty cycle Limit				
Class 1 - < 0.1 %		Class 2 - < 1.0 %		
Class 3 - < 10 %	\square	Class 4 - Up to 100 %		

1.1.5 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle		
Operated normally mode for worst duty cycle		
Operated test mode for worst duty cycle		
Test Signal Duty Cycle (x)Voltage Duty Factor [dB] - (20 log 1/x)		
☑ 100% 0.00		

1.1.6 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External AC adapter	Battery
Test Voltage	Vnom (7.4 V)	🛛 Vmax (8.4 V)	🛛 Vmin (6.0 V)
Test Climatic	Tnom (20°C)	🖾 Tmax (50°C)	⊠ Tmin (-20°C)

1.2 Accessories and Support Equipment

	Accessories Information					
	Brand Name	FSP	Model Name	FSP036-RBBN2		
AC Adapter	Power Rating	I/P: 100 - 240 Vac, 1.2 A, O/P:	12 Vdc, 3 A			
	Power Cord	1.2 meter, non-shielded cable, with one ferrite core				
Pottony 1	Brand Name	Getac	Model Name	RTC600S		
Battery 1	Power Rating	7.4 Vdc, 1530 mAh	Туре	Li-ion, 2S1P		
Battery 2	Brand Name	Getac	Model Name	RTC600H		
Dallery Z	Power Rating	7.4Vdc, 1530 mAh	Туре	Li-ion, 2S1P		

Reminder: Regarding to more detail and other information, please refer to user manual.

Support Equipment - AC Conduction				
No.	Io. Equipment Brand Name Model Name			
1	RFID Card	-	-	

	Support Equipment - Radiated				
No.	No. Equipment Brand Name Model Name				
1	RFID Card	-	-		

Support Equipment- RF Conducted					
No.	No. Equipment Brand Name Model Name				
1	1 RFID Card				

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 174176 D01

1.4 Testing Location Information

	Testing Location						
\square	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.						
	TEL : 886-3-327-3456 FAX : 886-3-327-0973						
Т	Test Condition Test Site No. Test Engineer Test Environment Test Date						
AC Conduction CO04-HY Ryan 25°C / 52% 16/08		16/08/2016					
RF Conducted TH01-HY Howard 25°C / 65% 12/08/201		12/08/2016					
	Radiated		()3CH03-HY	Jeff	21.5°C / 58%	18/08/2016

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Test Item		Uncertainty		
AC power-line conducted emissions		±2.2 dB		
Emission bandwidth		±1.4 %		
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB		
	0.15 – 30 MHz	±0.42 dB		
	30 – 1000 MHz	±0.51 dB		
All emissions, radiated	9 – 150 kHz	±2.49 dB		
	0.15 – 30 MHz	±2.28 dB		
	30 – 1000 MHz	±2.56 dB		
Temperature		±0.8 °C		
Humidity		±3 %		
DC and low frequency voltages		±3 %		
Time		±1.4 %		
Duty Cycle		±1.4 %		

2 Test Configuration of EUT

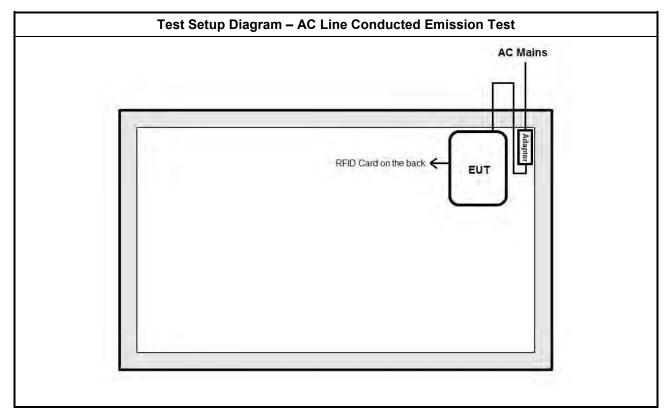
2.1 The Worst Case Modulation Configuration

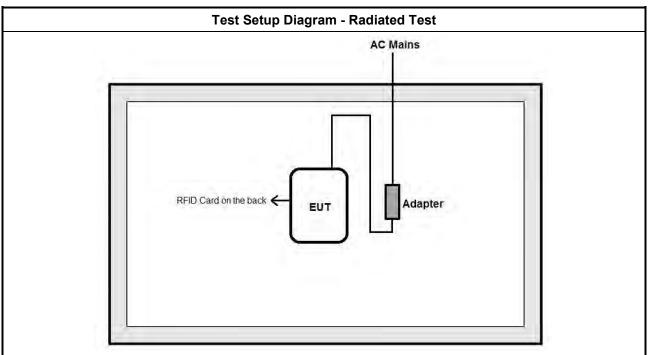
Modulation Used for Conformance Testing		
Modulation ModeField Strength (dBuV/m at 3 m)		
NFC-Read/Write	57.58	

2.2 Test Channel Frequencies Configuration

Modulation Mode	Test Channel Frequencies (MHz)
NFC-Read/Write	13.56-(F1)

2.3 The Worst Case Measurement Configuration


The Worst Case Mode for Following Conformance Tests		
Tests Item AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz		
Operating Mode Adapter Mode		


The Worst Case Mode for Following Conformance Tests		
Tests Item Emission Bandwidth, Frequency Stability		
Test Condition	Conducted measurement	

Th	The Worst Case Mode for Following Conformance Tests				
Tests Item	Field Strength of Fundamental Emissions Spectrum Mask, Transmitter Radiated Unwanted Emissions				
Test Condition	Radiated measurement				
	EUT will be placed in	fixed position.			
User Position		EUT will be placed in mobile position and operating multiple positions. EUT shall be performed three orthogonal planes.			
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed three orthogonal planes.				
	1. EUT Built in NFC A type				
Pretest Mode	2. EUT Built in NFC B type				
Pretest Mode	3. EUT Built in NFC F type				
	4. EUT Built in NFC	V type			
Mode 1 configuration was	pretested and found to be th	he worst case and measure	d during the test.		
Operating Mode < 1GHz	🛛 1. Adapter Mode				
Modulation Mode	NFC-Read/Write				
	X Plane	Y Plane	Z Plane		
Orthogonal Planes of EUT					
Worst Planes of EUT			V		

2.4 Test Setup Diagram

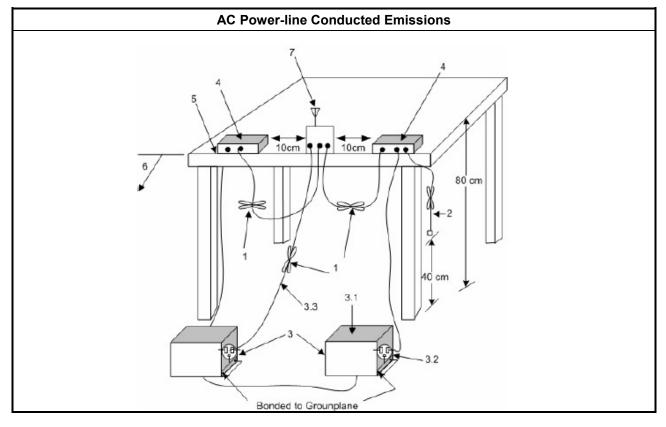
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit Frequency Emission (MHz) Quasi-Peak Average				
				0.15-0.5 66 - 56 * 56 - 46 *
0.5-5	56	46		
5-30 60 50				
5-30 60 50 Note 1: * Decreases with the logarithm of the frequency. 50				

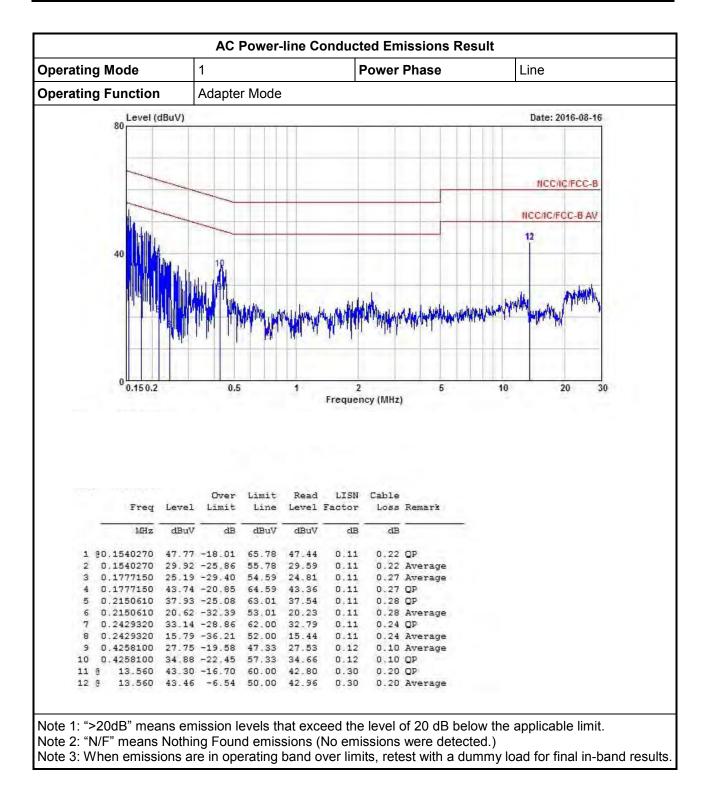
3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method				
\boxtimes	Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.				
\boxtimes	If AC conducted emissions fall in operating band, then following below test method confirm final result.				
	 Accept measurements done with a suitable dummy load replacing the antenna under the following conditions: (1) Perform the AC line conducted tests with the antenna connected to determine compliance with FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load to determine compliance with FCC 15.207 limits within the transmitter's fundamental emission band. 				
	 For a device with a permanent antenna operating at or below 30 MHz, accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) Perform the AC line conducted tests with the permanent antenna to determine compliance with the FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load in lieu of the permanent antenna to determine compliance with the FCC 15.207 limits within the transmitter's fundamental emission band; 				

3.1.4 Test Setup



rating Mode		1			F	Power	Phase		Neutra	ıl
rating Function	1	Adapte	r Mode						•	
Level (dBuV)					_			Date: 1	2016-08-16
80										
-										- mark
		-	-				-	-	NCC	IC/FCC-B
	~								иссаса	CC-B AV
WH L	-									CC-DAV
	1								12	
40	l.	10								
	Hall	A.								11
	i na a a			11.	. Mak	N.		uhumum w	MAN	Minima
걸 날 날			MANNU. NO	May March	A ANY THIS	" How where	an international states and	APPARt AND A	ALL THE	1
			A WALL	da. d	JUN I		CARL FLER		1	,
								_		
							1.1			
0.15 0.2		0.5		1	2		-	10		20 3
		0.0				CV (MHZ)	5	10		20 3
		0.5			Frequen	cy (MHz)		10		20 3
		0.0				cy (MHz)		10		20 3
		0.0				cy (MHz)		10		20 3
						cy (MHz)		10		20 3
						cy (MHz)		10		20 3
			Limit		Frequen			10		20 3
Freq	Level	Over Limit		Read	Frequen	Cable		10		20 3
Freq MHz	Level dBuV	Over	Limit	Read	Frequen	Cable		10		20 3
MHz	dBuV	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB	Cable Loss dB) Remark	-		20 3
	dBuV 48.97	Over Limit dB -16.94	Limit Line dBuV 65.91	Read Level	LISN Factor dB 0.10	Cable Loss dB 0.22) Remark	-		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400	dBuV 48.97 30.54 45.26	Over Limit dB -16.94 -25.37 -19.73	Limit Line dBuV 65.91 55.91 64.99	Read Level dBuV 48.65 30.22 44.91	LISN Factor dB 0.10 0.10 0.10	Cable Loss dB 0.22 0.22 0.25	Remark QP Average QP	10		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400	dBuV 48.97 30.54 45.26 27.61	Over Limit dB -16.94 -25.37 -19.73 -27.38	Limit Line dBuV 65.91 55.91 64.99 54.99	Read Level dBuV 48.65 30.22 44.91 27.26	LISN Factor dB 0.10 0.10 0.10 0.10	Cable Loss dB 0.22 0.22 0.25 0.25	Remark OP Average OP Average	10		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630	dBuV 48.97 30.54 45.26 27.61 19.50	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07	Limit Line dBuV 65.91 55.91 64.99 54.99 52.57	Read Level dBuV 48.65 30.22 44.91 27.26 19.13	LISN Factor dB 0.10 0.10 0.10 0.10 0.10 0.11	Cable Loss dB 0.22 0.22 0.25 0.25 0.25	Remark OP Average OP Average Average	-		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630 6 0.2267630	dBuV 48.97 30.54 45.26 27.61 19.50 36.73	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84	Limit Line dBuV 65.91 55.91 64.99 54.99 52.57 62.57	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36	LISN Factor dB 0.10 0.10 0.10 0.11 0.11	Cable Loss dB 0.22 0.22 0.25 0.25	Remark OP Average OP Average Average QP	10		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630	dBuV 48.97 30.54 45.26 27.61 19.50 36.73 30.82	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84 -30.12	Limit Line dBuV 65.91 55.91 64.99 54.99 52.57 62.57 60.94	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36 30.50	LISN Factor dB 0.10 0.10 0.10 0.11 0.11	Cable Loss dB 0.22 0.22 0.25 0.25 0.26 0.26 0.26 0.21	Remark OP Average OP Average Average QP	10		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630 6 0.2267630 7 0.2758730 8 0.2758730 9 0.4264950	dBuV 48.97 30.54 45.26 27.61 19.50 36.73 30.82 15.02 27.02	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84 -30.12 -35.92 -20.30	Limit Line dBuV 65.91 55.91 64.99 54.99 52.57 62.57 60.94 50.94 47.32	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36 30.50 14.70 26.80	LISN Factor dB 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.1	Cable Loss dB 0.22 0.25 0.25 0.26 0.26 0.26 0.21 0.21 0.10	Remark OP Average OP Average OP Average OP Average Average	10		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630 6 0.2267630 7 0.2758730 8 0.2758730 9 0.4264950 10 0.4264950	dBuV 48.97 30.54 45.26 27.61 19.50 36.73 30.82 15.02 27.02 33.86	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84 -33.12 -35.92 -20.30 -23.46	Limit Line dBuV 65.91 55.91 64.99 52.57 62.57 60.54 50.94 47.32 57.32	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36 30.50 14.70 26.80 33.64	LISN Factor dB 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.1	Cable Loss dB 0.22 0.25 0.25 0.26 0.26 0.21 0.21 0.10 0.10	Remark OP Average OP Average OP Average Average Average OP	10		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630 6 0.2267630 7 0.2758730 8 0.2758730 9 0.4264950 10 0.4264950 11 @ 13.560	dBuV 48.97 30.54 45.26 27.61 19.50 36.73 30.82 15.02 27.02 33.86 43.59	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84 -30.12 -35.92 -20.30 -23.46 -16.41	Limit Line dBuV 65.91 55.91 64.99 52.57 62.57 62.57 60.94 47.32 57.32 60.00	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36 30.50 14.70 26.80 33.64 43.07	LISN Factor dB 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.1	Cable Loss dB 0.22 0.25 0.25 0.26 0.26 0.21 0.21 0.10 0.10 0.20	Remark OP Average OP Average Average OP Average Average OP OP OP OP OP OP OP OP	10		20 3
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630 6 0.2267630 7 0.2758730 8 0.2758730 9 0.4264950 10 0.4264950 11 @ 13.560	dBuV 48.97 30.54 45.26 27.61 19.50 36.73 30.82 15.02 27.02 33.86 43.59	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84 -33.12 -35.92 -20.30 -23.46	Limit Line dBuV 65.91 55.91 64.99 52.57 62.57 62.57 60.94 47.32 57.32 60.00	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36 30.50 14.70 26.80 33.64 43.07	LISN Factor dB 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.1	Cable Loss dB 0.22 0.25 0.25 0.26 0.26 0.21 0.21 0.10 0.10 0.20	Remark OP Average OP Average OP Average Average Average OP]		20 5
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630 6 0.2267630 7 0.2758730 8 0.2758730 9 0.4264950 10 0.4264950 11 @ 13.560	dBuV 48.97 30.54 45.26 27.61 19.50 36.73 30.82 15.02 27.02 33.86 43.59	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84 -30.12 -35.92 -20.30 -23.46 -16.41	Limit Line dBuV 65.91 55.91 64.99 52.57 62.57 62.57 60.94 47.32 57.32 60.00	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36 30.50 14.70 26.80 33.64 43.07	LISN Factor dB 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.1	Cable Loss dB 0.22 0.25 0.25 0.26 0.26 0.21 0.21 0.10 0.10 0.20	Remark OP Average OP Average Average OP Average Average OP OP OP OP OP OP OP OP]		20 5
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630 6 0.2267630 7 0.2758730 8 0.2758730 9 0.4264950 10 0.4264950 11 @ 13.560 12 @ 13.560	dBuV 48.97 30.54 45.26 27.61 19.50 36.73 30.82 15.02 27.02 33.86 43.59 43.82	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84 -30.12 -35.92 -20.30 -23.46 -16.41 -6.18	Limit Line dBuV 65.91 55.91 64.99 52.57 62.57 60.94 47.32 57.32 60.00 50.00	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36 30.50 14.70 26.80 33.64 43.30	LISN Factor dB 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.1	Cable Loss dB 0.22 0.25 0.25 0.26 0.26 0.21 0.21 0.10 0.10 0.20	Remark OP Average OP Average Average Average OP Average OP Average OP Average]		
MHz 1 @0.1515980 2 0.1515980 3 0.1694400 4 0.1694400 5 0.2267630 6 0.2267630 7 0.2758730 8 0.2758730 9 0.4264950 10 0.4264950 11 @ 13.560	dBuV 48.97 30.54 45.26 27.61 19.50 36.73 30.82 15.02 27.02 33.86 43.59 43.82	Over Limit dB -16.94 -25.37 -19.73 -27.38 -33.07 -25.84 -33.12 -35.92 -20.30 -23.46 -16.41 -6.18 ission la	Limit Line dBuV 65.91 55.91 64.99 52.57 60.94 47.32 57.32 60.00 50.00	Read Level dBuV 48.65 30.22 44.91 27.26 19.13 36.36 30.50 26.80 33.64 43.07 43.30	LISN Factor dB 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.1	Cable Loss dB 0.22 0.25 0.26 0.26 0.26 0.21 0.10 0.10 0.10 0.20 0.20	Remark QP Average Average Averag] elow the	applica	

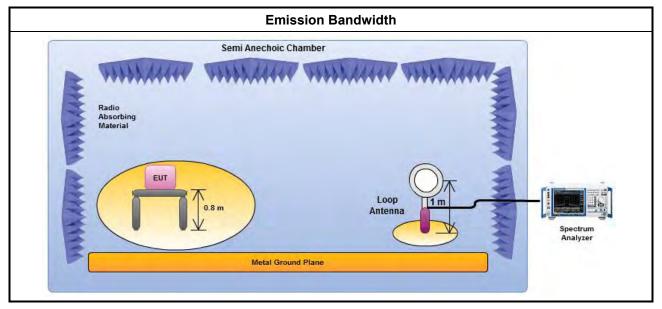
3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

20dB Bandwidth Limit

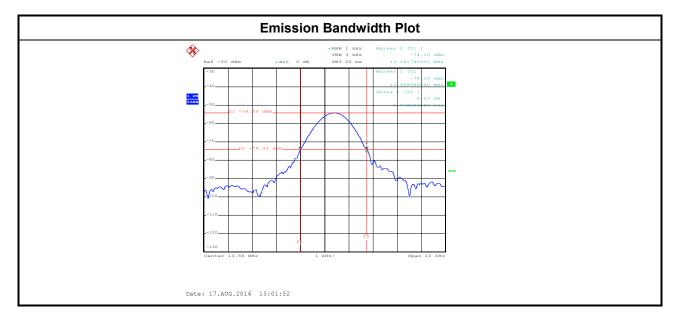
☑ Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 – 13.567 MHz).


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method
\boxtimes	For the emission bandwidth refer ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\square	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

	Occupied Channel Bandwidth Result								
Modulation Mode	Frequency (MHz)	20dB Bandwidth (kHz)	F _∟ at 20dB BW (MHz)	F _H at 20dB BW (MHz)	99% Bandwidth (kHz)				
NFC-Read/Write	13.56	2.76000	13.55898	13.56174	2.38000				
Lir	nit	N/A	N/A 13.553 13.567 N/A						
Res	sult		Com	plied					

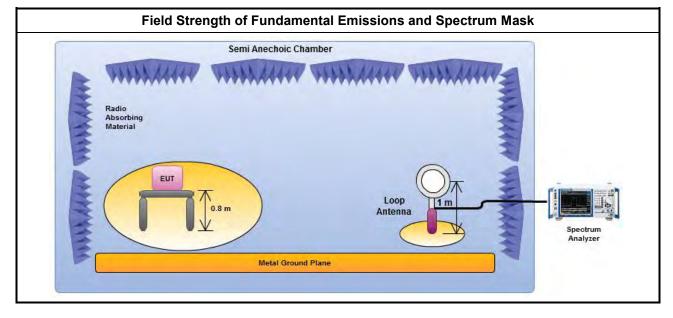
3.3 Field Strength of Fundamental Emissions and Spectrum Mask

3.3.1 Field Strength of Fundamental Emissions and Spectrum Mask Limit

	Field Strength of Fundamental Emissions For FCC										
Emissions	(uV/m)@30m	(dBuV/m)@30m	(dBuV/m)@10m	(dBuV/m)@3m	(dBuV/m)@1m						
fundamental	15848	84.0	103.1	124.0	143.1						
Quasi peak meas	urement of the fur	idamental.									

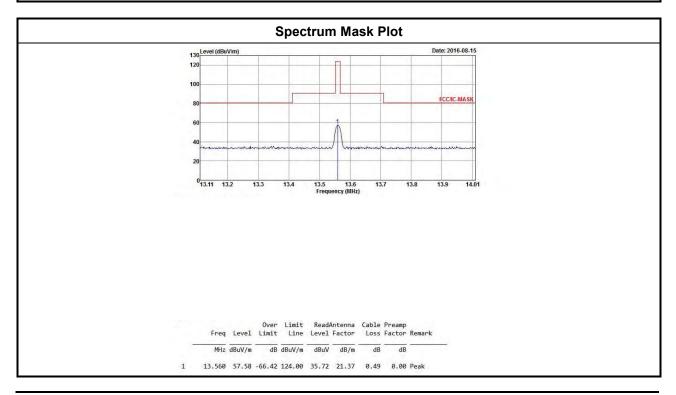
		Spectrum M	ask For FCC		
Freq. of Emission (MHz)	(uV/m)@30m	(dBuV/m)@30m	(dBuV/m)@10m	(dBuV/m)@3m	(dBuV/m)@1m
1.705~13.110	30	29.5	48.6	69.5	88.6
13.110~13.410	106	40.5	59.6	80.5	99.6
13.410~13.553	334	50.5	69.6	90.5	109.6
13.553~13.567	15848	84.0	103.1	124.0	143.1
13.567~13.710	334	50.5	69.6	90.5	109.6
13.710~14.010	106	40.5	59.6	80.5	99.6
14.010~30.000	30	29.5	48.6	69.5	88.6

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz and test distance is 3m.
	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.



3.3.4 Test Setup

3.3.5 Test Result of Field Strength of Fundamental Emissions and Spectrum Mask

	Field Strength of Fundamental Emissions Result									
Modulation Mode	Frequency (MHz)	Fundamental (dBuV/m)@3m	Polarization	Margin (dB)	Limit (dBuV/m)@3m					
NFC-Read/Write	F1	57.58	Н	66.42	124.00					
Res	sult		Com	plied	·					
Note 1: Measuren	nent worst emissi	ons of receive ante	nna polarization: H	H(Horizontal).						

3.4 Transmitter Radiated Unwanted Emissions

d Strength (uV/m) 2400/F(kHz)	Field Strength (dBuV/m) 48.5 - 13.8	Measure Distance (m) 300
· · ·	48.5 - 13.8	300
24000/5/1/1-)		
24000/F(kHz)	33.8 - 23	30
30	29	30
100	40	3
150	43.5	3
200	46	3
500	54	3
	100 150 200 500	100 40 150 43.5 200 46

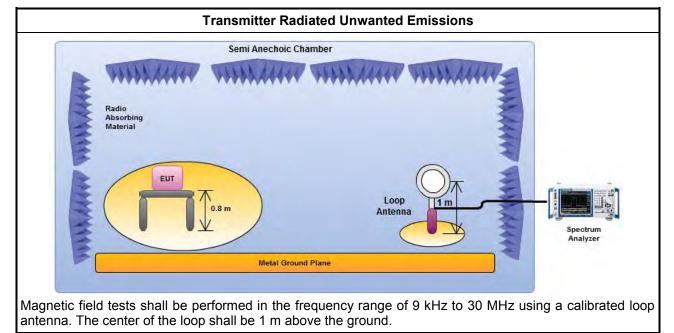
3.4.1 Transmitter Radiated Unwanted Emissions Limit

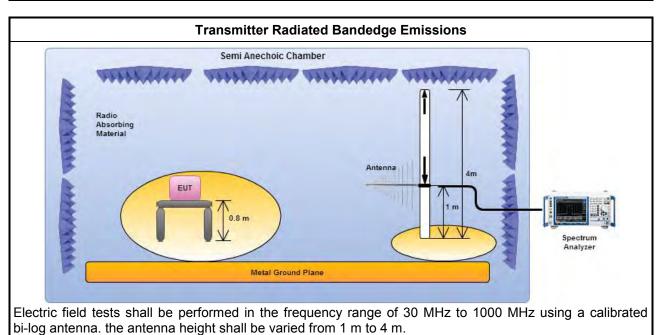
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

3.4.2 Measuring Instruments

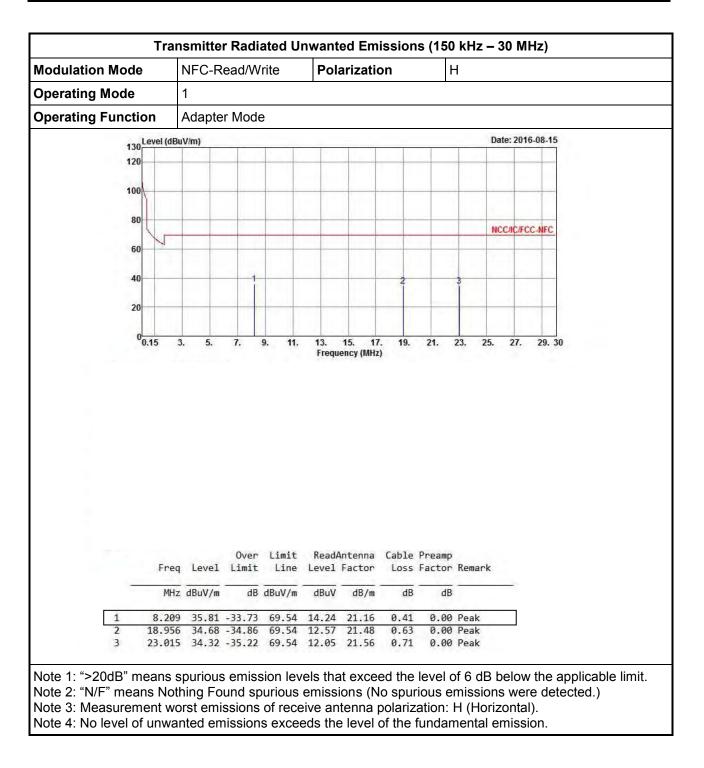
Refer a test equipment and calibration data table in this test report.




3.4.3 Test Procedures

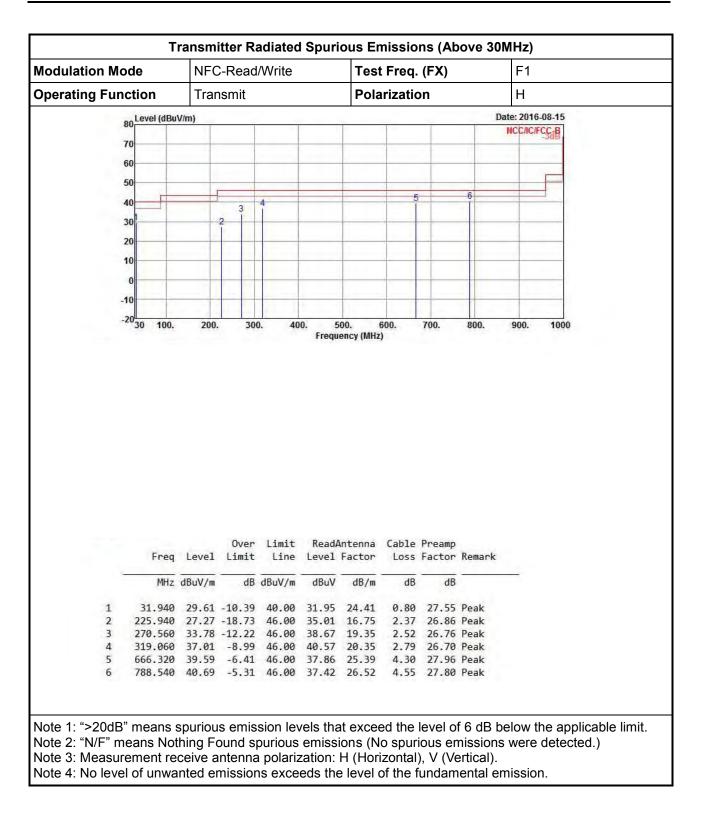
	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1 GHz and test distance is 3m.
\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz and test distance is 3m.
\boxtimes	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.
\square	The any unwanted emissions level shall not exceed the fundamental emission level.
	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.4.4 Test Setup



Iodulation Mode		NFC-R	C-Read/Write Polarization H									
Operating Mode	,	1										
Operating Funct	ion /	Adapte	apter Mode									
13	OR Level (dBu	V/m)							I	Date: 2016	-08-15	
12												
				1.1.1				_			NFC	
10	0											
8	0						-					
6	0			4		_	2	-				
4	0					_	Ī	3		-		
										1.		
2	0											
	00.009	0.03	0.	05	0.07 Frequ	0. Iency (MHz	09)	0.11	C	0.13	0.15	
	00009	0.03	0.	05				0.11	C	1.13	0.15	
		0.03 Level	Over	Limit	Frequ) Cable	Preamp		1.13	0.15	
	Freq		Over Limit	Limit	Frequ	Antenna Factor) Cable	Preamp	Remark		0.15	
1	Freq	Level dBuV/m	Over Limit dB	Limit Line dBuV/m	Read/ Level dBuV	Antenna Factor) Cable Loss dB	Preamp Factor dB	Remark		0.15	
	Freq MHz 0.059 0.092	Level dBuV/m 45.80 46.02	Over Limit dB -66.44 -62.35	Limit Line dBuV/m	Read/ Level dBuV 24.65 24.76	Antenna Factor dB/m 21.00 21.10) Cable Loss dB	Preamp Factor dB 0.00 0.00	Remark	1.13	0.15	

3.4.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)



	odulation Mode		NFC-Read/Write					Test Freq. (FX)				
Operating F	unc	tion	Trar	nsmit			Pola	rizatio	on		V	
	90	Level (dBu)	//m)							D	ate: 201	
											NCC/IC	FCCB
	70		1						-	1		
	60								-		_	
	50			-			-	-	-	-	-	
	40					_					6	
						4		5				
	30	2		3			1					
	20											
	10											
	0								_			
	-10							1				
			1			_					_	
		30 100.	200.	30	0. 40		00. ency (MHz	500.	700.	800.	900.	1000
		30 100.		Over	Limit	Frequ	ency (MHz	Cable	Preamp		900.	1000
		30 100. Freq	Level	Over Limit	Limit Line	Frequ ReadA Leve1	Antenna Factor	Cable	Preamp Factor		900.	1000
		30 100. Freq MHz	Level dBuV/m	Over Limit dB	Limit Line dBuV/m	Frequ ReadA Leve1 dBuV	Antenna Factor dB/m	Cable Loss dB	Preamp Factor dB	Remark	900.	1000
	-20 	30 100. 30 Freq MHz 39.700	Level dBuV/m 34.85	Over Limit dB -5.15	Limit Line dBuV/m 40.00	ReadA Level dBuV 41.79	Antenna Factor dB/m 19.69	Cable Loss dB 0.90	Preamp Factor dB 27.53	Remark 	900.	1000
	-20 	30 100. 30 Freq MHz 39.700 66.860	Level dBuV/m <u>34.85</u> 24.19	Over Limit 	Limit Line dBuV/m 40.00 40.00	ReadA Level dBuV 41.79 37.88	Antenna Factor dB/m 19.69 12.56	Cable Loss dB 0.90 1.21	Preamp Factor dB 27.53 27.46	Remark Peak Peak	900.	1000
	-20	30 100. 30 Freq MHz 39.700	Level dBuV/m 34.85 24.19 27.27	Over Limit dB -5.15 -15.81 -18.73	Limit Line dBuV/m 40.00 40.00	ReadA Level dBuV 41.79 37.88 32.16	Antenna Factor dB/m 19.69 12.56 19.35	Cable Loss dB 0.90 1.21 2.52	Preamp Factor dB 27.53 27.46	Remark Peak Peak Peak	900.	1000
	-20	50 100. 30 100. Freq MHz 39.700 66.860 270.560	Level dBuV/m 34.85 24.19 27.27 32.86	Over Limit -5.15 -15.81 -18.73 -13.14	Limit Line dBuV/m 40.00 40.00 46.00	Read/ Level dBuV 41.79 37.88 32.16 33.47	Antenna Factor dB/m 19.69 12.56 19.35 23.49	Cable Loss dB 0.90 1.21 2.52 3.50	Preamp Factor dB 27.53 27.46 26.76 27.60	Remark Peak Peak Peak Peak	900.	1000

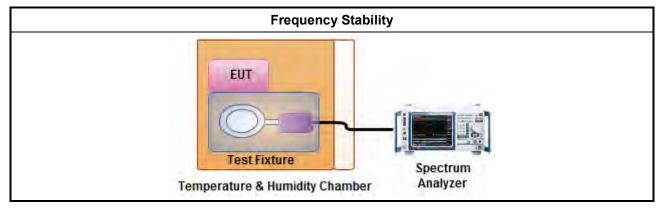
3.4.6 Transmitter Radiated Unwanted Emissions (Above 30MHz)

3.5 Frequency Stability

3.5.1 Frequency Stability Limit

Frequency Stability Limit

 \boxtimes Carrier frequency stability shall be maintained to ±0.01% (±100 ppm).


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
\square	Refer as ANSI C63.10, clause 6.8 for frequency stability tests
	Frequency stability with respect to ambient temperature
	Frequency stability when varying supply voltage
	For conducted measurement.
\square	For radiated measurement. The equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted power level.

3.5.4 Test Setup

3.5.5 Test Result of Frequency Stability

Frequency Stability Result										
Condition	Ch. Freq. (MHz)	Frequency Stability (ppm)								
		Test Frequency (MHz)				Frequency Stability (ppm)				
		0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min	
$T_{20^\circ C}$ Vmax	13.56	13.56038	13.56039	13.56039	13.56038	28.02	28.39	28.47	28.10	
$T_{20^\circ C}Vmin$	13.56	13.56038	13.56039	13.56039	13.56038	28.02	28.39	28.47	28.17	
$T_{50^\circ C}Vnom$	13.56	13.56030	13.56031	13.56031	13.56031	22.12	22.49	22.57	23.01	
$T_{40^\circ C}$ Vnom	13.56	13.56032	13.56032	13.56032	13.56032	23.60	23.67	23.45	23.38	
T _{30°C} Vnom	13.56	13.56036	13.56037	13.56036	13.56036	26.55	27.21	26.77	26.84	
$T_{20^\circ C}$ Vnom	13.56	13.56038	13.56038	13.56039	13.56039	28.02	28.32	28.39	28.69	
T _{10°C} Vnom	13.56	13.56040	13.56040	13.56041	13.56040	29.50	29.65	29.94	29.72	
T _{0°C} Vnom	13.56	13.56044	13.56045	13.56044	13.56043	32.45	32.89	32.45	32.01	
T _{-10°C} Vnom	13.56	13.56046	13.56045	13.56046	13.56046	33.92	33.48	33.92	33.78	
T _{-20°C} Vnom	13.56	13.56048	13.56048	13.56049	13.56049	35.40	35.40	35.84	36.14	
Limit (ppm)		100								
Res	ult	Complied								
Note 1: Measure at 85 % [Vmin] and 115 % [Vmax] of the nominal voltage [Vnom]. The nominal voltage refer test report clause 1.1.6 for EUT operational condition. Note 2: Measure maximum deviation frequency at operating frequency at startup and two, five, and ten min.										

4 Test Equipment and Calibration Data

Instrument for AC Conduction

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date
EMC Receiver	KEYSIGHT	N9038A	MY54130031	20 Hz ~ 8.4 GHz	14/04/2016	13/04/2017
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9 kHz ~ 30 MHz	26/01/2016	25/01/2017
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9 kHz ~ 30 MHz	30/10/2015	29/10/2016
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	NCR	NCR

NCR: No Calibration Require.

Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date
Spectrum Analyzer	R&S	FSP 40	100305	9 kHz ~ 40 GHz	16/02/2016	15/02/2017
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20 ~ 100 ℃	25/04/2016	24/04/2017
DC Power Source	G.W.	GPS-3030DD	GEN865896	DC 0V ~ 30V	14/01/2016	13/01/2017

Instrument for Radiated Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz ~ 1GHz 3m	28/11/2015	27/11/2016
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	1 GHz ~ 18 GHz 3m	16/12/2015	15/12/2016
Amplifier	HP	8447D	2944A08033	10 kHz ~ 1.3 GHz	10/05//2016	09/05/2017
Spectrum	R&S	FSV40	101513	9 kHz ~ 40 GHz	16/02/2016	15/02/2017
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz ~ 1 GHz	18/09/2015	17/09/2016
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz~30 MHz	02/02/2015	01/02/2017