

FCC Part 15.247

TEST REPORT

For

AAEON Technology Inc.

5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien Dist, New Taipei City, 231, Taiwan, R.O.C.

Report Type	Original Report
FCC Identity:	FCC ID: OHBRICO3288
Brand Name	ALEON® an /SUS assoc. co.
Product Name	RISC Single Board Computer
Model Name	RICO-3288
Series Model Name:	RICO-3288-xxx-xxxx (x-Where x may be any combination of alphanumeric characters or "-" or blank.)
Report Number	RLK201110002-00C
Report Date	2021/07/12
Reviewed By	Zeus Chen Zaus Chan

Prepared By:

Bay Area Compliance Laboratories Corp.(Linkou Laboratory)

No. 6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.)

Tel: +886 (3)3961072; Fax: +886 (3) 3961027

www.bacl.com.tw

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

Revision History

Revision	Report Number	Issue Date	Description
1.0	RLK201110002-00C	2021/07/12	Original Report

Page 2 of 39

TABLE OF CONTENTS

1	GEN	NERAL INFORMATION	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	OPERATION CONDITION OF EUT	5
	1.3	OBJECTIVE AND TEST METHODOLOGY	6
	1.4	Measurement Uncertainty	
	1.5	ENVIRONMENTAL CONDITIONS AND TEST DATE	
	1.6	TEST FACILITY	6
2	SYS	TEM TEST CONFIGURATION	7
	2.1	DESCRIPTION OF TEST CONFIGURATION	7
	2.2	SUPPORT EQUIPMENT LIST AND DETAILS	7
	2.3	BLOCK DIAGRAM OF TEST SETUP	8
3	SUN	MMARY OF TEST RESULTS	9
4	FCC	§15.247(I), §1.1307, § 2.1091 – MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
	4.1	Applicable Standard	
	4.2	RF Exposure Evaluation Result	
5	FCC	§15.203 – ANTENNA REQUIREMENTS	11
_	5.1	APPLICABLE STANDARD	
	5.2	Antenna List and Details	
6	FCC	§15.207 - AC LINE CONDUCTED EMISSIONS	12
Ŭ	6.1	APPLICABLE STANDARD	
	6.2	EUT SETUP AND TEST PROCEDURE	
	6.3	TEST EQUIPMENT LIST AND DETAILS.	
	6.4	TEST DATA AND TEST PLOT	
7	FCC	§15.209, §15.205, §15.247(D) – SPURIOUS EMISSIONS	14
	7.1	APPLICABLE STANDARD	
	7.2	EUT SETUP AND TEST PROCEDURE	
	7.3	TEST EQUIPMENT LIST AND DETAILS	17
	7.4	RADIATED EMISSION TEST PLOT AND DATA	18
8	FCC	§15.247(A)(1) – 20 DB EMISSION BANDWIDTH	25
	8.1	APPLICABLE STANDARD	
	8.2	TEST PROCEDURE	
	8.3	TEST EQUIPMENT LIST AND DETAILS	
	8.4	TEST RESULTS	26
9	FCC	§15.247(A)(1) – CHANNEL SEPARATION TEST	28
	9.1	Applicable Standard	28
	9.2	TEST PROCEDURE	_
	9.3	TEST EQUIPMENT LIST AND DETAILS	28
	9.4	TEST RESULTS	29
10	FCC	§15.247(A)(1)(III) – TIME OF OCCUPANCY (DWELL TIME)	31
	10.1	Applicable Standard	31
	10.2	TEST PROCEDURE	_
	10.3	TEST EQUIPMENT LIST AND DETAILS	
	10.4	TEST RESULTS	
11	. FCC	§15.247(A)(1)(III) –QUANTITY OF HOPPING CHANNEL TEST	
	11.1	Applicable Standard	
	11.2	TEST PROCEDURE	
	11.3	TEST EQUIPMENT LIST AND DETAILS	
	11.4	TEST RESULTS	
12		§15.247(B)(1) – MAXIMUM OUTPUT POWER	
	12.1	Applicable Standard	35

Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Report No.: RLK201110002-00C 12.2 TEST PROCEDURE 35 12.3 TEST EQUIPMENT LIST AND DETAILS 35 12.4 TEST RESULTS 35 13 FCC §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE 36 13.1 APPLICABLE STANDARD 36 13.2 TEST PROCEDURE 36 13.3 TEST EQUIPMENT LIST AND DETAILS 36

13.4

1 General Information

1.1 Product Description for Equipment under Test (EUT)

· · · · · · · · · · · · · · · · · · ·	· ·
Application	AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien Dist, New Taipei City, 231, Taiwan, R.O.C.
Manufacturer	AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien Dist, New Taipei City, 231, Taiwan, R.O.C.
Brand Name	AFON® an PISUS assoc. co.
Product (Equipment)	RISC Single Board Computer
Model Name	RICO-3288
Serial Model	RICO-3288-xxx-xxxx (x-Where x may be any combination of alphanumeric characters or "-" or blank.)
Model Discrepancy	Marketing purpose
Frequency Range	2402 - 2480 MHz
Number of Channels	79 Channels
Output Power	BR-1Mbps: 5.87 dBm (0.00390 W) EDR-2Mbps: 3.15 dBm (0.0021 W) EDR-3Mbps: 3.38 dBm (0.0022 W)
Modulation Type	BR-1Mbps: GFSK EDR-2Mbps: $\pi/4$ -DQPSK EDR-3Mbps: 8DPSK
Related Submittal(s)/Grant(s)	FCC Part 15.247 DTS with FCC ID: OHBRICO3288
Received Date	Mar. 11, 2021
Date of Test	Mar. 16, 2021 - May 14, 2021

Note: All measurement and test data in this report was gathered from production sample serial number: 201110002. Assigned by Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

1.2 Operation Condition of EUT

Power Operation (Voltage Range)	AC 120V/60Hz Adapter
	☐ By Power Cord ☐ DC Type ☐ DC Power Supply
	☐ Battery ☐ External from USB Cable ☐ External DC Adapter (Not For Sale)

Page 5 of 39

1.3 Objective and Test Methodology

The Objective of this Test Report was to document the compliance of the AAEON Technology Inc. Appliance (Model(s): RICO-3288, RICO-3288-xxx-xxxx (x-Where x may be any combination of alphanumeric characters or "-" or blank.)) to the requirements of the following Standards:

Report No.: RLK201110002-00C

- Part 2, Subpart J, Part 15, Subparts A and C, section 15.247 of the Federal Communication Commission's rules.
- ANSI C63.10-2013 of t American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.4 Measurement Uncertainty

Parameter	Expanded Measurement uncertainty
RF output power	± 1.488 dB
Occupied Channel Bandwidth	± 453.927 Hz
RF Conducted Emission test	± 2.77 dB
AC Power Line Conducted Emission	± 2.66 dB
Radiated Below 1G	± 3.78 dB
Radiated Above 1G	± 4.29 dB

The test results with statement of conformity, the decision rules are based on the specifications and standards. The test results will not take the measurement uncertainty into account.

1.5 Environmental Conditions and Test Date

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	Test Engineer
Conduction (Con-01)	Mar. 16, 2021	23.4	54	Brian Chang
Radiated (966A)	Apr. 09, 2021 – May 14, 2021	17.1~19.7	60~64	Leo Cheng
Conducted (TH-02)	Mar. 18, 2021	22.7	59	Brian Chang

1.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Linkou Laboratory) to collect test data is located on

No.6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.).

Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3546) by Mutual Recognition Agreement (MRA). The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database. The FCC Registration No.: 0027578244. Designation No.: TW3546. The Test Firm Registration No.: 181430. For ISED#: 25102 and CAB identifier is TW3546.

Page 6 of 39

2 System Test Configuration

2.1 Description of Test Configuration

The system was configured for testing in testing mode which was provided by manufacturer.

No special accessory, No modification was made to the EUT and No special equipment used during test.

For BT (BR/EDR), there are totally 79 channels.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441
1	2403		
2	2404		
3	2405	76	2478
		77	2479
38	2440	78	2480

Report No.: RLK201110002-00C

For BR/EDR: Channel 0, 39 and 78 were tested.

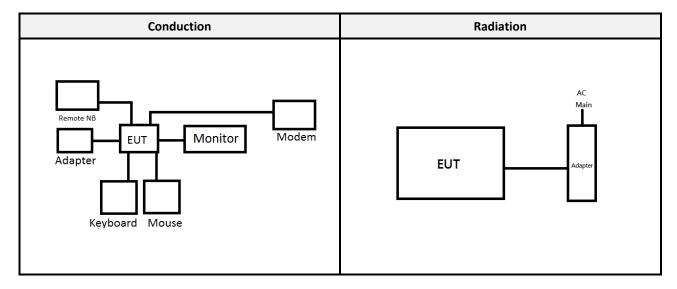
The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the peak power across all data rates bandwidths, and modulations.

Radiated below 1G were tested worst output power.

Worst Case of Power Setting				
EUT Exercise Software		Ampak RFTestTool		
Configuration	N _{TX}	Low CH Mid CH High CH		
BR-1Mbps mode	1	Default	Default	Default
EDR-2Mbps mode	1	Default	Default	Default
EDR-3Mbps mode	1	Default	Default	Default

2.2 Support Equipment List and Details

Support Equipment


No.	Description	Manufacturer	Model Number
Α	Notebook	DELL	E6410
В	Monitor	DELL	U2412M
С	Keyboard	ASUS	AW211
D	Mouse	ASUS	MOBTU0A
Е	Modem	iEager	TY5600

Page 7 of 39

External Cable List

Item	Description	Shielded Type	Ferrite Core	Length (M)
1	HDMI Cable	Shielded	NA	1.8
2	RS-232 Cable	Non-Shielded	NA	1.8
3	Mouse USB Cable	Non-Shielded	NA	1.5
4	Keyboard USB Cable	Non-Shielded	NA	1.5
5	LAN Cable	Non-Shielded	NA	10

2.3 Block Diagram of Test Setup

Page 8 of 39

3 Summary of Test Results

FCC Rules	Description of Test	Result
§15.247(i), §1.1310, §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance

Page 9 of 39

4.1 Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)						
0.3-1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary: Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with: $\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$

4.2 RF Exposure Evaluation Result

MPE Evaluation:

Mada	Antenna dam Target i ower		Evaluation Distance	Power Density	MPE Limit			
Mode	Range (MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm²)	(mW/cm²)
Wi-Fi 2.4G	2412-2462	2.38	1.7298	23.00	199.5262	20	0.0687	1.0
BLE-1Mbps	2402-2480	2.38	1.7298	6.00	3.9811	20	0.0014	1.0
BR/EDR	2402-2480	2.38	1.7298	6.00	3.9811	20	0.0014	1.0

Note: Wi-Fi and BT can't simultaneously.

Result: MPE evaluation of transmission meet the requirement of standard.

Page 10 of 39

5 FCC §15.203 – Antenna Requirements

5.1 Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi

5.2 Antenna List and Details

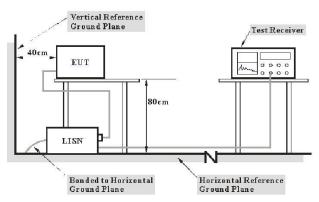
Brand	Model	Antenna Type	Antenna Gain	Result
ARISTOTLE	RFA-02-C2M2-U- M70	Dipole Antenna	2.38 dBi	Compliance

The EUT has an External antennas arrangement and fulfill the requirement of this section.

Page 11 of 39

6 FCC §15.207 - AC Line Conducted Emissions

6.1 Applicable Standard


According to FCC §15.207,

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Francisco (BALL-)	Conducted Limit (dBuV)		
Frequency (MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56 Note 1	56 to 46 Note 2	
0.5-5	56	46	
5-30	60	50	

Note 1: Decreases with the logarithm of the frequency. Note 2: A linear average detector is required

6.2 EUT Setup and Test Procedure

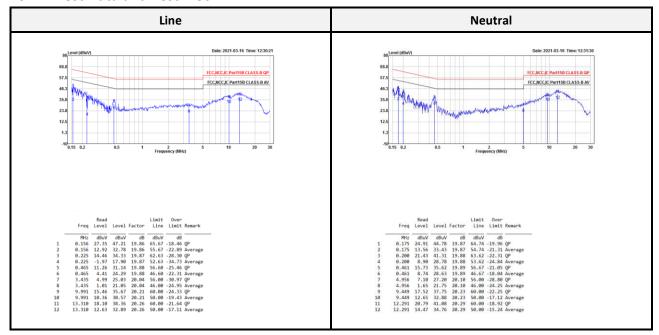
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits. The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	Receiver RBW
150 kHz - 30 MHz	9 kHz

Page 12 of 39


During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

6.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.	
AC Line Conduction Room (CON-01)						
Two-Line V-Network	Rohde & Schwarz	ENV216	100010	2020/09/14	2021/09/13	
Pulse Limiter	SCHWARZBECK	VSTD 9561-F	00432	2020/09/11	2021/09/10	
ESR EMI Test Receiver	Rohde & Schwarz	ESR3	102430	2020/05/07	2021/05/06	
RF Cable	EMCI	EMCCFD300-BM- BM-8000	180526	2020/08/18	2021/08/17	
Software	Audix	e3 v9	E3LK-03	N.C.R	N.C.R	

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

6.4 Test Data and Test Plot

Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

7 FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

7.1 Applicable Standard

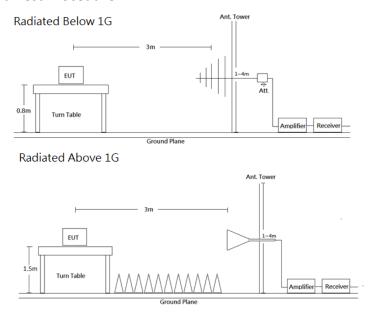
As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	13.36-13.41	399.9-410	4.5-5.15
0.495-0.505	16.42-16.423	608-614	5.35-5.46
2.1735-2.1905	16.69475-16.69525	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6

Page 14 of 39

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

Page 15 of 39

7.2 EUT Setup and Test Procedure

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

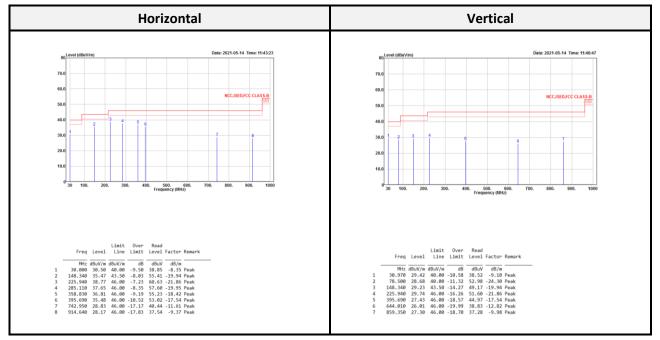
Frequency Range	RBW	VBW	Duty cycle	Measurement Detector method
30-1000 MHz	120 kHz	/	-	QP
Above 1 GHz	1 MHz	3 MHz	-	PK
	1 MHz	10 Hz	>98%	PK
	1 MHz	1/T	<98%	PK

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

Page 16 of 39

7.3 Test Equipment List and Details

Radiation 3M Room (966B)							
Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Bilog Antenna/6 dB Attenuator	SUNOL SCIENCES & EMEC /EMCI	JB3/N-6-06	A111513/AT- N0668	2021/03/30	2022/03/29		
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101457	2020/09/23	2021/09/22		
Horn Antenna	ETS-Lindgren	3115	00109141	2020/07/15	2021/07/14		
Horn Antenna	ETS-Lindgren	3160-09	00123852	2020/07/07	2021/07/06		
Preamplifier	A.H. Systems	PAM-1840VH	174	2021/03/22	2022/03/21		
Preamplifier	A.H. Systems	PAM-0118	478	2020/05/05	2021/05/04		
Preamplifier	A.H. Systems	PAM-0118	478	2021/05/12	2022/05/11		
Microflex Cable (1m)	EMCI	EMC102-KM-KM- 1000	180524	2020/08/06	2021/08/05		
Microflex Cable (2m)	EMCI	EMC106-SM-SM- 2000	180516	2020/08/06	2021/08/05		
Microflex Cable (8m)	UTIFLEX	UFA210A-1-3149- 300300	MFR 64639 232490-002	2020/08/06	2021/08/05		
Turn Table	Chaintek	T-200-S-1	003501	N.C.R	N.C.R		
Antenna Tower	Chaintek	MBD-400-1	003504	N.C.R	N.C.R		
Controller	Chaintek	3000-1	003507	N.C.R	N.C.R		
Software	Audix	e3 v9	E3LK-01	N.C.R	N.C.R		
		Conducted F	Room(TH-02)				
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2020/05/07	2021/05/06		
Cable	MTJ	MT40S	620620-MT40S- 100	Each Use	-		


^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center,
Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be
traceable to the International System of Units (SI).

Page 17 of 39

Report No.: RLK201110002-00C

7.4 Radiated Emission Test Plot and Data

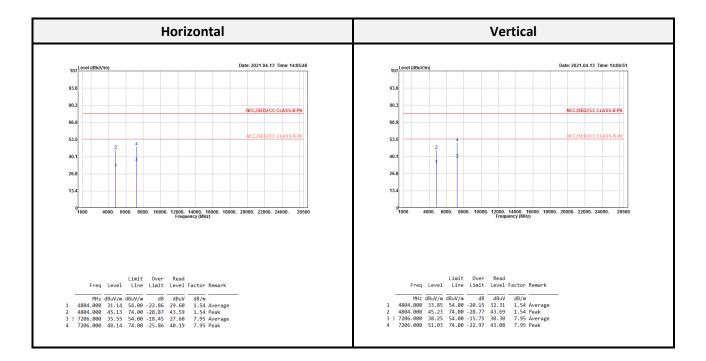
Below 1G (30 MHz-1 GHz) (Pre-scan with three orthogonal axis, and worse case as X axis, Ant is Z axis.)

Note:

Level (Result) = Reading + Factor.

Over Limit (Margin) = Level (Result – Limit Line.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.


Spurious emissions more than 20 dB below the limit were not reported.

Above 1G (1 GHz-26.5 GHz)

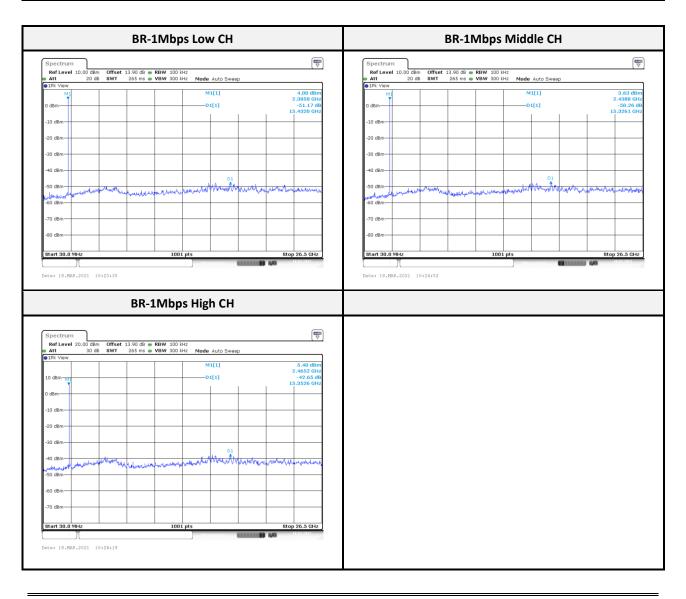
BR-1Mbps Low CH Horizontal	BR-1Mbps Low CH Vertical
Limit Over Read	Limit Over Read
Freq Level Line Limit Level Factor Remark	Freq Level Line Limit Level Factor Remark
MHz dBuV/m dBuV/m dB dBuV dB/m	MHz dBuV/m dBuV/m dB dBuV dB/m
2369.900 38.66 54.00 -15.34 44.16 -5.50 Average	2375.900 38.68 54.00 -15.32 44.16 -5.48 Average
2369.900 53.14 74.00 -20.86 58.64 -5.50 Peak	2375.900 53.99 74.00 -20.01 59.47 -5.48 Peak
2402.200 77.95 83.38 -5.43 Average	2402.200 90.03 95.46 -5.43 Average
2402.200 89.02 94.45 -5.43 Peak	2402.200 104.08 109.51 -5.43 Peak
4804.000 31.14 54.00 -22.86 29.60 1.54 Average	4804.000 33.85 54.00 -20.15 32.31 1.54 Average
4804.000 45.13 74.00 -28.87 43.59 1.54 Peak 7206.000 35.55 54.00 -18.45 27.60 7.95 Average	4804.000 45.23 74.00 -28.77 43.69 1.54 Peak 7206.000 38.25 54.00 -15.75 30.30 7.95 Average
7206.000 35.55 54.00 -18.45 27.60 7.95 Average 7206.000 48.14 74.00 -25.86 40.19 7.95 Peak	7206.000 50.25 54.00 -15.75 50.30 7.95 Average
7200.000 40.14 74.00 -23.00 40.19 7.93 Feak	7200.000 31.03 74.00 -22.97 43.00 7.93 Feak
BR-1Mbps Middle CH Horizontal	BR-1Mbps Middle CH Vertical
233 2333 233 233 233 233 233	
Limit Over Read	Limit Over Read
Freq Level Line Limit Level Factor Remark	Freq Level Line Limit Level Factor Remark
MIL 40.07/m 40.07/m 40 40.07 40.07	·
MHz dBuV/m dBuV/m dB dBuV dB/m 2377.276 39.83 54.00 -14.17 45.31 -5.48 Average	MHz dBuV/m dBuV/m dB dBuV dB/m
2377.276 52.87 74.00 -21.13 58.35 -5.48 Peak	2355.254 38.67 54.00 -15.33 44.21 -5.54 Average 2355.254 53.06 74.00 -20.94 58.60 -5.54 Peak
2440.922 77.65 83.03 -5.38 Average	2441.164 90.20 95.58 -5.38 Average
2440.922 88.57 93.95 -5.38 Peak	2441.164 104.33 109.71 -5.38 Peak
2504.568 39.20 54.00 -14.80 44.55 -5.35 Average	2516.668 39.25 54.00 -14.75 44.55 -5.30 Average
2504.568 53.67 74.00 -20.33 59.02 -5.35 Peak	2516.668 53.65 74.00 -20.35 58.95 -5.30 Peak
4882.000 31.16 54.00 -22.84 29.51 1.65 Average	4882.000 32.03 54.00 -21.97 30.38 1.65 Average
4882.000 42.73 74.00 -31.27 41.08 1.65 Peak	4882.000 44.84 74.00 -29.16 43.19 1.65 Peak
7323.000 34.93 54.00 -19.07 27.56 7.37 Average	7323.000 37.69 54.00 -16.31 30.32 7.37 Average
7323.000 48.10 74.00 -25.90 40.73 7.37 Peak	7323.000 49.04 74.00 -24.96 41.67 7.37 Peak
BR-1Mbps High CH Horizontal	BR-1Mbps High CH Vertical
Limit Over Read	Limit Over Read
Freq Level Line Limit Level Factor Remark	Freq Level Line Limit Level Factor Remark
MHz dBuV/m dBuV/m dB dBuV dB/m	MHz dBuV/m dBuV/m dB dBuV dB/m
2479.840 77.16 82.53 -5.37 Average	2480.168 90.24 95.61 -5.37 Average
2479.840 87.86 93.23 -5.37 Peak	2480.168 104.21 109.58 -5.37 Peak
2542.324 39.39 54.00 -14.61 44.60 -5.21 Average	2540.110 40.08 54.00 -13.92 45.29 -5.21 Average
2542.324 54.07 74.00 -19.93 59.28 -5.21 Peak	2540.110 54.50 74.00 -19.50 59.71 -5.21 Peak
4960.000 31.43 54.00 -22.57 29.66 1.77 Average	4960.000 32.56 54.00 -21.44 30.79 1.77 Average
4960.000 45.05 74.00 -28.95 43.28 1.77 Peak	4960.000 45.15 74.00 -28.85 43.38 1.77 Peak
7440.000 35.93 54.00 -18.07 28.27 7.66 Average 7440.000 49.13 74.00 -24.87 41.47 7.66 Peak	7440.000 36.75 54.00 -17.25 29.09 7.66 Average 7440.000 50.10 74.00 -23.90 42.44 7.66 Peak
/440.000 45.13 /4.00 -24.0/ 41.4/ /.00 Feak	/440.000 30.10 /4.00 -23.30 42.44 /.00 reak

Page 19 of 39

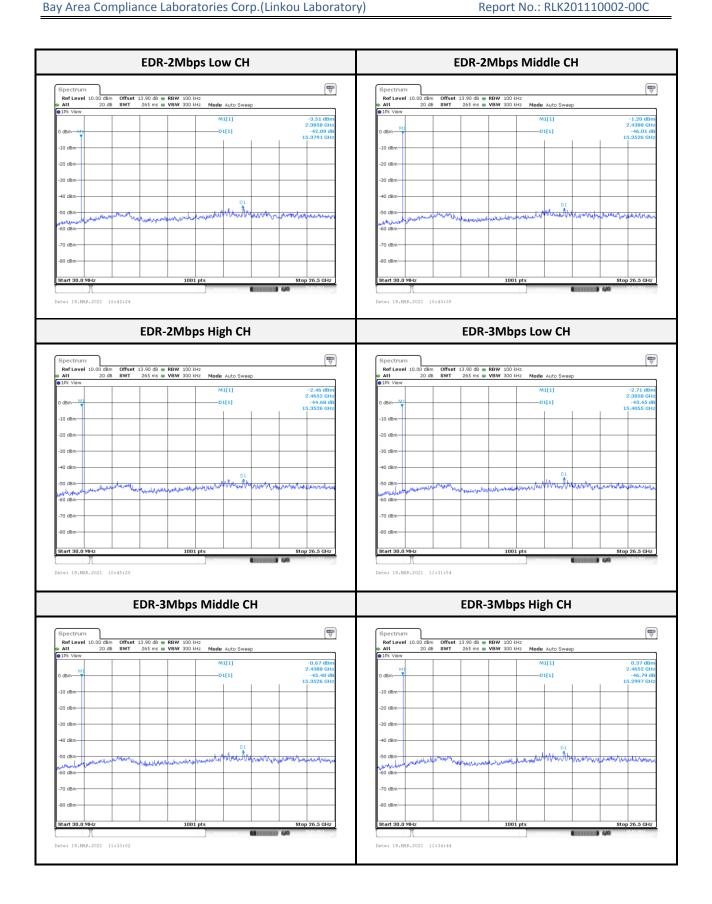
Above 1G (1 GHz-26.5 GHz): The worst mode BR-1Mbps Low CH.

Note:

Level (Result) = Reading + Factor.


Over Limit (Margin) = Level (Result – Limit Line.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.


Spurious emissions more than 20 dB below the limit were not reported.

Conducted Spurious Emissions:

Configuration	Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result
	Low	2402	51.17	≥ 20	Compliance
BR-1Mbps	Middle	2441	50.26	≥ 20	Compliance
	High	2480	42.65	≥ 20	Compliance
	Low	2402	42.09	≥ 20	Compliance
EDR-2Mbps	Middle	2441	46.01	≥ 20	Compliance
	High	2480	44.68	≥ 20	Compliance
EDR-3Mbps	Low	2402	43.45	≥ 20	Compliance
	Middle	2441	45.40	≥ 20	Compliance
	High	2480	46.79	≥ 20	Compliance

Page 23 of 39

8 FCC §15.247(a)(1) - 20 dB Emission Bandwidth

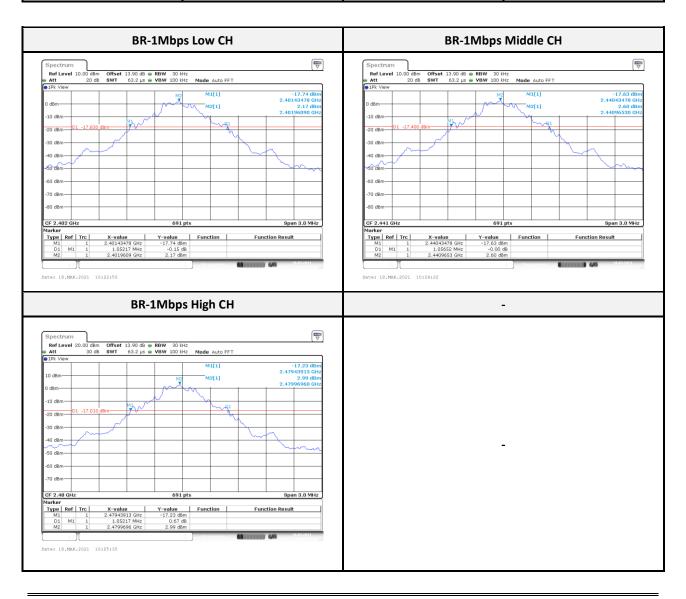
8.1 Applicable Standard

According to FCC §15.247(a) (1) the maximum 20 dB bandwidth of the hopping channel shall be presented.

8.2 Test Procedure

- (1) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- (2) Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- (3) Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- (4) Repeat above procedures until all frequencies measured were complete.

8.3 Test Equipment List and Details


Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2020/05/07	2021/05/06		
Cable	MTJ	MT40S	620620-MT40S- 100	Each Use	-		

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

Page 25 of 39

8.4 Test Results

Configuration	Channel	Frequency (MHz)	20 dB Bandwidth (MHz))
	Low	2402	1.05
BR-1Mbps	Middle	2441	1.06
	High	2480	1.05
	Low	2402	1.36
EDR-2Mbps	Middle	2441	1.36
	High	2480	1.36
	Low	2402	1.33
EDR-3Mbps	Middle	2441	1.33
	High	2480	1.33

Page 26 of 39

9 FCC §15.247(a)(1) - Channel Separation Test

9.1 Applicable Standard

According to FCC §15.247(a) (1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

9.2 Test Procedure

Span = wide enough to capture the peaks of two adjacent channels

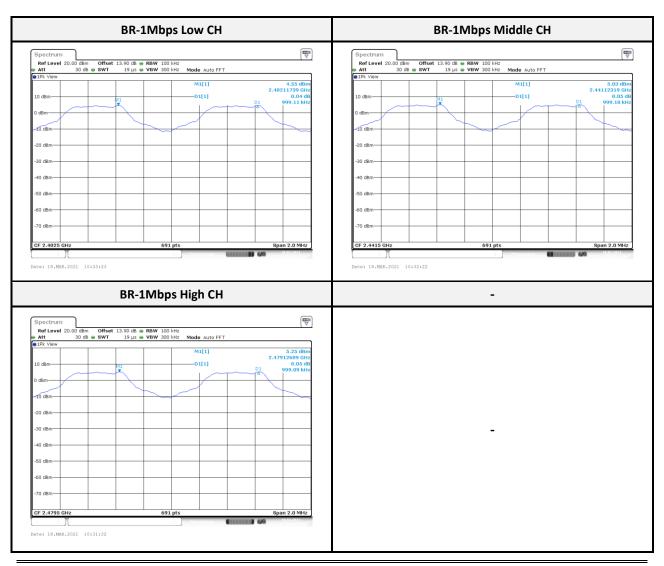
Resolution (or IF) Bandwidth (RBW) ≈ 30% of the channel spacing, adjust as necessary to best identify the center of

each individual channel. Video (or Average) Bandwidth (VBW) ≥RBW. Sweep = auto

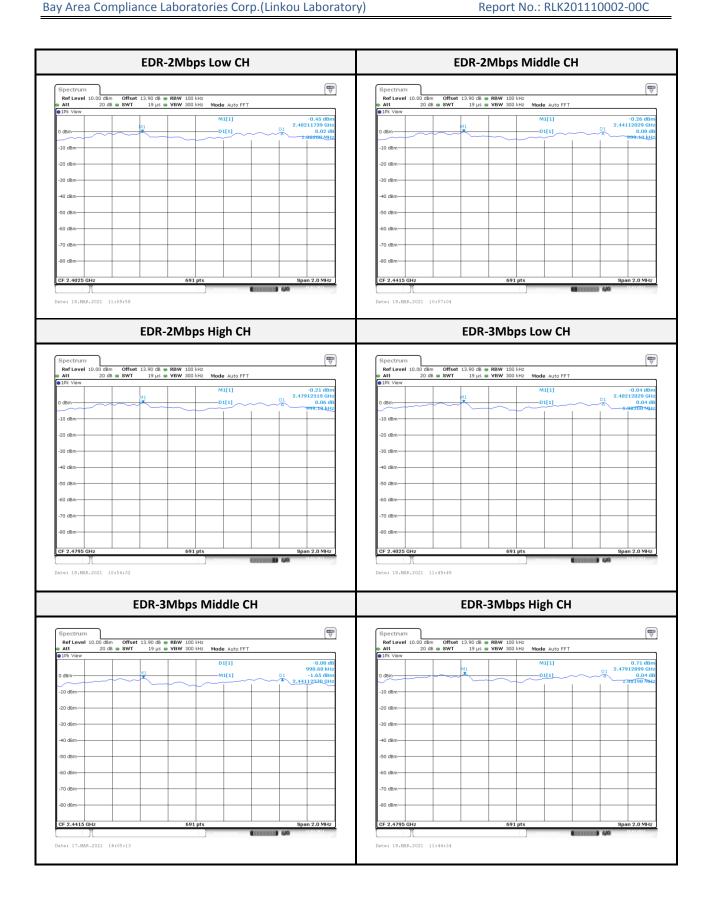
Detector function = peak Trace = max hold

9.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2020/05/07	2021/05/06		
Cable	MTJ	MT40S	620620-MT40S- 100	Each Use	-		


^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

Page 28 of 39


9.4 Test Results

Configuration	Channel	Frequency (MHz)	20 dBc BW (MHz)	Channel Separation (MHz)	Limit (MHz)
	Low	2402	1.05	1.00	0.701
BR-1Mbps	Middle	2441	1.06	1.00	0.704
	High	2480	1.05	1.00	0.701
	Low	2402	1.36	1.00	0.904
EDR-2Mbps	Middle	2441	1.36	1.00	0.904
	High	2480	1.36	1.00	0.904
	Low	2402	1.33	1.00	0.884
EDR-3Mbps	Middle	2441	1.33	1.00	0.884
	High	2480	1.33	1.00	0.884

^{*} Limit is > two-thirds of the 20 dB bandwidth

Page 29 of 39

10 FCC §15.247(a)(1)(iii) - Time of Occupancy (Dwell Time)

10.1 Applicable Standard

According to FCC §15.247(a)(1)(iii),

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel

RBW \leq channel spacing and where possible RBW should be set >> 1/T, where T is the expected dwell time per channel. Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements.

Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time)

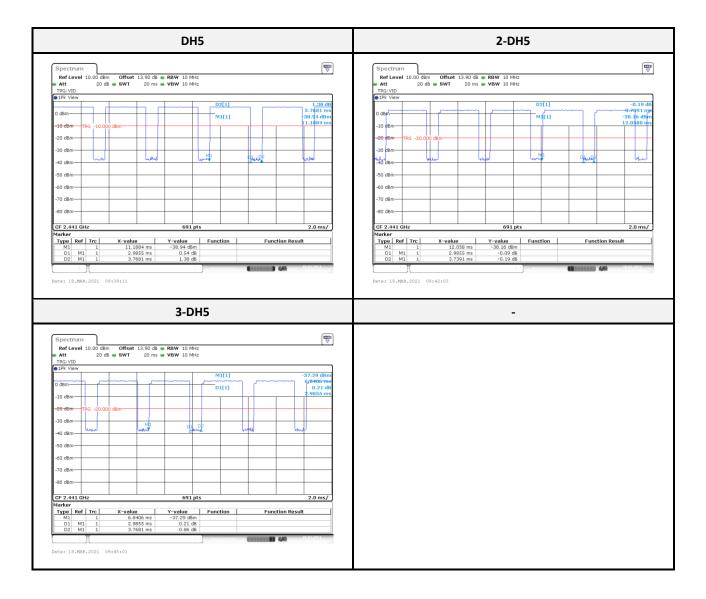
The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

10.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2020/05/07	2021/05/06		
Cable	MTJ	MT40S	620620-MT40S- 100	Each Use	-		

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

Page 31 of 39


10.4 Test Results

Modulation Mode	Pulse Time per Hop (ms)	Number of Pulse in [0.4 x N sec] (s)	Dwell Time in [0.4 x N sec] (s)	Dwell Time Limits (s)
BR-1Mbps	2.99	106.7	0.318	0.4
EDR-2Mbps	2.99	106.7	0.318	0.4
EDR-3Mbps	2.99	106.7	0.318	0.4

Note1: Number of Pulse in $[0.4 \times N \text{ sec}] = 1600/79/6*(0.4*79)$

Note2: Dwell Time in [0.4 x N sec] = (Pulse Time * Number of Pulse in [0.4 x N sec])/1000

Note3: Bluetooth ACL packets can be 1, 3, or 5 time slots. The DH1 packet can cover a single time slot. The DH3 packet can cover up to 3 time slots. The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

Page 32 of 39

11 FCC §15.247(a)(1)(iii) -Quantity of hopping channel Test

11.1 Applicable Standard

According to FCC §15.247(a)(1)(iii),

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

11.2 Test Procedure

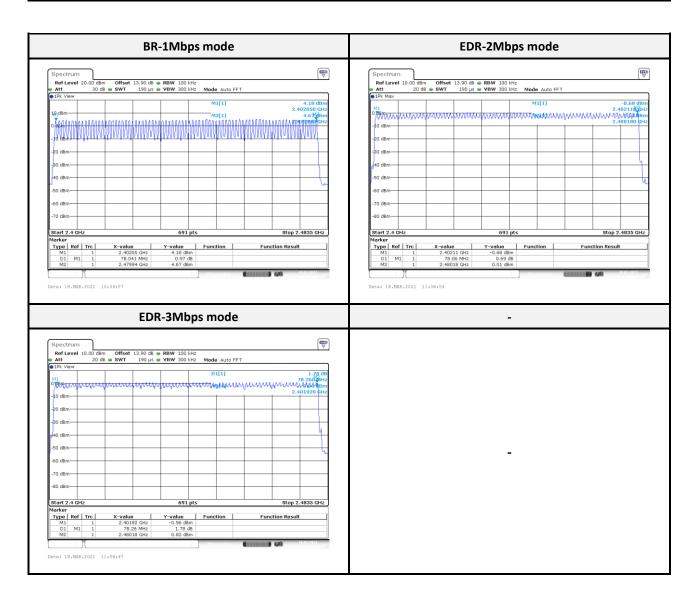
Span = the frequency band of operation.

RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller VBW ≥ RBW.

Sweep = auto. Detector function = peak Trace = max hold.

11.3 Test Equipment List and Details

traceable to the International System of Units (SI).


Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2020/05/07	2021/05/06		
Cable	MTJ	MT40S	620620-MT40S- 100	Each Use	-		

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center,
Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be

Page 33 of 39

11.4 Test Results

Mode	Frequency Range (MHz)	Number of Hopping Channel	Limit (CH)	Result
BR-1Mbps	2402-2480	79	>15	Compliance
EDR-2Mbps	2402-2480	79	>15	Compliance
EDR-3Mbps	2402-2480	79	>15	Compliance

Page 34 of 39

12 FCC §15.247(b)(1) - Maximum Output Power

12.1 Applicable Standard

According to FCC §15.247(b) (1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

12.2 Test Procedure

Place the EUT on a bench and set it in transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to Power sensor.

12.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
USB Wideband Power Sensor	Agilent	U2021XA	MY56120026	2020/09/14	2021/09/13		
Cable	MTJ	MT40S	620620-MT40S- 100	Each Use	-		

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

12.4 Test Results

Configuration Channel		Frequency	Maximum Peak Output Power		Limit	Result
		(MHz)	(dBm)	(dBm)	(dBm)	
	Low	2402	5.07	0.0032	21	Compliance
BR-1Mbps	Middle	2441	5.55	0.0036	21	Compliance
	High	2480	5.87	0.0039	21	Compliance
	Low	2402	2.45	0.0018	21	Compliance
EDR-2Mbps	Middle	2441	2.97	0.0020	21	Compliance
	High	2480	3.15	0.0021	21	Compliance
	Low	2402	2.68	0.0019	21	Compliance
EDR-3Mbps	Middle	2441	3.22	0.0021	21	Compliance
	High	2480	3.38	0.0022	21	Compliance

Page 35 of 39

13 FCC §15.247(d) - 100 kHz Bandwidth of Frequency Band Edge

13.1 Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c)

13.2 Test Procedure

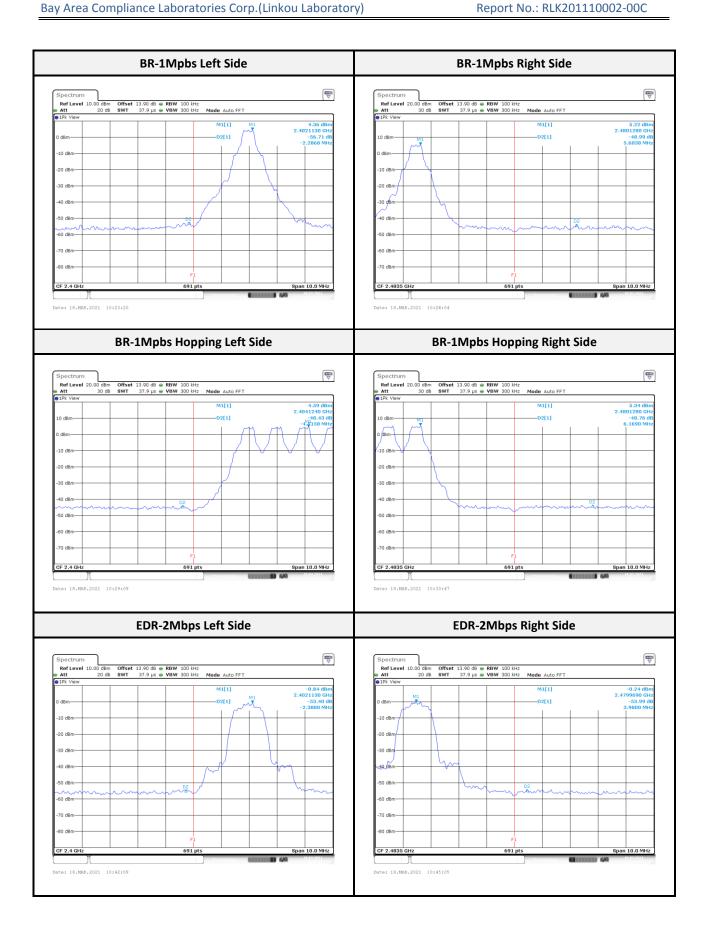
Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

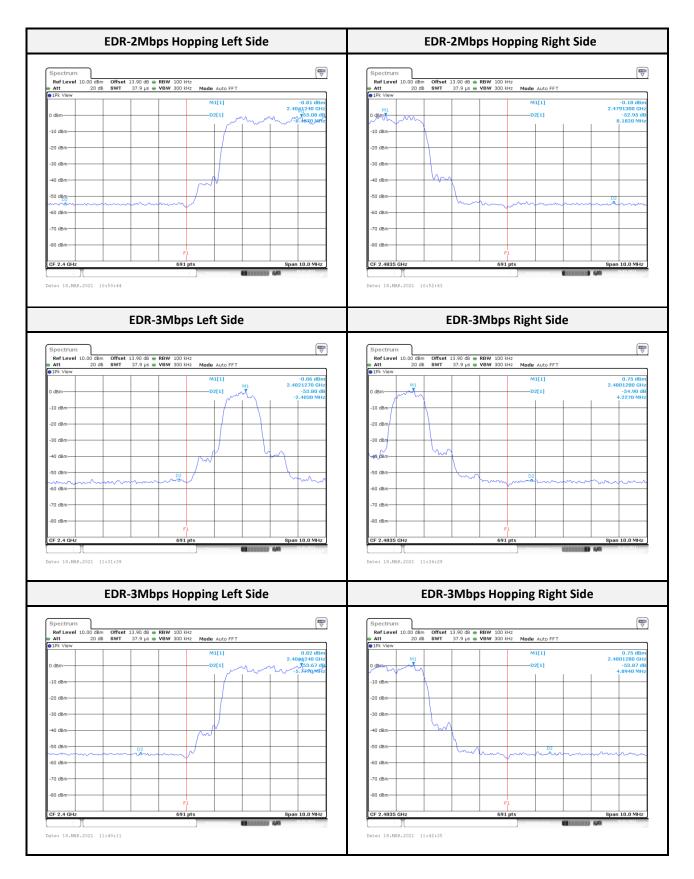
RBW = 100 kHz VBW = 300 kHz.

Sweep = coupled. Detector function = peak Trace = max hold.

13.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2020/05/07	2021/05/06		
Cable	MTJ	MT40S	620620-MT40S- 100	Each Use	-		


^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).


Page 36 of 39

13.4 Test Results

Configuration	Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result
DD 4144bas	Low	2402	56.71	≥ 20	Compliance
BR-1Mbps	High	2480	48.99	≥ 20	Compliance
BR-1Mbps	Low	2402	48.43	≥ 20	Compliance
Hopping	High	2480	48.76	≥ 20	Compliance
EDD 2M4bas	Low	2402	53.40	≥ 20	Compliance
EDR-2Mbps	High	2480	53.99	≥ 20	Compliance
EDR-2Mbps	Low	2402	53.08	≥ 20	Compliance
Hopping	High	2480	52.95	≥ 20	Compliance
5DD 2M4b	Low	2402	53.80	≥ 20	Compliance
EDR-3Mbps	High	2480	54.90	≥ 20	Compliance
EDR-3Mbps	Low	2402	53.67	≥ 20	Compliance
Hopping	High	2480	53.87	≥ 20	Compliance

Page 37 of 39

---- END OF REPORT ----