# APPLICATION FOR FCC CERTIFICATION LOW POWER TRANSMITTER

Applied Technology Solutions, Inc.

# Direct Sequence Spread Spectrum Transmitter

**MODEL: 1250 SERIES (25 mW)** 

FCC ID: OHA1250-044502PAT

February, 1999

| This report concerns (check one): Original Grant: X Equipment Type: Transmitter                            | Class II Change:                                 |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Deferred grant requested per 47 CFR 0.457 (d) (1) (ii)?  If yes, defer until:                              | Yes: No: X                                       |
| • /                                                                                                        | Date                                             |
|                                                                                                            |                                                  |
| Company name agrees to notify the Commission by: date of announcement of the product so that the grant can | (date) of the intended n be issued on that date. |
| · · · · · · · · · · · · · · · · · · ·                                                                      | ` ′                                              |

#### **REPORT PREPARED BY:**

EMI Technician: Administrative Writer:

Rhein Tech Laboratories, Inc.

Document Number: 990032

 $No\ part\ of\ this\ report\ may\ be\ reproduced\ without\ the\ full\ written\ approval\ of\ Rhein\ Tech\ Laboratories,\ Inc.$ 

# TABLE OF CONTENTS

| 1.0        | GENERAL INFORMATION                                    | 1                            |
|------------|--------------------------------------------------------|------------------------------|
| 1.1        | PRODUCT DESCRIPTION                                    | ERROR! BOOKMARK NOT DEFINED. |
| 1.2        | RELATED SUBMITTAL(S)/GRANT(S)                          |                              |
| 1.3        | TEST SYSTEM DETAILS                                    |                              |
| 1.4        | CONFIGURATION OF TESTED SYSTEM                         |                              |
| 1.5<br>1.6 | TEST METHODOLOGY TEST FACILITY                         |                              |
| 2.0        | PRODUCT LABELING                                       |                              |
| 2.0        |                                                        |                              |
| 3.0        | SYSTEM TEST CONFIGURATION                              | 5                            |
| 3.1        | JUSTIFICATION                                          |                              |
| 3.2        | EUT Exercise Software                                  |                              |
| 3.3        | SPECIAL ACCESSORIES                                    |                              |
| 3.4        | MODULATED BANDWIDTH                                    |                              |
| 3.5        | POWER OUTPUT                                           |                              |
| 3.6        | CONDUCTED SPURIOUS EMISSIONS                           |                              |
| 3.7        | RADIATED SPURIOUS EMISSIONS<br>POWER SPECTRAL DENSITY  |                              |
| 3.8<br>3.8 | PROCESSING GAIN                                        |                              |
|            | .8.1 TEST CONFIGURATION: PROCESSING GAIN               |                              |
| 3.9        | CONFORMANCE STATEMENT                                  |                              |
|            | EASUREMENT PLOTS                                       |                              |
| 5.0        | BLOCK DIAGRAM OF TRANSMITTER 1250 UNIT                 |                              |
| 6.0        | RADIATED MEASUREMENT PHOTOS                            | ERROR! BOOKMARK NOT DEFINED. |
| 7.0 CC     | ONDUCTED, FIELD STRENGTH CALCULATION, AND              | RADIATED TEST METHODOLOGY 10 |
| 7.1        | FIELD STRENGTH CALCULATION                             |                              |
| 7.2        | RADIATED MEASUREMENT                                   |                              |
| 8.0        | CONDUCTED EMISSION DATA                                | 12                           |
| 0.0        | D. D. L. D. L. GOGLOV, D. L. M.                        | 40                           |
| 9.0        | RADIATED EMISSION DATA                                 |                              |
|            | DEL: CHANNEL A M/N1252 WITH CASE M/N 1250-45 AND PATCH |                              |
| 10.0       | PHOTOS OF TESTED EUT                                   | ERROR! BOOKMARK NOT DEFINED. |
|            |                                                        | _                            |
|            | APPENDIX LISTING                                       | ÿ                            |
|            | NDIX A: EMISSIONS EQUIPMENT LIST                       |                              |

# FIGURE INDEX

| FIGURE 1:  | FCC ID LABEL                                             | Error!    | BOOKMARK NOT DEFINED.     |
|------------|----------------------------------------------------------|-----------|---------------------------|
| FIGURE 2:  | LOCATION OF LABEL ON EUT                                 |           |                           |
| FIGURE 3:  | 6DB MODULATED BANDWIDTH                                  |           |                           |
| FIGURE 4:  | POWER OUTPUT PLOTS PEAK POWER OUTPUT-MODULATED           | Error!    | BOOKMARK NOT DEFINED.     |
| FIGURE 5:  | CONDUCTED SPURIOUS EMISSION-MODULATED CARRIER            | Error!    | BOOKMARK NOT DEFINED.     |
| FIGURE 6:  | CONDUCTED SPURIOUS EMISSION-RIGHT MODULATED CARRIER      | Error!    | BOOKMARK NOT DEFINED.     |
| FIGURE 7:  | CONDUCTED SPURIOUS EMISSION-LEFT MODULATED CARRIER       | Error!    | BOOKMARK NOT DEFINED.     |
| FIGURE 8:  | CONDUCTED SPURIOUS EMISSION 30 TO 1GHz                   | Error!    | BOOKMARK NOT DEFINED.     |
| FIGURE 9:  | CONDUCTED SPURIOUS EMISSION 10 MHz TO 100 MHz            | Error!    | BOOKMARK NOT DEFINED.     |
| FIGURE 10: | CONDUCTED SPURIOUS EMISSION 30 TO 1GHz                   | Error!    | BOOKMARK NOT DEFINED.     |
| FIGURE 11: | CONDUCTED SPURIOUS EMISSION 1 TO 6.5 GHz                 | Error!    | BOOKMARK NOT DEFINED.     |
| FIGURE 12: | CONDUCTED SPURIOUS EMISSION 6.5 TO 12 GHz                | Error!    | BOOKMARK NOT DEFINED.     |
|            | POWER SPECTRAL DENSITY-MODULATED                         |           |                           |
| FIGURE 14: | CHANNEL B M/N 1253 BOTTOM VIEW                           | Error!    | BOOKMARK NOT DEFINED.     |
|            | CHANNEL A M/N 1252 TOP VIEW                              |           |                           |
| FIGURE 16: | CHANNEL A M/N 1252 BOTTOM VIEW                           | Error!    | BOOKMARK NOT DEFINED.     |
|            | CHANNEL B M/N 1253 TOP VIEW                              |           |                           |
|            | EXTENDED SERVICE CASE M/N 1250-45 TOP VIEW               |           |                           |
|            | EXTENDED SERVICE CASE M/N 1250-45 BOTTOM VIEW            |           |                           |
|            | POWER CONVERTER M/N 1250-09 TOP VIEW                     |           |                           |
|            | POWER CONVERTER M/N 1250-09 BOTTOM VIEW                  |           |                           |
|            | EXTENDED SERVICE CASE M/N 1250-45 INSIDE VIEW            |           |                           |
| FIGURE 23: | Battery Holder (J-Battery 7K6V) 1250-04 top view with MI | CROPHON   | E SWITCH <b>ERROR!</b>    |
|            | MARK NOT DEFINED.                                        |           |                           |
|            | BATTERY HOLDER (J-BATTERY 7K6V) 1250-04 BOTTOM VIEW WIT  | TH MICROP | HONE SWITCH <b>ERROR!</b> |
|            | MARK NOT DEFINED.                                        |           | _                         |
|            | Y-MICROPHONE/SWITCH ADAPTER VIEW                         |           |                           |
| FIGURE 26: | MICROPHONE VIEW                                          | Error!    | BOOKMARK NOT DEFINED.     |
|            |                                                          |           |                           |
|            | TABLE INDEX                                              |           |                           |
| m. n       | D 014                                                    |           |                           |
|            | RADIATED EMISSIONS: 3 METER                              |           |                           |
| TABLE 2:   | RADIATED EMISSIONS: 3 METER                              |           |                           |

#### 1.0 GENERAL INFORMATION

The following Application for FCC Certification of a low power transmitter is prepared on behalf of Applied Technology Solutions, Inc. in accordance with Part 15.247 of the Federal Communications Commissions rules and regulations. The Equipment Under Test (EUT) was the Applied Technology Solutions, Inc. DSSS 902-928MHz Transmitter, Model: 1250 Series, FCC ID: OHA1250-044502PAT . The test results reported in this document relate only to the item that was tested.

All measurements contained in this Application were conducted in accordance with ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 1992. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Some accessories are used to increase sensitivity and prevent overloading of the measuring instrument. These are explained in the appendix of this report. Calibration checks are performed regularly on the instruments, and all accessories including the high pass filter, preamplifier and cables.

All radiated and conducted emissions measurement were performed manually at Rhein Tech, Incorporated. The radiated emissions measurements required by the rules were performed on the three meter, open field, test range maintained by Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. Complete description and site attenuation measurement data have been placed on file with the Federal Communications Commission. The power line conducted emission measurements were performed in a shielded enclosure also located at the Herndon, Virginia facility. Rhein Tech, Labs, Inc. is on the FCC accepted lab list as a Facility available to do measurement work for others on a contract basis.

### 1.2 RELATED SUBMITTAL(S)/GRANT(S)

N/A. This is an original submission for Certification.

#### 1.3 TEST SYSTEM DETAILS

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

#### **External Components**

| Part                                                                         | Manufacturer          | Model               | Serial<br>Number | FCC ID | Cable<br>Description            | RTL<br>Bar<br>Code |
|------------------------------------------------------------------------------|-----------------------|---------------------|------------------|--------|---------------------------------|--------------------|
| TRANSMITTER CHANNEL<br>A (906.75MHZ) (EUT)                                   | APPLIED<br>TECHNOLOGY | 1252                | 120              | N/A    | N/A                             | 010091             |
| TRANSMITTER CHANNEL<br>B (923.25MHz) (EUT)                                   | APPLIED<br>TECHNOLOGY | 1253                | 270              | N/A    | N/A                             | 010092             |
| BATTERY HOLDER (<br>J.BATTERY 7K6V)<br>INTEGRAL ANTENNA<br>(EUT)             | APPLIED<br>TECHNOLOGY | 1250-04/1250-<br>02 | 122/110          | N/A    | N/A                             | 010094/010093      |
| BATTERY HOLDER (4 AAA BATTERIES) (EXTENDED SERVICE CASE) PATCH ANTENNA (EUT) | APPLIED<br>TECHNOLOGY | 1250-09             | N/A              | N/A    | N/A                             | 010063             |
| POWER CONVERTER (6-15 VDC) (USE WITH J BATTERY HOLDER 1250-04) (EUT)         | APPLIED<br>TECHNOLOGY | 1250-09             | N/A              | N/A    | N/A                             | 010098             |
| MICROPHONE (EUT)                                                             | APPLIED<br>TECHNOLOGY | 1250-05 M-4         | N/A              | N/A    | SHIELDED FOIL                   | 010097             |
| MICROPHONE SWITCH<br>(EUT)                                                   | APPLIED<br>TECHNOLOGY | 1250-05 T-4         | N/A              | N/A    | UNSHIELDED                      | 010096             |
| Y ADAPTER (EUT)                                                              | APPLIED<br>TECHNOLOGY | 1250-05 M-5         | N/A              | N/A    | SHIELDED BRAID 360°             | 010093             |
| RECEIVER                                                                     | APPLIED<br>TECHNOLOGY | 1245                | 00256            | N/A    | SHIELDED I/O,<br>SHIELDED POWER | 010062             |

#### 1.4 CONFIGURATION OF TESTED SYSTEM

| EUT 6VDC<br>Battery |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |

#### 1.5 TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 1992. Radiated testing was performed at an antenna to EUT distance of 3 meters. Emissions above 1 GHz were video averaged. Note: Conducted emission was not performed. The EUT is not A.C powered.

#### 1.6 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report dated March 3, 1994, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

#### 3.0 SYSTEM TEST CONFIGURATION

#### 3.1 JUSTIFICATION

The EUT was tested in all three orthogonal planes in order to determine worst case emission. Channel A (904 MHz) and channel B (925 MHz) were tested and investigated from 9kHz to 10GHz. Both channels were found to exhibit the same signature. Channel A was used for final testing: antenna conducted spurious emissions.

To complete the configuration required by the FCC, the transmitter was tested with external microphone (m/n 1250-05 M-4), microphone switch (m/n 1250-05 T-4) and Y adapter (1250-05 M-5) in order to cable and to terminate the transmitter ports.

The following two configuration were tested and reported in the data test results:

- 1. Hi-band antenna (m/n 1250-02) and Battery holder type J (m/n 1250-04) with Channel B (m/n 1253)
- 2. Patch antenna and Battery holder Extended service case (m/n 1250-45) with Channel A (m/n 1252)

Note that the antenna m/n 1250-02 cannot be use with the extended service case (m/n 1250-45). The transmitter antenna connector through the case is unique and non-interchangeable.

#### 3.2 EUT EXERCISE SOFTWARE

The EUT was enabled to continuously transmit, which was verified by a receiving unit during testing. The carrier was also checked to verify that the information was being transmitted.

#### 3.3 SPECIAL ACCESSORIES

A power converter (m/n 1250-09), type J battery holder intended to be connected to a car battery, was investigated and found to have the same EMI profile than the battery holder with 7K6V batteries (m/n 1250-04).

#### 3.4 MODULATED BANDWIDTH

The minimum 6 dB bandwidth per FCC 15.247(a)(2) was measured using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz. The Minimum 6 dB modulated bandwidth is 7.50 MHz (Channel B). See 6 dB bandwidth plots.

#### 3.5 POWER OUTPUT

The power output per FCC 15.247(b) was measured on the EUT using a 50 ohm spectrum analyzer with the resolution bandwidth set at 3 MHz, and the video bandwidth set at 3 MHz. The Peak power measured for modulated output power is 30.2 mW. See attached power output plot.

#### 3.6 ANTENNA CONDUCTED SPURIOUS EMISSIONS

Antenna spurious emission per FCC 15.247(c) was measured from the EUT antenna port using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 300 kHz. The modulated carrier was identified at 909.1 MHz with peak amplitude at 115.6 dBuV with a 20 dB external attenuation. No other harmonics or spurs were found within 20 dB of the carrier level, and from 30 MHz to the carrier 10<sup>th</sup> harmonic. See antenna conducted spurious noise plots.

#### 3.7 RADIATED SPURIOUS EMISSIONS

It applies to harmonics and spurious emissions that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209.

Please, refer to section 9.0 for data test results.

#### 3.8 POWER SPECTRAL DENSITY

The Power spectral density per FCC 15.247(d) was measured from the antenna port of the EUT using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 Hz, the video bandwidth set at 10 kHz, and the sweep time set at 10 second. The spectral lines were resolved for the modulated carrier at 909.34 MHz with an amplitude of -19 dBm, well below the +8 dBm limit. Plots are attached for the power spectral density measurements.

#### 3.8 PROCESSING GAIN:

Processing gain is a measure of the increase in signal-to-noise ration produced by the spread spectrum modulation. It must be at least 10dB. One method of measuring it, detailed in the FCC's notice, is the "CW jamming margin method." As shown in section 3.8.1, the test configuration consists of the EUT transmitter/receiver pair, a signal generator, an audio signal generator, signal-combining pad, and attenuators. The signal generator is used as an unmodulated (CW) jamming signal.

For this test, the signal generator is stepped in 50 kHz increments across the passband of the system. At each frequency, the generator level is adjusted to produce the BER desired for the system, that is 1/1000 for voice transmission. This is the jammer level (J). The output power (S) of the transmitting unit is measured at the same test point, and the jammer-to-signal ration (J/S) is calculated. The lowest 20% of J/S data points are discarded, and the lowest remaining J/S ration is used in calculating the processing gain.

Processing gain (Gp) is thus defined by the following equation:

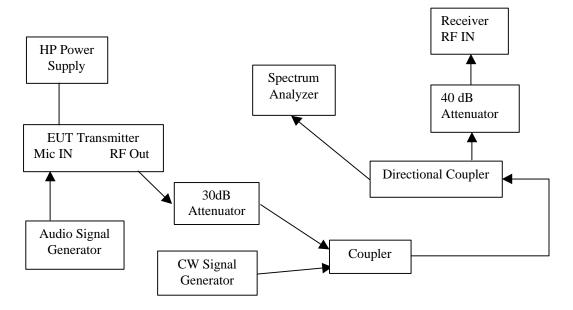
Gp=(S/N)o + Mj + Lsys

Where (S/N)o = signal/noise ratio (see below) = -12.4 dB

 $M_j = J/S$  ratio, selected as described above = 22 dB for the following frequency:

| Freq. (MHz) | S/G level (dBm) | J (dBuV) | S (dBuV) | J/S (dB) |
|-------------|-----------------|----------|----------|----------|
| 906.0       | -10.0           | 90.1     | 68.1     | 22.0     |

Lsys = system losses (dB) with Lsys = 2dB


The signal-to-noise ration, (S/N)o, is related to the receivers bit error rate. Although the precise relationship will vary with the demodulation scheme used, for an ideal noncoherent receiver, the probability of error (bit error rate) is related to (S/N)o by:

Prob. Of bit error =  $.5 \times e(-.5 \times (S/N)o)$ 

Conclusion: Processing gain = 11.6 dB

See processing gain plot at 906 MHz.

#### 3.8.1 TEST CONFIGURATION: PROCESSING GAIN



#### 3.9 CONFORMANCE STATEMENT

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this attached test record. No modifications were made during testing to the equipment in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the ANSI C63.4 test methodology.

Signature: \_\_\_\_\_ Date: February 23, 1999

Typed/Printed Name: Bruno Clavier Position: Quality Manager

(NVLAP Signatory)

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 20061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

#### 7.0 Field Strength Calculation, and Radiated Test Methodology

#### 7.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

The field intensity in microvolts per meter can then be determined according to the following equation:

$$FI(uV/m) = 10FI(dBuV/m)/20$$

For example, assume a signal at a frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

$$49.3 \text{ dBuV} - 11.5 \text{ dB/m} = 37.8 \text{ dBuV/m}$$
  
$$10^{37.8/20} = 10^{1.89} = 77.6 \text{ uV/m}$$

#### 7.2 Radiated measurement

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one meter and three meter distances if necessary in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane. The spectrum was examined from 9 kHz to 10GHz MHz (10<sup>th</sup> harmonic of carrier frequency) using a Hewlett Packard 8566B spectrum analyzer, a Hewlett Packard 85650A quasi-peak adapter, HP11790 mixers, and EMCO log periodic, EMCO horn antennas and biconical antenna. In order to gain sensitivity, a cougar preamplifier (from 30 to 2GHZ), and an HP preamplifier (from 1GHz to 26.5 GHz) was connected in series between the antenna and the input of the spectrum analyzer.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations. The spectrum analyzer's 6 dB resolution bandwidth was set to 120 kHz for measurements below 1GHz, and 1MHz for measurements above 1GHz. The analyzer was operated in peak detection mode below 1GHz and in the peak mode with 10Hz video averaging above 1 GHz. No video filter less than 10 times the resolution bandwidth was used when measuring below 1GHz. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as daily calibration methods, technician training, and emphasis to employees on avoiding error.

## 8.0 CONDUCTED EMISSION DATA

The conducted test was not performed because the EUT is not AC powered.

#### 9.0 RADIATED EMISSION DATA

The following data lists the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, plus the limit. Explanation of the Correction Factor is given in paragraph 6.3.

TABLE 1 RADIATED EMISSIONS: 3 METER Model: Channel A M/N1252 with case M/N 1250-45 and Patch Antenna

| EMISSION  | ANTENNA  | ANALYZER | SITE       | EMISSION    | FCC           | FCC         |
|-----------|----------|----------|------------|-------------|---------------|-------------|
| FREQUENCY | POLARITY | READING  | CORRECTION | LEVEL       | LIMIT         | MARGIN      |
| (MHz)     | (H/V)    | (dBuV)   | FACTOR     | (dBuV/m)    | (dBuV/m)      | (dBuV/m)    |
| (1/1122)  | (12 )    | (0201)   | (dB/m)     | (020 //111) | (020 ( / 111) | (424 (7111) |
| 147.748   | V        | 77.4     | -19.9      | 57.5        | 81.1          | -23.6       |
| 157.201   | V        | 77.7     | -19.8      | 57.9        | 81.1          | -75.2       |
| 458.803   | V        | 61.9     | -9.8       | 52.1        | 81.1          | -29.0       |
| 656.6     | V        | 67.9     | -5.7       | 62.2        | 81.1          | -18.9       |
| 846.328   | V        | 74.1     | -3         | 71.1        | 81.1          | -10.0       |
| 884.142   | V        | 72.8     | -1.6       | 71.2        | 81.1          | -9.9        |
| 904.138   | V        | 102.5    | -1.4       | 101.1       | N/A           | Fund.       |
| 1813.73   | NA       | 68.1     | -19.7      | 48.4        | 81.1          | -32.7       |
| 2640.21   | V        | 44.2     | 3.0        | 47.2        | 81.1          | -33.9       |
| 2717.71   | V        | 48.6     | 3.8        | 52.4        | 54.0          | -1.6        |
| 3627.40   | V        | 32.8     | 5.9        | 38.7        | 54.0          | -15.3       |

TABLE 2: RADIATED EMISSIONS: 3 METER Model: Channel B M/N 1253 with case M/N 1250-04 and Antenna 1250-02

| EMISSION  | ANTENNA  | ANALYZER | SITE       | EMISSION | FCC      | FCC      |
|-----------|----------|----------|------------|----------|----------|----------|
| FREQUENCY | POLARITY | READING  | CORRECTION | LEVEL    | LIMIT    | MARGIN   |
| (MHz)     | (H/V)    | (dBuV)   | FACTOR     | (dBuV/m) | (dBuV/m) | (dBuV/m) |
|           |          |          | (dB/m)     |          |          |          |
| 4.728     | V        | 38.9     | -15.4      | 23.5     | 74.7     | -51.2    |
| 773.351   | V        | 69       | -3.6       | 65.4     | 74.7     | -9.3     |
| 831.192   | V        | 70.3     | -2.5       | 67.8     | 74.7     | -6.9     |
| 848.845   | V        | 59.3     | -3         | 56.3     | 74.7     | -18.4    |
| 925.701   | V        | 96.3     | -1.6       | 94.7     | N/A      | Fund.    |
| 1020.74   | V        | 49.0     | -1.9       | 47.1     | 54.0     | -6.9     |
| 1846.66   | V        | 43.3     | 0.3        | 43.6     | 74.7     | -31.1    |

| TEST PERSONNEL:                        |       |         |  |  |  |
|----------------------------------------|-------|---------|--|--|--|
| Signature:                             | Date: | 1/22/99 |  |  |  |
| Typed/Printed Name: Daniel W. Baltzell |       |         |  |  |  |

# **APPENDIX A:** Emissions Equipment List

| PEGGDABATA                                       | MANUEL CENTER         | MODEL           | SERIAL          | CAL.            |
|--------------------------------------------------|-----------------------|-----------------|-----------------|-----------------|
| DESCRIPTION                                      | MANUFACTURER          | NUMBER          | NUMBER          | LAB             |
| AMPLIFIER  AMPLIFIER (g/1, 1)                    | HEWLETT PACKARD       | 11975A          | 2304A00348      | TEST EQUITY     |
| AMPLIFIER (S/A 1)  AMPLIFIER (S/A 2)             | RHEIN TECH RHEIN TECH | PR-1040<br>RTL2 | 00001<br>900723 | RTL<br>RTL      |
| AMPLIFIER (S/A 2) AMPLIFIER (S/A 3)              | RHEIN TECH            | 8447F           | 2944A03783      | RTL             |
| AMPLIFIER (S/A 4)                                | RHEIN TECH            | 8447D           | 2727A05397      | RTL             |
| BICONICAL/LOG ANTENNA 1                          | ANTENNA RESEARCH      | LPB-2520        | 1037            | LIBERTY LABS    |
| BICONICAL/LOG ANTENNA 1  BICONICAL/LOG ANTENNA 2 | ANTENNA RESEARCH      | LPB-2520        | 1037            | LIBERTY LABS    |
| FIELD SITE SOURCE                                | EMCO                  | 4610            | 9604-1313       | RTL             |
| FILTER (ROOM 1)                                  | SOLAR                 | 8130            | 947305          | RTL             |
| FILTER (ROOM 2)                                  | SOLAR                 | 8130            | 947306          | RTL             |
| HARMONIC MIXER 1                                 | HEWLETT PACKARD       | 11970K          | 2332A00563      | TELOGY          |
| HARMONIC MIXER 2                                 | HEWLETT PACKARD       | 11970A          | 2332A01199      | TELOGY          |
| HORN ANTENNA 1                                   | EMCO                  | 3160-10         | 9606-1033       | EMCO            |
| HORN ANTENNA 2                                   | EMCO                  | 3160-9          | 9605-1051       | EMCO            |
| Horn Antenna 3                                   | EMCO                  | 3160-7          | 9605-1054       | EMCO            |
| Horn Antenna 4                                   | EMCO                  | 3160-8          | 9605-1044       | EMCO            |
| HORN ANTENNA 5                                   | EMCO                  | 3160-03         | 9508-1024       | EMCO            |
| LISN (ROOM 1/L1)                                 | Solar                 | 7225-1          | 900727          | ACUCAL          |
| LISN (ROOM 1/L2)                                 | SOLAR                 | 7225-1          | 900726          | ACUCAL          |
| LISN (ROOM 2/L1)                                 | SOLAR                 | 7225-1          | 900078          | ACUCAL          |
| LISN (ROOM 2/L2)                                 | SOLAR                 | 7225-1          | 900077          | ACUCAL          |
| Pre-Amplifier                                    | HEWLETT PACKARD       | 8449B OPT       | 3008A00505      | TELOGY          |
| Quasi-Peak Adapter (S/A 1)                       | HEWLETT PACKARD       | 85650A          | 3145A01599      | ACUCAL          |
| QUASI-PEAK ADAPTER (S/A 2)                       | HEWLETT PACKARD       | 85650A          | 2811A01276      | ACUCAL          |
| QUASI-PEAK ADAPTER (S/A 3)                       | HEWLETT PACKARD       | 85650A          | 2521A00473      | ACUCAL          |
| QUASI-PEAK ADAPTER (S/A 4)                       | HEWLETT PACKARD       | 85650A          | 2521A01032      | ACUCAL          |
| RF PRESELECTOR (S/A 1)                           | HEWLETT PACKARD       | 85685A          | 3146A01309      | ACUCAL          |
| SIGNAL GENERATOR (HP)                            | HEWLETT PACKARD       | 8660C           | 1947A02956      | ACUCAL          |
| SIGNAL GENERATOR<br>(WAVETEK)                    | WAVETEK               | 3510B           | 4952044         | ACUCAL          |
| SPECTRUM ANALYZER 1                              | HEWLETT PACKARD       | 8566B           | 3138A07771      | ACUCAL          |
| SPECTRUM ANALYZER 2                              | HEWLETT PACKARD       | 8567A           | 2841A00614      | ACUCAL          |
| SPECTRUM ANALYZER 4                              | HEWLETT PACKARD       | 8567A           | 2727A00535      | ACUCAL          |
| TUNABLE DIPOLE                                   | EMCO                  | 3121            | 274             | LIBERTY LABS    |
| Antenna                                          | ATM                   | WR08            | 08443-6         | ATM             |
| Mixer                                            | OLESON                | M08HW           | F80814-1        | OLESON          |
| MIXER                                            | OLESON                | M05HW           | G80814-1        | OLESON          |
| Diplexer                                         | OLESON                | M05HW           | G80814-1        | OLESON          |
| Mixer                                            | HEWLETT PACKARD       | 11970U          | 2332A01110      | ACUCAL          |
| Mixer                                            | HEWLETT PACKARD       | 11970V          | 2521A00512      | TELOGY          |
| Mixer                                            | HEWLETT PACKARD       | 11970W          | 2521A00710      | TELOGY          |
| Antenna                                          | ATM                   | WR15            | 15-443-6        | ATM             |
| Antenna                                          | ATM                   | WR10            | 10-443-6        | ATM             |
| ANTENNA                                          | ATM                   | WR05            | 05-443-6        | ATM             |
| SWEEP GENERATOR                                  | HEWLETT PACKARD       | 83752A          | 3610A00866      | HEWLETT PACKARD |

Calibration Certification available upon request.

# **APPENDIX B:**

# **USER'S MANUAL**