ADDENDUM TO MEDTRONIC MINIMED TEST REPORT FC07-084B

FOR THE

MEDTRONIC CARELINK™ USB, MMT-7305

FCC PART 15 SUBPART C SECTIONS 15.207, 15.209 \& 15.249, SUBPART B SECTIONS 15.107 CLASS B \& 15.109 CLASS B AND RSS-210 ISSUE 7

TESTING

DATE OF ISSUE: JANUARY 23, 2008

PREPARED FOR:

Medtronic MiniMed
18000 Devonshire Street
Northridge, CA 91325-1219
W.O. No.: 87068

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338
Date of test: September 18 - October 4, 2007

Report No.: FC07-084B

TABLE OF CONTENTS

Administrative Information 3
Approvals 3
FCC to Canada Standard Correlation Matrix 4
Conditions During Testing 4
FCC 15.31(m) Number Of Channels 5
FCC 15.33(a) Frequency Ranges Tested 5
FCC 15.35 Analyzer Bandwidth Settings
FCC 15.203 Antenna Requirements 5
EUT Operating Frequency 5
Temperature And Humidity During Testing 5
Equipment Under Test (EUT) Description 6
Equipment Under Test 6
Peripheral Devices 6
Report of Emissions Measurements 7
Testing Parameters 7
FCC 15.107 Conducted Emissions 9
FCC 15.109 Radiated Emissions 16
FCC 15.207 Conducted Emissions 23
FCC 15.249(a) Field strength of Fundamental 30
FCC 15.209/15.249(d) Spurious Radiated Emissions 35
Occupied Bandwidth. 41
Bandedge 43
RSS-210 99\% Bandwidth 45

ADMINISTRATIVE INFORMATION

DATE OF TEST: September 18- October 4, 2007

REPRESENTATIVE: Bob Vitti

MANUFACTURER:
Medtronic MiniMed
18000 Devonshire Street
Northridge, CA 91325-1219

DATE OF RECEIPT: September 18, 2007

TEST METHOD: ANSI C63.4 (2003), RSS-210 Issue 7 and RSS GEN Issue 2

PURPOSE OF TEST: Original Report: To perform the testing of the Medtronic CareLink ${ }^{\mathrm{TM}}$ USB, MMT-7305 with the requirements for FCC Part 15 Subpart C Sections 15.207, 15.209 \& 15.249, Subpart B Sections 15.107 Class B \& 15.109 Class B and RSS-210 devices.

Addendum A: To retest using a six foot shielded USB cable.
Addendum B: To revise the data sheet on page 30 and add the oscilloscope output.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

FCC TO CANADA STANDARD CORRELATION MATRIX

Canadian Standard	Canadian Section	FCC Standard	FCC Section	Test Description
RSS 210	2.1	47CFR	$15.215(\mathrm{c})$	Frequency Stability Recommendation
RSS 210	2.6	47CFR	15.209	General Radiated Emissions Requirement
RSS 210	2.7	47CFR	15.205	Restricted Bands of Operation
RSS 210	A2.9(1)	47CFR	$15.249(\mathrm{a})$	Field Strength Limitations
RSS 210	A2.9(1)	47CFR	$15.249(\mathrm{c})$	Test Distance Requirement
RSS 210	A2.9(2)	47CFR	$15.249(\mathrm{~d})$	Spurious Emissions Attenuation Requirement
RSS Gen	4.3	47CFR	$15.35(\mathrm{c})$	Pulsed Operation (N/A for 902-928MHz)
RSS Gen	7.2 .2	47CFR	15.207	AC Mains Conducted Emissions Requirement
N/A	N/A	47CFR	$15.249(\mathrm{~b})$	Point-to-Point Operations Limitations
N/A	N/A	47CFR	$15.249(\mathrm{e})$	Peak to Average Limit Requirement
	3172-A		90473	Site File No.

Notes: \quad Rule Sections for RSS 210 are taken from RSS 210 Issue 7
This table applies to $902-928,2400-2483.5,5275-5875 \mathrm{MHz}$ bands only.

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

FCC 15.31(m) Number Of Channels
This device was tested on a single channel.
FCC 15.33(a) Frequency Ranges Tested
15.107 Conducted Emissions: $150 \mathrm{kHz}-30 \mathrm{MHz}$
15.109 Radiated Emissions: $30 \mathrm{kHz}-1000 \mathrm{MHz}$
15.207 Conducted Emissions: $150 \mathrm{kHz}-30 \mathrm{MHz}$
15.209/15.249 Radiated Emissions: $9 \mathrm{kHz}-10 \mathrm{GHz}$

FCC SECTION 15.35:			
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	40 GHz	1 MHz

FCC 15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency

The EUT was operating at 916.5 MHz .

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.
The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Medtronic CareLink ${ }^{\text {TM }}$ USB

Manuf: Medtronic MiniMed
Model: MMT-7305
Serial: A07370013
FCC ID: pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop	
Manuf:	Dell
Model:	PP01L
Serial:	CN-06P823-48
Printer	
Manuf:	Epson
Model:	Stylus 880
Serial:	CMR1545596

Insulin Pump	
Manuf:	Medtronic Minimed
Model:	MMT-P7
Serial:	010217-F061
FCC ID:	OH2712

Printer
Manuf: Epson
Serial: CMR1545596

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS
The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE

TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.107 CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112
Customer: Medtronic MiniMed
Specification: FCC 15.107 Class B COND [AVE]
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

87068
Conducted Emissions
Medtronic CareLink USB
Medtronic MiniMed
MMT-7305
A07370013

Date: 10/4/2007
Time: 13:40:36
Sequence\#: 9
Tested By: E. Wong
110 V 60 Hz

S/N:
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 04 / 2007$	$01 / 04 / 2009$	02672
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
150kHz HPF	G7755	$01 / 30 / 2006$	$01 / 30 / 2008$	02610
Conducted Emission	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
Cable				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Medtronic CareLink USB*	Medtronic MiniMed	MMT-7305	A07370013

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	PP01L	CN-06P823-48155_36K-
			4938
Printer	Epson	Stylus 880	CMR1545596
Insulin Pump	Medtronic Minimed	MMT-P7	$010217-$ F061

Test Conditions / Notes:

The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=916.5 \mathrm{MHz}, \mathrm{TX} / \mathrm{RX}$. The laptop is running test routines to exercise the EUT, transmits and receives data packets to a support receiver in the vicinity. Connected to the support laptop is a parallel printer. $24^{\circ} \mathrm{C}, 48 \%$ relative humidity. Rev 2, unit 1, CR5.

Transducer Legend:

T1=150kHz HPF Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L1) Insertion Loss 00847 EMCO 3816/2NM

Measu	ment Data	Reading listed by margin.				Test Lead: Black					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	244.536k	39.5	+0.2	+6.1	+0.1	+0.1	+0.0	46.0	51.9	-5.9	Black
2	303.440k	37.4	+0.2	+6.2	+0.1	+0.1	+0.0	44.0	50.1	-6.1	Black
3	307.076k	35.8	+0.2	+6.2	+0.1	+0.1	+0.0	42.4	50.0	-7.6	Black

4	285.987k	35.7	+0.2	+6.2	+0.1	+0.1	+0.0	42.3	50.6	-8.3	Black
5	362.343k	33.4	+0.2	+6.2	+0.1	+0.0	+0.0	39.9	48.7	-8.8	Black
6	252.535k	35.7	+0.2	+6.1	+0.1	+0.1	+0.0	42.2	51.7	-9.5	Black
7	840.118k	29.4	+0.1	+6.1	+0.0	+0.1	+0.0	35.7	46.0	-10.3	Black
8	483.787k	28.0	+0.2	+6.2	+0.1	+0.1	+0.0	34.6	46.3	-11.7	Black
9	476.515k	27.5	+0.2	+6.2	+0.1	+0.1	+0.0	34.1	46.4	-12.3	Black
10	402.340k	28.8	+0.2	+6.2	+0.1	+0.0	+0.0	35.3	47.8	-12.5	Black
11	2.587 M	26.7	+0.1	+6.2	+0.1	+0.2	+0.0	33.3	46.0	-12.7	Black
12	3.603M	26.4	+0.1	+6.2	+0.2	+0.2	+0.0	33.1	46.0	-12.9	Black
13	407.430k	28.1	+0.2	+6.2	+0.1	+0.0	+0.0	34.6	47.7	-13.1	Black
14	1.005 M	26.0	+0.1	+6.1	+0.0	+0.1	+0.0	32.3	46.0	-13.7	Black
	$\begin{aligned} & \text { 180.382k } \\ & \text { Ave } \end{aligned}$	32.0	+0.3	+6.1	+0.1	+0.1	+0.0	38.6	54.5	-15.9	Black
	$\begin{aligned} & \text { 187.087k } \\ & \text { Ave } \end{aligned}$	18.8	+0.2	+6.1	+0.1	+0.1	+0.0	25.3	54.2	-28.9	Black
\wedge	187.087k	46.6	+0.2	+6.1	+0.1	+0.1	+0.0	53.1	54.2	-1.1	Black

CKC Laboratories, Inc. Date: 10/4/2007 Time: 13:40:36 Medtronic MiniMed WO\#: 87068 FCC 15.107 Class B COND [AVE] Test Lead: Black 110 V 60 Hz Sequence\#: 9

——— Sweep Data
$2-\mathrm{FCC} 15.107$ Class 日 COND [QP]
——1-FCC 15.107 Class B COND [AVE]

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Medtronic MiniMed		
Specification:	FCC 15.107 Class B COND [AVE]		Date:
Work Order \#:	$\mathbf{8 7 0 6 8}$	Time:	13:37:08
Test Type:	Conducted Emissions	Sequence\#:	8
Equipment:	Medtronic CareLink USB	Tested By:	E. Wong
Manufacturer:	Medtronic MiniMed		110 V 60 Hz
Model:	MMT-7305		
S/N:	A07370013		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 04 / 2007$	$01 / 04 / 2009$	02672
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
150kHz HPF	G7755	$01 / 30 / 2006$	$01 / 30 / 2008$	02610
Conducted Emission	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
Cable				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Medtronic CareLink USB*	Medtronic MiniMed	MMT-7305	A07370013

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	PP01L	CN-06P823-48155_36K-
			4938
Printer	Epson	Stylus 880	CMR1545596
Insulin Pump	Medtronic Minimed	MMT-P7	010217-F061

Test Conditions / Notes:

The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=916.5 \mathrm{MHz}, \mathrm{TX} / \mathrm{RX}$. The laptop is running test routines to exercise the EUT, transmits and receives data packets to a support receiver in the vicinity. Connected to the support laptop is a parallel printer. $24^{\circ} \mathrm{C}, 48 \%$ relative humidity. Rev 2, unit 1, CR5.

Transducer Legend:

T1=150kHz HPF Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L2) Insertion Loss 00847 EMCO 3816/2NM

Measu	ment Data	Reading listed by margin.				Test Lead: White					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	161.634 k	44.6	+0.6	+6.2	+0.1	+0.2	+0.0	51.7	55.4	-3.7	White
2	157.998k	43.5	+1.0	+6.2	+0.1	+0.2	+0.0	51.0	55.6	-4.6	White
3	301.985k	37.3	+0.2	+6.2	+0.1	+0.1	+0.0	43.9	50.2	-6.3	White
4	244.536k	38.8	+0.2	+6.1	+0.1	+0.2	+0.0	45.4	51.9	-6.5	White
5	307.076k	36.9	+0.2	+6.2	+0.1	+0.1	+0.0	43.5	50.0	-6.5	White

6	248.899k	38.0	+0.2	+6.1	+0.1	+0.1	+0.0	44.5	51.8	-7.3	White
7	293.259k	36.2	+0.2	+6.2	+0.1	+0.1	+0.0	42.8	50.4	-7.6	White
8	280.896k	36.6	+0.2	+6.1	+0.1	+0.1	+0.0	43.1	50.8	-7.7	White
9	576.869k	31.8	+0.2	+6.1	+0.1	+0.1	+0.0	38.3	46.0	-7.7	White
10	296.167k	35.9	+0.2	+6.2	+0.1	+0.1	+0.0	42.5	50.3	-7.8	White
11	311.439k	34.9	+0.2	+6.2	+0.1	+0.1	+0.0	41.5	49.9	-8.4	White
12	480.878k	29.6	+0.2	+6.2	+0.1	+0.1	+0.0	36.2	46.3	-10.1	White
	$\begin{aligned} & \text { 181.314k } \\ & \text { Ave } \end{aligned}$	30.8	+0.3	+6.1	+0.1	+0.2	+0.0	37.5	54.4	-16.9	White
\wedge	181.269k	45.1	+0.3	+6.1	+0.1	+0.2	+0.0	51.8	54.4	-2.6	White
	$\begin{aligned} & \text { 187.814k } \\ & \text { Ave } \end{aligned}$	15.7	+0.2	+6.1	+0.1	+0.2	+0.0	22.3	54.1	-31.8	White
\wedge	187.814k	47.9	+0.2	+6.1	+0.1	+0.2	+0.0	54.5	54.1	+0.4	White
	$\begin{aligned} & \text { 194.359k } \\ & \text { Ave } \end{aligned}$	9.8	+0.2	+6.1	+0.1	+0.2	+0.0	16.4	53.8	-37.4	White
\wedge	194.359k	45.0	+0.2	+6.1	+0.1	+0.2	+0.0	51.6	53.8	-2.2	White

CKC Laboratories, Inc. Date: 10/4/2007 Time: 13:37:08 Medtronic MiniMed NO\#: 87068 FCC 15.107 Class B COND [AVE] Test Lead: White 110V 60Hz Sequence\#: 8

—— Sweep Data
———1-FCC 15.107 Class B COND [AVE]
—— 2-FCC 15.107 Class B COND [QP]

FCC 15.109 RADIATED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Medtronic MiniMed		
Specification:	FCC 15.109 Class B		
Work Order \#:	$\mathbf{8 7 0 6 8}$	Date:	10/4/2007
Test Type:	Radiated Scan	Time: 11:47:35	
Equipment:	Medtronic CareLink USB	Sequence\#:	7
Manufacturer:	Medtronic MiniMed	Tested By:	E. Wong
Model:	MMT-7305		

S/N: A07370013
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Bilog Antenna	2451	$02 / 02 / 2006$	$02 / 02 / 2008$	01995
Pre amp to SA Cable	Cable \#10	$05 / 16 / 2007$	$05 / 16 / 2009$	P05050
Cable	Cable15	$01 / 05 / 2007$	$01 / 05 / 2009$	P05198
Pre Amp	$1937 A 02548$	$06 / 01 / 2006$	$06 / 01 / 2008$	00309
Horn Antenna	6246	$06 / 29 / 2006$	$06 / 29 / 2008$	00849
24" SMA Cable	$1-26 G H z _w h i t e$	$01 / 11 / 2007$	$01 / 11 / 2009$	P05183
Microwave Pre-amp	$3123 A 00281$	$07 / 19 / 2006$	$07 / 19 / 2008$	00786
Heliax Antenna Cable	P5565	$09 / 18 / 2006$	$09 / 18 / 2008$	P05565
1.0 GHz HPF	1	$03 / 07 / 2006$	$03 / 07 / 2008$	02749
Spectrum Analyzer	US44300438	$01 / 04 / 2007$	$01 / 04 / 2009$	02672

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Medtronic CareLink USB*	Medtronic MiniMed	MMT-7305	A07370013

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	PP01L	CN-06P823-48155_36K-
			4938
Printer	Epson	Stylus 880	CMR1545596
Insulin Pump	Medtronic Minimed	MMT-P7	$010217-$ F061

Test Conditions / Notes:

The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=916.5 \mathrm{MHz}$ TX/RX. The laptop is running test routines to exercise the EUT, transmits and receives data packets to a support receiver in the vicinity. Connected to the support laptop is a parallel printer. $24^{\circ} \mathrm{C}, 48 \%$ relative humidity. Frequency range of measurement $=30 \mathrm{MHz}-$ 10 GHz . Frequency: $30 \mathrm{MHz}-1000 \mathrm{MHz}$ RBW=120 kHz, VBW=120 kHz; $1000 \mathrm{MHz}-10000 \mathrm{MHz}$ RBW=1 $\mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$. Emission profile of three orthogonal orientations was investigated, worst case data is presented. Rev 2, unit 1, CR5.

Transducer Legend:

T1=Preamp 8447D 060108	T2=Bilog AN01995 020208 Chase
T3=Cable \#10 051609	T4=Cable \#15, Site A, 010509
T5=Pre amp 1-26GHz 071908	T6=54' Heliax Cable 091808 P05565
T7=Horn 00849_062908	T8=SMA-cable_W_05183-011109-26GHz
T9=Filter 1GHz HP AN02749	

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

	$\begin{aligned} & 157.900 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	50.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	36.0	43.5	-7.5	Horiz
\wedge	157.900M	56.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.4 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	41.7	43.5	-1.8	Horiz
10	60.600M	51.5	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +6.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	+0.0	31.4	40.0	-8.6	Vert
11	160.299M	49.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +10.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	34.8	43.5	-8.7	Vert
12	599.971M	39.4	$\begin{array}{r} \hline-27.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+19.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.7 \\ & +0.0 \end{aligned}$	+0.0	37.0	46.0	-9.0	Horiz
13	173.500M	49.6	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	34.1	43.5	-9.4	Horiz
14	33.061 M	39.4	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +17.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	+0.0	30.3	40.0	-9.7	Vert
15	32.311 M	38.5	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+17.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	+0.0	29.7	40.0	-10.3	Vert
16	912.050M	32.7	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +23.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	+0.0	35.5	46.0	-10.5	Vert
17	664.680M	35.9	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +20.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.0 \\ & +0.0 \end{aligned}$	+0.0	34.8	46.0	-11.2	Vert
18	165.600M	47.5	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	32.3	43.5	-11.2	Vert
19	169.299M	47.5	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	32.2	43.5	-11.3	Vert
20	480.042M	39.6	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.1 \\ & +0.0 \end{aligned}$	+0.0	34.1	46.0	-11.9	Horiz
21	173.100M	46.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	31.0	43.5	-12.5	Vert
22	398.900M	41.4	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \end{aligned}$	+0.0	33.5	46.0	-12.5	Horiz
23	177.110M	46.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	31.0	43.5	-12.5	Vert
24	288.005M	44.7	$\begin{gathered} -27.6 \\ +0.0 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+13.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.1 \\ & +0.0 \end{aligned}$	+0.0	33.4	46.0	-12.6	Horiz

Page 19 of 46

25	240.010M	46.2	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.8 \\ & +0.0 \end{aligned}$	+0.0	33.4	46.0	-12.6	Horiz
26	1462.270M	51.5	$\begin{array}{r} +0.0 \\ -39.3 \\ +0.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	+0.0	41.2	54.0	-12.8	Vert
27	960.042M	36.7	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \end{aligned}$	+0.0	41.1	54.0	-12.9	Horiz
28	144.000M	44.6	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	+0.0	30.5	43.5	-13.0	Horiz
29	143.850M	44.4	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	+0.0	30.3	43.5	-13.2	Horiz
30	398.740M	40.6	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \end{aligned}$	+0.0	32.7	46.0	-13.3	Vert
31	720.000M	32.2	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+21.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.2 \\ & +0.0 \end{aligned}$	+0.0	32.1	46.0	-13.9	Horiz
32	349.992M	40.4	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	+0.0	31.1	46.0	-14.9	Horiz
33	208.005M	43.7	$\begin{array}{r} -27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	+0.0	28.4	43.5	-15.1	Horiz
34	533.100M	34.0	$\begin{array}{r} \hline-27.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+19.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.4 \\ & +0.0 \end{aligned}$	+0.0	30.5	46.0	-15.5	Vert
35	649.971M	31.2	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+20.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.9 \\ & +0.0 \end{aligned}$	+0.0	29.9	46.0	-16.1	Horiz
36	384.005M	38.1	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$	+0.0	29.8	46.0	-16.2	Horiz
37	378.830M	38.1	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$	+0.0	29.7	46.0	-16.3	Horiz
38	332.950M	39.4	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	29.6	46.0	-16.4	Horiz
39	141.900M	40.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.1 \\ & +0.0 \end{aligned}$	+0.0	26.6	43.5	-16.9	Horiz
40	960.030M	32.4	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	+0.0	36.8	54.0	-17.2	Vert
41	120.600M	39.6	$\begin{gathered} -27.6 \\ +0.0 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \end{aligned}$	+0.0	25.6	43.5	-17.9	Vert

Page 20 of 46

42	47.971M	38.3	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \end{aligned}$	+0.0	21.9	40.0	-18.1	Horiz
43	300.010M	38.4	$\begin{array}{r} -27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.2 \\ & +0.0 \end{aligned}$	+0.0	27.4	46.0	-18.6	Horiz
44	365.280M	36.1	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$	+0.0	27.2	46.0	-18.8	Horiz
45	143.100M	38.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.1 \\ & +0.0 \end{aligned}$	+0.0	24.6	43.5	-18.9	Vert
46	976.060M	30.4	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	+0.0	34.7	54.0	-19.3	Horiz
47	992.030M	30.2	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	+0.0	34.6	54.0	-19.4	Horiz
48	329.190M	36.5	$\begin{array}{r} -27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	26.6	46.0	-19.4	Vert
49	365.580M	35.4	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$	+0.0	26.5	46.0	-19.5	Horiz
50	992.070M	30.0	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	+0.0	34.4	54.0	-19.6	Horiz
51	473.900M	31.6	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.1 \\ & +0.0 \end{aligned}$	+0.0	26.1	46.0	-19.9	Horiz
52	336.690M	35.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	26.0	46.0	-20.0	Vert
53	232.530M	38.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.8 \\ & +0.0 \end{aligned}$	+0.0	25.4	46.0	-20.6	Horiz
54	976.020M	28.8	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	+0.0	33.1	54.0	-20.9	Vert
55	984.130M	28.6	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.2 \\ & +0.0 \end{aligned}$	+0.0	32.9	54.0	-21.1	Vert
56	976.120M	28.5	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	+0.0	32.8	54.0	-21.2	Horiz
57	330.600M	34.6	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	24.7	46.0	-21.3	Vert
58	322.530M	34.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +13.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.3 \\ & +0.0 \end{aligned}$	+0.0	24.4	46.0	-21.6	Horiz

Page 21 of 46

59	390.600M	32.4	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \end{aligned}$	+0.0	24.3	46.0	-21.7	Vert
60	198.570M	37.5	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+8.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	+0.0	21.5	43.5	-22.0	Vert
61	351.690M	33.2	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +14.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	+0.0	23.9	46.0	-22.1	Vert
62	321.690M	34.1	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.3 \\ & +0.0 \end{aligned}$	+0.0	23.8	46.0	-22.2	Vert
63	195.770M	36.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+8.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	+0.0	20.7	43.5	-22.8	Horiz
64	1730.000M	39.3	$\begin{array}{r} +0.0 \\ -39.0 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.2 \end{aligned}$	+0.0	30.3	54.0	-23.7	Vert
65	274.140M	32.7	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+12.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	+0.0	21.2	46.0	-24.8	Vert
66	458.900M	26.6	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	+0.0	20.7	46.0	-25.3	Horiz
67	$1460.800 \mathrm{M}$ Ave	37.4	$\begin{array}{r} +0.0 \\ -39.3 \\ +0.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	+0.0	27.1	54.0	-26.9	Vert

FCC 15.207 CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112
Customer: Medtronic MiniMed
Specification: FCC 15.207 COND [AVE]
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

87068
Conducted Emissions
Medtronic CareLink USB
Medtronic MiniMed
MMT-7305
A07370013

Date: 10/4/2007
Time: 13:24:21
Sequence\#: 41
Tested By: E. Wong
110 V 60 Hz

S/N:
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
150kHz HPF	G7755	$01 / 30 / 2006$	$01 / 30 / 2008$	02610
Conducted Emission	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
Cable				

Cable
Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Medtronic CareLink USB*	Medtronic MiniMed	MMT-7305	A07370013

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	PP01L	CN-06P823-48155_36K-
			4938
Insulin Pump	Medtronic Minimed	MMT-P7	$010217-$ F061

Test Conditions / Notes:

The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=916.5 \mathrm{MHz}$. The laptop is running test routines to exercise the EUT. Rev 2_CR5, unit 2 (Hardware and software identical to Rev2, Rev2_CR5 incorporates a tracking ID for documentation purposes).
Transducer Legend:

T1 $=150 \mathrm{kHz} \mathrm{HPF}$ Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L1) Insertion Loss 00847 EMCO 3816/2NM

Measurement Data:

| $\#$ | Freq | Rdng | T1 | T 2 | T 3 | T 4 | Dist | Corr | Spec | Margin | Polar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | MHz | $\mathrm{dB} \mu \mathrm{V}$ | dB | dB | dB | dB | Table | $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ | $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ | dB | Ant |
| 1 | 200.177 k | 43.6 | +0.2 | +6.1 | +0.1 | +0.1 | +0.0 | 50.1 | 53.6 | -3.5 | Black |
| 2 | 168.180 k | 44.5 | +0.4 | +6.2 | +0.1 | +0.1 | +0.0 | 51.3 | 55.0 | -3.7 | Black |
| 3 | 169.635 k | 44.1 | +0.4 | +6.2 | +0.1 | +0.1 | +0.0 | 50.9 | 55.0 | -4.1 | Black |
| 4 | 235.810 k | 40.9 | +0.2 | +6.1 | +0.1 | +0.1 | +0.0 | 47.4 | 52.2 | -4.8 | Black |

5	302.713 k	38.6	+0.2	+6.2	+0.1	+0.1	+0.0	45.2	50.2	-5.0	Black
6	307.804 k	36.9	+0.2	+6.2	+0.1	+0.1	+0.0	43.5	50.0	-6.5	Black
7	293.987 k	36.5	+0.2	+6.2	+0.1	+0.1	+0.0	43.1	50.4	-7.3	Black
8	288.169 k	35.9	+0.2	+6.2	+0.1	+0.1	+0.0	42.5	50.6	-8.1	Black
9	311.440 k	35.0	+0.2	+6.2	+0.1	+0.1	+0.0	41.6	49.9	-8.3	Black
10	248.900 k	36.8	+0.2	+6.1	+0.1	+0.1	+0.0	43.3	51.8	-8.5	Black
11	358.708 k	33.0	+0.2	+6.2	+0.1	+0.0	+0.0	39.5	48.8	-9.3	Black
12	421.975 k	31.6	+0.2	+6.2	+0.1	+0.0	+0.0	38.1	47.4	-9.3	Black
13	179.473 k	33.6	+0.3	+6.1	+0.1	+0.1	+0.0	40.2	54.5	-14.3	Black
Ave											

CKC Laboratories, Inc. Date: 10/4/2007 Time: 13:24:21 Medtronic MiniMed WO\#: 87068 FCC 15.207 COND [AVE] Test Lead: Black 110 V 60 Hz Sequence\#: 41

Page 26 of 46
Report No.: FC07-084B

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Medtronic MiniMed		
Specification:	FCC 15.207 COND [AVE]		
Work Order \#:	$\mathbf{8 7 0 6 8}$	Date:	10/4/2007
Test Type:	Conducted Emissions	Time:	13:28:12
Equipment:	Medtronic CareLink USB	Sequence\#:	42
Manufacturer:	Medtronic MiniMed	Tested By:	E. Wong
Model:	MMT-7305		110 V 60 Hz

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
150kHz HPF	G7755	$01 / 30 / 2006$	$01 / 30 / 2008$	02610
Conducted Emission	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
Cable				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Medtronic CareLink USB*	Medtronic MiniMed	MMT-7305	A07370013
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop	Dell	PP01L	CN-06P823-48155_36K-
			4938
Insulin Pump	Medtronic Minimed	MMT-P7	$010217-F 061$

Test Conditions / Notes:

The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=916.5 \mathrm{MHz}$. The laptop is running test routines to exercise the EUT. Rev 2_CR5, unit 2 (Hardware and software identical to Rev2, Rev2_CR5 incorporates a tracking ID for documentation purposes).

Transducer Legend:

T1 $=150 \mathrm{kHz} \mathrm{HPF}$ Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L2) Insertion Loss 00847 EMCO 3816/2NM

Measu	ment Dato	Reading listed by margin.				Test Lead: White					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	205.267k	43.0	+0.2	+6.1	+0.1	+0.2	+0.0	49.6	53.4	-3.8	White
2	241.627 k	39.4	+0.2	+6.1	+0.1	+0.2	+0.0	46.0	52.0	-6.0	White
3	262.716k	38.0	+0.2	+6.1	+0.1	+0.1	+0.0	44.5	51.3	-6.8	White
4	219.084k	38.8	+0.2	+6.1	+0.1	+0.2	+0.0	45.4	52.9	-7.5	White
5	235.809k	38.1	+0.2	+6.1	+0.1	+0.2	+0.0	44.7	52.2	-7.5	White

6	285.259k	36.4	+0.2	+6.2	+0.1	+0.1	+0.0	43.0	50.7	-7.7	White
7	359.434 k	34.3	+0.2	+6.2	+0.1	+0.1	+0.0	40.9	48.7	-7.8	White
8	290.350k	35.9	+0.2	+6.2	+0.1	+0.1	+0.0	42.5	50.5	-8.0	White
9	230.719k	37.7	+0.2	+6.1	+0.1	+0.2	+0.0	44.3	52.4	-8.1	White
10	300.531 k	33.8	+0.2	+6.2	+0.1	+0.1	+0.0	40.4	50.2	-9.8	White
11	366.706k	32.2	+0.2	+6.2	+0.1	+0.1	+0.0	38.8	48.6	-9.8	White
12	297.622k	33.1	+0.2	+6.2	+0.1	+0.1	+0.0	39.7	50.3	-10.6	White
	$178.402 \mathrm{k}$ Ave	31.8	+0.3	+6.1	+0.1	+0.2	+0.0	38.5	54.6	-16.1	White
\wedge	178.402k	48.6	+0.3	+6.1	+0.1	+0.2	+0.0	55.3	54.6	+0.7	White
\wedge	174.724 k	47.1	+0.4	+6.1	+0.1	+0.2	+0.0	53.9	54.7	-0.8	White
	$\begin{aligned} & 186.359 \mathrm{k} \\ & \text { lve } \\ & \hline \end{aligned}$	18.8	+0.2	+6.1	+0.1	+0.2	+0.0	25.4	54.2	-28.8	White
\wedge	186.359k	48.9	+0.2	+6.1	+0.1	+0.2	+0.0	55.5	54.2	+1.3	White
	$\begin{aligned} & 195.813 \mathrm{k} \\ & \text { lve } \end{aligned}$	9.5	+0.2	+6.1	+0.1	+0.2	+0.0	16.1	53.8	-37.7	White
\wedge	195.813k	44.8	+0.2	+6.1	+0.1	+0.2	+0.0	51.4	53.8	-2.4	White

CKC Laboratories, Inc. Date: 10/4/2007 Time: 13:28:12 Medtronic MiniMed NO\#: 87068 FCC 15.207 COND [AVE] Test Lead: White 110 V 60 Hz Sequence\#: 42

FCC 15.249(a) FIELD STRENGTH OF FUNDAMENTAL

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Medtronic MiniMed	
Specification:	FCC $\mathbf{1 5 . 2 4 9 (a) / (b) ~ F i e l d ~ s t r e n g t h ~ o f ~ F u n d a m e n t a l / ~ F i e l d ~ s t r e n g t h ~ o f ~ H a r m o n i c s ~}$	
Work Order \#:	$\mathbf{8 7 0 6 8}$	Date:
9/25/2007		
Test Type:	Radiated Scan	Time:
Equipment:	Medtronic CareLink USB	Sequence\#:
Manufacturer:	Medtronic MiniMed	Tested By:
E. Wong		

Model: MMT-7305

S/N: A07370013
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Bilog Antenna	2451	$02 / 02 / 2006$	$02 / 02 / 2008$	01995
Pre amp to SA Cable	Cable \#10	$05 / 16 / 2007$	$05 / 16 / 2009$	P05050
Cable	Cable15	$01 / 05 / 2007$	$01 / 05 / 2009$	P05198
Pre Amp	1937A02548	$06 / 01 / 2006$	$06 / 01 / 2008$	00309
Horn Antenna	6246	$06 / 29 / 2006$	$06 / 29 / 2008$	00849
24" SMA Cable	1-26GHz_white	$01 / 11 / 2007$	$01 / 11 / 2009$	P05183
Microwave Pre-amp	$3123 A 00281$	$07 / 19 / 2006$	$07 / 19 / 2008$	00786
Heliax Antenna Cable	P5565	$09 / 18 / 2006$	$09 / 18 / 2008$	P05565
1.0 GHz HPF	1	$03 / 07 / 2006$	$03 / 07 / 2008$	02749
Loop Antenna	2014	$06 / 14 / 2006$	$06 / 14 / 2008$	00314
Spectrum Analyzer	US44300438	$01 / 04 / 2007$	$01 / 04 / 2009$	02672

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Medtronic CareLink USB*	Medtronic MiniMed	MMT-7305	A07370013
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop	Dell	PP01L	CN-06P823-48155_36K-4938

Test Conditions / Notes:

The EUT is placed on the wooden table with 10 cm of Styrofoam. To represent typical usage, the EUT is inserted into the USB port of a support laptop. Frequency $=916.5 \mathrm{MHz}$. The laptop is running test routines to exercise the EUT. $24^{\circ} \mathrm{C}, 48 \%$ relative humidity. Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$. Frequency $9 \mathrm{kHz}-150$ kHz RBW=200 Hz, VBW=200 Hz; $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW=9 kHz, VBW=9 kHz; $30 \mathrm{MHz}-1000 \mathrm{MHz}$ RBW=120 kHz, VBW=120 kHz; $1000 \mathrm{MHz}-10000 \mathrm{MHz}$ RBW=1 MHz, VBW=1 MHz. 15.31(e) Voltage variation: The supply voltage was varied between 85% and 115% of the nominal rated supply voltage in accordance with 15.31 (e) requirement. No variation of the Fundamental field strength level was observed. Rev 2_CR5, unit 2 (Hardware and software identical to Rev2, Rev2_CR5 incorporates a tracking ID for documentation purposes). Duty cycle correction of -7.1 dB applied to Harmonics emission in accordance with 15.35(c).

Transducer Legend:

T1=Preamp 8447D 060108	T2=Bilog AN01995 020208 Chase
T3=Cable \#10 051609	T4=Cable \#15, Site A, 010509
T5=Pre amp 1-26GHz 071908	T6=54' Heliax Cable 091808 P05565
T7=Horn 00849_062908	T8=SMA-cable_W_05183-011109-26GHz
T9=Filter 1GHz HP AN02749	T10=Time of Occupancy Corr -5.4dB
T11=Time of Occupancy Corr -7.1dB	

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \text { dB } \end{gathered}$	$\begin{gathered} \text { T3 } \\ \text { T7 } \\ \text { T11 } \\ \text { dB } \end{gathered}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \text { 1832.985M } \\ & \text { Ave } \end{aligned}$	64.0	$\begin{array}{r} +0.0 \\ -38.9 \\ +0.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.9 \\ -7.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.2 \end{aligned}$	+0.0	48.2	54.0	-5.8	Vert
$\wedge 1832.985 \mathrm{M}$	70.3	$\begin{array}{r} +0.0 \\ -38.9 \\ +0.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.9 \\ -7.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \end{aligned}$	+0.0	54.5	54.0	+0.5	Vert
$\begin{aligned} & 3 \begin{array}{l} 916.500 \mathrm{M} \\ \mathrm{QP} \end{array} \end{aligned}$	82.3	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.0 \\ & +0.0 \end{aligned}$	+0.0	85.3	93.9 Fundamenta	${ }^{-8.6}$	Horiz
$\wedge 916.500 \mathrm{M}$	82.6	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \end{aligned}$	+0.0	85.6	93.9 Fundamental	${ }^{-8.3}$	Horiz
$\begin{aligned} & 5 \text { 1832.968M } \\ & \text { Ave } \end{aligned}$	57.8	$\begin{array}{r} +0.0 \\ -38.9 \\ +0.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.9 \\ -7.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.2 \end{aligned}$	+0.0	42.0	54.0	-12.0	Horiz
$\begin{aligned} & 6 \text { 1832.968M } \\ & \text { Ave } \end{aligned}$	57.8	$\begin{array}{r} +0.0 \\ -38.9 \\ +0.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.9 \\ -7.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \end{aligned}$	+0.0	42.0	54.0	-12.0	Horiz
$\wedge 1832.968 \mathrm{M}$	64.7	$\begin{array}{r} +0.0 \\ -38.9 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.9 \\ -7.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \end{aligned}$	+0.0	48.9	54.0	-5.1	Horiz
$\wedge 1832.968 \mathrm{M}$	64.4	$\begin{array}{r} +0.0 \\ -38.9 \\ +0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.9 \\ -7.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \end{aligned}$	+0.0	48.6	54.0	-5.4	Horiz
$\begin{aligned} & 9 \begin{array}{l} 916.500 \mathrm{M} \\ \text { QP } \end{array} \end{aligned}$	78.7	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \end{aligned}$	+0.0		93.9 Fundamenta	$\mathrm{al}^{-12.2}$	Vert
$\wedge 916.500 \mathrm{M}$	79.4	$\begin{gathered} -27.2 \\ +0.0 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+23.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \end{aligned}$	+0.0	82.4	93.9 Fundamenta	${ }^{-11.5}$	Vert
11 7331.880M	37.8	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +6.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -7.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.9 \end{aligned}$	+0.0	39.4	54.0	-14.6	Horiz
12 5499.080M	39.7	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +6.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.2 \\ -7.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	+0.0	37.9	54.0	-16.1	Horiz

Note: The video output of a spectrum analyzer was monitored with the O'scope to capture and measure the duty cycle of the transmission burst. Several captures were made to determine the range of duty cycle values, and the worst case measured was saved. Captured O'scope display, showing a 70.85% duty cycle within a 62 ms burst. This equates to a total on-time of 43.9 ms during a 100 ms window, which calculates out to a duty cycle correction factor of -7.1 dB .

Equipment	Asset\#	Serial\#	Cal Date	Cal Due Date
HP 8596E Spec An	AN00784	$3346 A 00209$	$11 / 08 / 2006$	$11 / 08 / 2008$
Tektronix Oscilloscope	AN02863	B014335	$3 / 2 / 2007$	$3 / 2 / 2009$

FCC 15.209/15.249(d) SPURIOUS RADIATED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Medtronic MiniMed
Specification:	FCC 15.249(d) / 15.209
Work Order \#:	$\mathbf{8 7 0 6 8}$
Test Type:	Radiated Scan
Equipment:	Medtronic CareLink USB
Manufacturer:	Medtronic MiniMed
Model:	MMT-7305
S/N:	A07370013

Date: 10/4/2007
Time: 11:47:35
Sequence\#: 7
Tested By: E. Wong

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Bilog Antenna	2451	$02 / 02 / 2006$	$02 / 02 / 2008$	01995
Pre amp to SA Cable	Cable \#10	$05 / 16 / 2007$	$05 / 16 / 2009$	P05050
Cable	Cable15	$01 / 05 / 2007$	$01 / 05 / 2009$	P05198
Pre Amp	1937A02548	$06 / 01 / 2006$	$06 / 01 / 2008$	00309
Horn Antenna	6246	$06 / 29 / 2006$	$06 / 29 / 2008$	00849
24" SMA Cable	$1-26 G H z _w h i t e$	$01 / 11 / 2007$	$01 / 11 / 2009$	P05183
Microwave Pre-amp	$3123 A 00281$	$07 / 19 / 2006$	$07 / 19 / 2008$	00786
Heliax Antenna Cable	P5565	$09 / 18 / 2006$	$09 / 18 / 2008$	P05565
1.0 GHz HPF	1	$03 / 07 / 2006$	$03 / 07 / 2008$	02749
Spectrum Analyzer	US44300438	$01 / 04 / 2007$	$01 / 04 / 2009$	02672

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Medtronic CareLink USB*	Medtronic MiniMed	MMT-7305	A07370013
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop	Dell	PP01L	CN-06P823-48155_36K-
			4938
Printer	Epson	Stylus 880	CMR1545596
Insulin Pump	Medtronic Minimed	MMT-P7	010217-F061

Test Conditions / Notes:

The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=916.5 \mathrm{MHz}, \mathrm{TX} / \mathrm{RX}$. The laptop is running test routines to exercise the EUT, transmits and receives data packets to a support receiver in the vicinity. Connected to the support laptop is a parallel printer. $24^{\circ} \mathrm{C}, 48 \%$ relative humidity. Frequency range of measurement $=30 \mathrm{MHz}-$ 10 GHz . Frequency: $30 \mathrm{MHz}-1000 \mathrm{MHz}$ RBW=120 kHz, VBW=120 kHz; $1000 \mathrm{MHz}-10000 \mathrm{MHz}$ RBW=1 MHz , VBW=1 MHz. Emission profile of three orthogonal orientations was investigated, worst case data is presented. Rev 2, unit 1, CR5.

Transducer Legend:

T1=Preamp 8447D 060108	T2=Bilog AN01995 020208 Chase
T3=Cable \#10 051609	T4=Cable \#15, Site A, 010509
T5=Pre amp 1- 26GHz 071908	T6=54' Heliax Cable 091808 P05565
T7=Horn 00849_062908	T8=SMA-cable_W_05183-011109-26GHz
T9=Filter 1GHz HP AN02749	

Meas	sur	rement Data:	Reading listed by margin.				Test Distance: 3 Meters						
\#		FreqMHz	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
		T5		T6	T7	T8							
		$\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T9 } \\ & \text { dB } \end{aligned}$	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant		
1			158.100M	54.3	-27.7	+10.3	+0.2	+2.3	+0.0	39.4	43.5	-4.1	Vert
				+0.0	+0.0	+0.0	+0.0						
				+0.0									
2			56.900M	53.9	-27.7	+7.0	+0.1	+1.3	+0.0	34.6	40.0	-5.4	Vert
				+0.0	+0.0	+0.0	+0.0						
				+0.0									
3		36.077 M	44.8	-27.8	+16.1	+0.1	+1.0	+0.0	34.2	40.0	-5.8	Vert	
				+0.0	+0.0	+0.0	+0.0						
				+0.0									
4		56.328M	53.0	-27.7	+7.2	+0.1	+1.3	+0.0	33.9	40.0	-6.1	Vert	
				+0.0	+0.0	+0.0	+0.0						
				+0.0									
5		398.620M	47.2	-27.8	+15.8	+0.4	+3.7	+0.0	39.3	46.0	-6.7	Horiz	
				+0.0	+0.0	+0.0	+0.0						
				+0.0									
6		157.500M	51.3	-27.7	+10.4	+0.2	+2.3	+0.0	36.5	43.5	-7.0	Horiz	
		QP		+0.0	+0.0	+0.0	+0.0						
				+0.0									
\wedge		157.500M	56.9	-27.7	+10.4	+0.2	+2.3	+0.0	42.1	43.5	-1.4	Horiz	
				+0.0	+0.0	+0.0	+0.0						
				+0.0									

	157.900M QP	50.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	36.0	43.5	-7.5	Horiz
\wedge	157.900M	56.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	41.7	43.5	-1.8	Horiz
10	60.600M	51.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +6.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	+0.0	31.4	40.0	-8.6	Vert
11	160.299M	49.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	34.8	43.5	-8.7	Vert
12	599.971M	39.4	$\begin{array}{r} \hline-27.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+19.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.7 \\ & +0.0 \end{aligned}$	+0.0	37.0	46.0	-9.0	Horiz
13	173.500M	49.6	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	34.1	43.5	-9.4	Horiz
14	33.061M	39.4	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	+0.0	30.3	40.0	-9.7	Vert
15	32.311M	38.5	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	+0.0	29.7	40.0	-10.3	Vert
16	912.050M	32.7	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	+0.0	35.5	46.0	-10.5	Vert
17	664.680M	35.9	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+20.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.0 \\ & +0.0 \end{aligned}$	+0.0	34.8	46.0	-11.2	Vert
18	165.600M	47.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	32.3	43.5	-11.2	Vert
19	169.299M	47.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	32.2	43.5	-11.3	Vert
20	480.042M	39.6	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.1 \\ & +0.0 \end{aligned}$	+0.0	34.1	46.0	-11.9	Horiz
21	173.100M	46.5	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	31.0	43.5	-12.5	Vert
22	398.900M	41.4	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.7 \\ & +0.0 \end{aligned}$	+0.0	33.5	46.0	-12.5	Horiz
23	177.110M	46.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	31.0	43.5	-12.5	Vert
24	288.005M	44.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.1 \\ & +0.0 \end{aligned}$	+0.0	33.4	46.0	-12.6	Horiz

Page 37 of 46

25	240.010M	46.2	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.8 \\ & +0.0 \end{aligned}$	+0.0	33.4	46.0	-12.6	Horiz
26	1462.270M	51.5	$\begin{array}{r} +0.0 \\ -39.3 \\ +0.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	+0.0	41.2	54.0	-12.8	Vert
27	960.042M	36.7	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \end{aligned}$	+0.0	41.1	54.0	-12.9	Horiz
28	144.000M	44.6	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	+0.0	30.5	43.5	-13.0	Horiz
29	143.850M	44.4	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	+0.0	30.3	43.5	-13.2	Horiz
30	398.740M	40.6	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \end{aligned}$	+0.0	32.7	46.0	-13.3	Vert
31	720.000M	32.2	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+21.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.2 \\ & +0.0 \end{aligned}$	+0.0	32.1	46.0	-13.9	Horiz
32	349.992M	40.4	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	+0.0	31.1	46.0	-14.9	Horiz
33	208.005M	43.7	$\begin{array}{r} -27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	+0.0	28.4	43.5	-15.1	Horiz
34	533.100M	34.0	$\begin{array}{r} \hline-27.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+19.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.4 \\ & +0.0 \end{aligned}$	+0.0	30.5	46.0	-15.5	Vert
35	649.971M	31.2	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+20.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.9 \\ & +0.0 \end{aligned}$	+0.0	29.9	46.0	-16.1	Horiz
36	384.005M	38.1	$\begin{array}{r} -27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$	+0.0	29.8	46.0	-16.2	Horiz
37	378.830M	38.1	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$	+0.0	29.7	46.0	-16.3	Horiz
38	332.950M	39.4	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	29.6	46.0	-16.4	Horiz
39	141.900M	40.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.1 \\ & +0.0 \end{aligned}$	+0.0	26.6	43.5	-16.9	Horiz
40	960.030M	32.4	$\begin{array}{r} \hline-27.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \end{aligned}$	+0.0	36.8	54.0	-17.2	Vert
41	120.600M	39.6	$\begin{gathered} -27.6 \\ +0.0 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \end{aligned}$	+0.0	25.6	43.5	-17.9	Vert

Page 38 of 46

42	47.971M	38.3	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \end{aligned}$	+0.0	21.9	40.0	-18.1	Horiz
43	300.010M	38.4	$\begin{array}{r} -27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.2 \\ & +0.0 \end{aligned}$	+0.0	27.4	46.0	-18.6	Horiz
44	365.280M	36.1	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$	+0.0	27.2	46.0	-18.8	Horiz
45	143.100M	38.8	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.1 \\ & +0.0 \end{aligned}$	+0.0	24.6	43.5	-18.9	Vert
46	976.060M	30.4	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	+0.0	34.7	54.0	-19.3	Horiz
47	992.030M	30.2	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	+0.0	34.6	54.0	-19.4	Horiz
48	329.190M	36.5	$\begin{array}{r} -27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	26.6	46.0	-19.4	Vert
49	365.580M	35.4	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.9 \\ +0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$	+0.0	26.5	46.0	-19.5	Horiz
50	992.070M	30.0	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	+0.0	34.4	54.0	-19.6	Horiz
51	473.900M	31.6	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.1 \\ & +0.0 \end{aligned}$	+0.0	26.1	46.0	-19.9	Horiz
52	336.690M	35.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	26.0	46.0	-20.0	Vert
53	232.530M	38.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.8 \\ & +0.0 \end{aligned}$	+0.0	25.4	46.0	-20.6	Horiz
54	976.020M	28.8	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	+0.0	33.1	54.0	-20.9	Vert
55	984.130M	28.6	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.2 \\ & +0.0 \end{aligned}$	+0.0	32.9	54.0	-21.1	Vert
56	976.120M	28.5	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	+0.0	32.8	54.0	-21.2	Horiz
57	330.600M	34.6	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	24.7	46.0	-21.3	Vert
58	322.530M	34.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +13.8 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.3 \\ & +0.0 \end{aligned}$	+0.0	24.4	46.0	-21.6	Horiz

Page 39 of 46

59	390.600M	32.4	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \end{aligned}$	+0.0	24.3	46.0	-21.7	Vert
60	198.570M	37.5	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+8.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	+0.0	21.5	43.5	-22.0	Vert
61	351.690M	33.2	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +14.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	+0.0	23.9	46.0	-22.1	Vert
62	321.690M	34.1	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.3 \\ & +0.0 \end{aligned}$	+0.0	23.8	46.0	-22.2	Vert
63	195.770M	36.7	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+8.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	+0.0	20.7	43.5	-22.8	Horiz
64	1730.000M	39.3	$\begin{array}{r} +0.0 \\ -39.0 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.2 \end{aligned}$	+0.0	30.3	54.0	-23.7	Vert
65	274.140M	32.7	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+12.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	+0.0	21.2	46.0	-24.8	Vert
66	458.900M	26.6	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	+0.0	20.7	46.0	-25.3	Horiz
67	$1460.800 \mathrm{M}$ Ave	37.4	$\begin{array}{r} +0.0 \\ -39.3 \\ +0.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	+0.0	27.1	54.0	-26.9	Vert

OCCUPIED BANDWIDTH

Test Equipment

Equipment	Asset \#	Manufacturer	Model	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447 D	1937 A02548	060106	060108
Antenna cable	P05198	Belden	8268 (RG-214)	Cable\#15	010507	010509
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable\#10	051607	051609

Test Setup Photo

Test Conditions: The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=$ 916.5 MHz. The laptop is running test routines to exercise the EUT. The EUT transmits and receives data packets to a support receiver in the vicinity. The emissions profile of three orthogonal orientations was investigated. Data set represents worst case emission: flat.

Plot

OCCUPIED BANDWIDTH -20dBc

BANDEDGE

Test Equipment

Equipment	Asset \#	Manufacturer	Model	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447 D	$1937 A 02548$	060106	060108
Antenna cable	P05198	Belden	8268 $(R G-214)$	Cable\#15	010507	010509
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable\#10	051607	051609

Test Setup Photo

Test Conditions: The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=$ 916.5 MHz. The laptop is running test routines to exercise the EUT. The EUT transmits and receives data packets to a support receiver in the vicinity. The emissions profile of three orthogonal orientations was investigated. Data set represents worst case emission: flat.

Plots

BANDEDGE - LOW

BANDEDGE - HIGH

RSS-210 99\% BANDWIDTH

Test Equipment

Equipment	Asset \#	Manufacturer	Model	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447 D	$1937 A 02548$	060106	060108
Antenna cable	P05198	Belden	8268 (RG-214)	Cable\#15	010507	010509
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable\#10	051607	051609

Test Setup Photo

Test Conditions: The EUT is placed on the wooden table with 10 cm of Styrofoam. The EUT is connected to the USB port of a support laptop via a 2 meter, shielded USB cable. Frequency $=$ 916.5 MHz. The laptop is running test routines to exercise the EUT. The EUT transmits and receives data packets to a support receiver in the vicinity. The emissions profile of three orthogonal orientations was investigated. Data set represents worst case emission: flat.

Plot

RSS-210 99\% BANDWIDTH

