

CERTIFICATION TEST REPORT

FOR THE

MODEL 500 REMOTE PROGRAMER, MMT-500RU

FCC PART 15 SUBPART C

COMPLIANCE

DATE OF ISSUE: MARCH 22, 1999

PREPARED FOR:

MiniMed Inc. 12744 San Fernando Road Sylmar, CA 91342

P.O. No: 15703 W.O. No: 71069

Report No: FC99-016

DOCUMENTATION CONTROL:

PREPARED BY:

Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: March 10, 1999

APPROVED BY:

Dennis Ward

Tracy Phillips Documentation Control Supervisor CKC Laboratories, Inc. Dennis Ward Director of Laboratories CKC Laboratories, Inc.

This report contains a total of 21 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Page 1 of 21 Report No: FC99-016

TABLE OF CONTENTS

Administrative Information	3
Summary Of Results	4
Equipment Under Test (EUT) Description	4
Measurement Uncertainty	4
EUT Operating Frequency	4
Peripheral Devices	4
Report Of Measurements	5
Table 1: Six Highest Fundamental Emission Levels	5
Table 2: Six Highest Spurious Emission Levels	6
Table A : List Of Test Equipment	7
EUT Setup	8
Test Instrumentation And Analyzer Settings	8
Table B : Analyzer Bandwidth Settings Per Frequency Range	8
Spectrum Analyzer Detector Functions	9
Peak	9
Quasi-Peak	9
Average	9
Test Methods	10
Radiated Emissions Testing	10
Occupied Bandwidth	10
Sample Calculations	11
Appendix A : Information About The Equipment Under Test	12
I/O Ports	13
Crystal Oscillators	13
Printed Circuit Boards	13
Required EUT Changes To Comply	13
Photograph Showing Radiated Emissions	14
Photograph Showing Radiated Emissions	15
Appendix B : Measurement Data Sheets	16
Occupied Bandwidth Plot	17
Occupied Bandwidth Plot	18

CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies: DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (Taiwan); HOKLAS (Hong Kong). **CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies**: ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-Korea; TUV Rheinland-Russia; Radio Communication Agency (RA); NEMKO (Norway).

ADMINISTRATIVE INFORMATION

DATE OF TEST:	March 10, 1999
PURPOSE OF TEST:	To demonstrate the compliance of the Model 500 Remote Programer, MMT- 500RU, with the requirements for FCC Part 15 Subpart C devices.
MANUFACTURER:	MiniMed Inc. 12744 San Fernando Road Sylmar, CA 91342
REPRESENTATIVE:	Jay Yonemoto
TEST LOCATION:	CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338
TEST PERSONNEL:	Skip Doyle
TEST METHOD:	ANSI C63.4 1992
FREQUENCY RANGE TESTED:	30 MHz - 1000 MHz
EQUIPMENT UNDER TEST:	Model 500 Remote ProgramerManuf:MiniMed Inc.Model:MMT-500RUSerial:Sample 2FCC ID:(pending)

SUMMARY OF RESULTS

The MiniMed Inc. Model 500 Remote Programer, MMT-500RU, was tested in accordance with ANSI C63.4 1992 for compliance with FCC Part 15 Subpart C devices.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 15 Subpart C. The results in this report apply only to the items tested, as identified herein.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Hand held battery operated RF remote controller.

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ± 4 dB measurement uncertainty.

EUT OPERATING FREQUENCY

The EUT was operating at 418.00 MHz.

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

PERIPHERAL DEVICES

The EUT was not tested with any peripheral devices.

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the Model 500 Remote Programer, MMT-500RU. All readings taken are peak readings unless otherwise noted by a "Q" or "A". The data sheets from which these tables were compiled are contained in Appendix B.

Table 1: Six Highest Fundamental Emission Levels									
FREQUENCY MHz	METER READING dBµV	CO Ant dB	RRECTIO Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
418.136	70.5	18.2	-27.4	4.1		65.4	79.8	-14.4	Н
418.137	78.6	18.2	-27.4	4.1		73.5	79.8	-6.3	V
418.138	75.4	18.2	-27.4	4.1		70.3	79.8	-9.5	Н
418.145	78.2	18.2	-27.4	4.1		73.1	79.8	-6.7	V
418.149	80.7	18.2	-27.4	4.1		75.6	79.8	-4.2	HQ
418.150	80.9	18.2	-27.4	4.1		75.8	79.8	-4.0	Н

Test Method: Spec Limit : Test Distance: ANSI C63.4 1992 FCC 15.231 3 Meters

H = Horizontal Polarization

V = Vertical Polarization

N = No Polarization

D = Dipole ReadingQ = Quasi Peak Reading

A = Average Reading

COMMENTS: EUT is located on the 80cm table at the center of the Barn's turntable. EUT is continuously transmitting a digital modulated carrier signal and maximized using three axis of orientation. FUNDAMENTAL ONLY.

NOTES:

Table 2: Six Highest Spurious Emission Levels									
FREQUENCY MHz	METER READING dBµV	CO Horn dB	RRECTIO Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
1672.310	51.7	26.5	-35.2	6.7		49.7	61.9	-12.2	Н
2508.410	46.4	30.0	-31.9	11.2		55.7	61.9	-6.2	Н
2926.459	40.5	31.7	-31.6	13.1		53.7	61.9	-8.2	Н
3344.499	38.0	31.9	-32.5	12.9		50.3	61.9	-11.6	V
3762.558	37.1	32.7	-33.2	12.8		49.4	61.9	-12.5	V
4180.627	41.1	33.1	-33.4	13.1		53.9	61.9	-8.0	V

Test Method: Spec Limit : Test Distance: ANSI C63.4 1992 FCC 15.231 3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization

N = No Polarization

D = Dipole Reading

Q = Quasi Peak Reading A = Average Reading

COMMENTS: EUT is located on the 80cm table at the center of the Barn's turntable. EUT is continuously transmitting a digital modulated carrier signal and maximized using three axis of orientation. SPURIOUS EMISSIONS.

TABLE A

LIST OF TEST EQUIPMENT

VCCI Acceptance No. R-565 & C-580

- 1. Spectrum Analyzer, Hewlett Packard, Model No. 8566B, S/N 2209A01404. Calibration date: June 12, 1998. Calibration due date: June 12, 1999.
- 2. Preamp, Hewlett Packard, Model No. 8447D, S/N 1937A01933. Calibration date: April 10, 1998. Calibration due date: April 10, 1999.
- 3. Preamp, Hewlett Packard, Model No. 8449B, S/N 3008A00301. Calibration date: October 15, 1998. Calibration due date: October 15, 1999.
- 4. Quasi-Peak Adapter, Hewlett Packard, Model No. 85650A, S/N 2811A01267. Calibration date: June 12, 1998. Calibration due date: June 12, 1999.
- 5. Biconical Antenna, A & H Systems, Model No. SAS-200/542, S/N 156. Calibration date: June 9, 1998. Calibration due date: June 9, 1999.
- 6. Log Periodic Antenna, A & H Systems, Model No. SAS-200/512, S/N 154. Calibration date: June 9, 1998. Calibration due date: June 9, 1999.
- 7. Horn Antenna, EMCO, Model No. 3115, S/N 4683. Calibration date: February 17, 1999. Calibration due date: February 17, 2000.
- 8. Site B (Barn) Calibration date: June 18, 1998. Site B (Barn) Calibration due date: June 18 1999.
- 9. Test software, EMI Test 2.91.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Table 1 for fundamental radiated emissions and Table 2 for spurious emissions. Additionally, a complete description of all the ports and I/O cables is included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect the radiated emissions data for the Model 500 Remote Programer, MMT-500RU. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. For frequencies above 1000 MHz the horn antenna was used. All antennas were located at a distance of 3 meters from the edge of the EUT.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

TABLE B : ANAL IZER BANDWIDTH SETTINGS PER FREQUENCT RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	42 GHz	1 MHz			

TABLE B : ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1 and 2 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Model 500 Remote Programer, MMT-500RU.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

<u>Average</u>

When the frequencies exceed 1 GHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

TEST METHODS

The radiated emissions data of the Model 500 Remote Programer, MMT-500RU, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15, Subpart C emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

Radiated Emissions Testing

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. The frequency range of 30 MHz - 88 MHz was then scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks, which were at or near the limit, were recorded. The frequency range of 100 - 300 MHz was scanned with the biconical antenna in the same manner, and the peaks recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was again scanned. The horn antenna was used for frequencies above 1000 MHz. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough final scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation and antenna height. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

FCC Part 15.231(c) - Occupied Bandwidth Measurements

In accordance with Part 15.231(c), the bandwidth was kept within 0.25% of the center frequency.

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the emissions readings in Tables 1 and 2. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula:

Meter reading (dBµV) + Antenna Factor (dB) + Cable Loss (dB)

- Distance Correction (dB)
- Pre-amplifier Gain (dB)

= Corrected Reading($dB\mu V/m$)

This reading was then compared to the applicable specification limit to determine compliance.

A typical data sheet will display the following in column format:

#	Freq MHz	Rdng dBuV	Cable	Amp.	Bicon	Horn	Log	Dist	Corr dBuV/m	Spec	Margin	Polar
---	-------------	--------------	-------	------	-------	------	-----	------	----------------	------	--------	-------

means reading number

Freq MHz is the frequency in MHz of the obtained reading.

Rdng dBuV is the reading obtained on the spectrum analyzer in $dB\mu V$.

Amp. is short for the preamplifier factor or gain in dB.

Bicon is the biconical antenna factor in dB.

Log is the log periodic antenna factor in dB.

Horn is the horn antenna factor in dB.

Cable is the cable loss in dB of the coaxial cable on the OATS.

Dist is the distance factor (in dB). It is used when testing at a different test distance than the one stated in the spec.

Corr dB\muV/m is the corrected reading which is now in dB μ V/m (field strength).

Spec is the specification limit (dB) stated in the agency's regulations.

Margin is the closeness to the specified limit in dB; + is over and - is under the limit.

Polar is the Polarity of the antenna with respect to earth.

APPENDIX A

INFORMATION ABOUT THE EQUIPMENT UNDER TEST

INFORMATION ABOUT THE EQUIPMENT UNDER TEST					
Test Software/Firmware:	N/A				
CRT was displaying:	N/A				
Power Supply Manufacturer:	N/A				
Power Supply Part Number:	N/A				
AC Line Filter Manufacturer:	N/A				
AC Line Filter Part Number:	N/A				
Line voltage used during testing:	N/A				

	I/O PORTS	CRYSTAL OSCILLATORS		
Туре	#	Туре	Freq. In MHz	
N/A	N/A	Crystal	1.8432	

PRINTED CIRCUIT BOARDS						
Function	Model & Rev	Clocks, MHz	Layers	Location		
500 Remote PCB	D6053117-001 Rev -	1.8432	2	N/A		

REQUIRED EUT CHANGES TO COMPLY:	
None	

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

NOTES:

Page 14 of 21 Report No: FC99-016

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

NOTES:

Page 15 of 21 Report No: FC99-016

APPENDIX B

MEASUREMENT DATA SHEETS

Page 16 of 21 Report No: FC99-016

Occupied Bandwidth Plot

Occupied Bandwidth Plot

Test Location: Customer: Specification: Test Type:	CKC Laboratories, Inc. • MiniMed FCC 15.231 Maximized Emissions	5473A Clouds Rest Rd, Barn • Maripo Date: Time: Sacuence#:	osa, CA 95338 • (800)-500-4EMC Mar-11-99 10:37
Equipment:	Transmitter	Sequence#:	1
Manufacturer: Model: S/N:	MiniMed MMT-500RU Sample 2	Tested By:	Skip Doyle

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Transmitter	MiniMed	MMT-500RU	Sample 2

Support Devices:

$\sim r_F$				
Function	Manufacturer	Model #	S/N	
None				

Test Conditions / Notes: EUT is located on the 80cm table at the center of the Barn's turntable. EUT is continuously transmitting a digital modulated carrier signal and maximized using three axis of orientation. FUNDAMENTAL ONLY.

Meası	irement Data:		Sorte	ed by Mar	gin		Т	est Distance	e: 3 Meters		
#	Freq MHz	Rdng dBµV	Amp dB	Log dB	Cable dB	dB	Dist dB	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar
]	418.149 Quasi Peak Flat	80.7	-27.4	+18.2	+4.1		+0.0	75.6	79.8	-4.2	Horiz
/	418.150 Flat	80.9	-27.4	+18.2	+4.1		+0.0	75.8	79.8	-4.0	Horiz
/	418.138	75.4	-27.4	+18.2	+4.1		+0.0	70.3	79.8	-9.5	Horiz
	Side										
	418.136	70.5	-27.4	+18.2	+4.1		+0.0	65.4	79.8	-14.4	Horiz
	End										
	5 418.137 End	78.6	-27.4	+18.2	+4.1		+0.0	73.5	79.8	-6.3	Vert
6	5 418.145	78.2	-27.4	+18.2	+4.1		+0.0	73.1	79.8	-6.7	Vert
	Side										
	7 418.134 Flat	70.4	-27.4	+18.2	+4.1		+0.0	65.3	79.8	-14.5	Vert

Test Location: CKC Laboratories, Inc. • 5473A Clouds Rest Rd, Barn • Mariposa, CA 95338 • (800)-500-4EMC

Customer: Specification:	MiniMed FCC 15.231 Spurious Emission	Date: Time:	Mar-11-99 10:38
Test Type: Equipment:	Maximized Emissions Transmitter	Sequence#:	3
Manufacturer:	MiniMed	Tested By:	Skip Doyle
Model:	MMT-500RU		
S/N:	Sample 2		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Transmitter	MiniMed	MMT-500RU	Sample 2

Support Devices:

I II I I I I I I I I I I I I I I I I I				
Function	Manufacturer	Model #	S/N	
None				

Test Conditions / Notes:

EUT is located on the 80cm table at the center of the Barn's turntable. EUT is continuously transmitting a digital modulated carrier signal and maximized using three axis of orientation. SPURIOUS EMISSIONS

Measu	rement Data:		Sort	ed by Mar	gin		Test Distance: 3 Meters				
#	Freq MHz	Rdng dBµV	Amp Horn dB	Log Amp dB	Cable Cable dB	dB	Dist dB	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar
1	2508.410	46.4	$^{+0.0}_{+30.0}$	+0.0 -31.9	$^{+0.0}_{+11.2}$		+0.0	55.7	61.9	-6.2	Horiz
	6TH HARM	44.0	0.0	0.0	0.0		0.0		(1.0		
2	2508.410	44.9	$^{+0.0}_{+30.0}$	+0.0 -31.9	$^{+0.0}_{+11.2}$		+0.0	54.2	61.9	-7.7	Vert
	6TH HARM										
3	4180.627	41.1	$^{+0.0}_{+33.1}$	+0.0 -33.4	$^{+0.0}_{+13.1}$		+0.0	53.9	61.9	-8.0	Vert
	10TH HARM										
4	2926.459	40.5	$^{+0.0}_{+31.7}$	+0.0 -31.6	$^{+0.0}_{+13.1}$		+0.0	53.7	61.9	-8.2	Horiz
	7TH HARM										
5	4180.628	40.3	$^{+0.0}_{+33.1}$	+0.0 -33.4	$^{+0.0}_{+13.1}$		+0.0	53.1	61.9	-8.8	Horiz
	10TH HARM										
6	2926.455	38.3	$^{+0.0}_{+31.7}$	+0.0 -31.6	$^{+0.0}_{+13.1}$		+0.0	51.5	61.9	-10.4	Vert
	7TH HARM										
7	3344.499	38.0	$^{+0.0}_{+31.9}$	+0.0 -32.5	$^{+0.0}_{+12.9}$		+0.0	50.3	61.9	-11.6	Vert
	8TH HARM				,						
8	3344.530	37.5	$^{+0.0}_{+31.9}$	+0.0 -32.5	$^{+0.0}_{+12.9}$		+0.0	49.8	61.9	-12.1	Horiz
	8TH HARM										
9	1672.310	51.7	$^{+0.0}_{+26.5}$	+0.0 -35.2	$^{+0.0}_{+6.7}$		+0.0	49.7	61.9	-12.2	Horiz
	4TH HARM										
10	3762.558	37.1	$^{+0.0}_{+32.7}$	+0.0	$^{+0.0}_{+12.8}$		+0.0	49.4	61.9	-12.5	Vert
	9TH HARM										
11	3762.558	35.1	$^{+0.0}_{+32.7}$	+0.0	$^{+0.0}_{+12.8}$		+0.0	47.4	61.9	-14.5	Horiz
	9TH HARM										

10	1672 200	40.1		100	100	+0.0	16 1	61.0	15.0	Vort
12	1072.500	46.1	+0.0	+0.0	+0.0	+0.0	40.1	01.9	-13.8	ven
			+26.5	-35.2	+6.7					
4'	TH HARM									
13	1254.249	48.2	+0.0	+0.0	+0.0	+0.0	43.3	61.9	-18.6	Horiz
_			+24.9	-35.7	+5.9					
3	RD HARM									
14	2090.360	40.5	+0.0	+0.0	+0.0	+0.0	42.6	61.9	-19.3	Horiz
			+28.5	-34.4	+8.0					
5'	TH HARM									
15	836.183	39.8	-27.7	+22.7	+5.9	+0.0	40.7	61.9	-21.2	Horiz
			+0.0	+0.0	+0.0					
2	ND HARM									
16	2090.349	37.2	+0.0	+0.0	+0.0	+0.0	39.3	61.9	-22.6	Vert
10	20701017	0,12	+28.5	-34.4	+8.0		0710	0115		
5'	TH HARM		120.5	51.1	10.0					
17	836.201	34.3	-27.7	+22.7	+5.9	+0.0	35.2	61.9	-26.7	Vert
			+0.0	+0.0	+0.0					
2	ΝΟ ΗΔΡΜ		10.0	10.0	10.0					
10	1254.255	20.1	.0.0	.00	.0.0	.0.0	24.2	(1.0	27.7	N / (
18	1254.255	39.1	+0.0	+0.0	+0.0	+0.0	34.2	61.9	-21.1	vert
			+24.9	-35.7	+5.9					
3	RD HARM									