Medtronic MiniMed

REVISED TEST REPORT FOR

NGP Insulin Pump Model: MMT-1781KQ

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (DTS 2400-2483.5 MHz)

Report No.: 99536-88A

Date of issue: October 17, 2017

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 47 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information3
Test Report Information3
Revision History
Report Authorization
Test Facility Information4
Software Versions4
Site Registration & Accreditation Information4
Summary of Results
Modifications During Testing5
Conditions During Testing
Equipment Under Test6
General Product Information7
FCC Part 15 Subpart C8
15.247(a)(2) 6dB Bandwidth
15.247(b)(3) Output Power
15.247(e) Power Spectral Density19
15.247(d) Radiated Emissions & Band Edge27
Supplemental Information
Measurement Uncertainty46
Emissions Test Details46

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Medtronic MiniMed 18000 Devonshire Street Northridge, CA 91325-1219 **REPORT PREPARED BY:**

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Greg Bowden Customer Reference Number: 4500117074

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: Project Number: 99536

February 8, 2017 February 8-11, 2017

Revision History

Original: Testing of the NGP Insulin Pump, Model: MMT-1781KQ to FCC Part 15 Subpart C Section(s) 15.247 (DTS 2400-2483.5 MHz).

Revision A: To replace the data in section 15.247(d) Radiated Emissions 1-26GHz due to incorrect transducer noted.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Canyon Park	US0081	SL2-IN-E-	3082C-1	1161022	A 0149
Bothell, WA	030081	1145R	5082C-1	US1022	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS) (2400-2483.5 MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NA2
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NA1

NA = Not Applicable

NA1 = Not applicable because the EUT is only battery powered.

NA2 = Not applicable because the EUT does not have an antenna port.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
NGP Insulin Pump (Jabil)	Medtronic MiniMed	MMT-1781KQ	NG0011690X	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
None				

Configuration 2

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
NGP Insulin Pump (Jabil)	Medtronic MiniMed	MMT-1781KQ	NG0011688X	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
None				

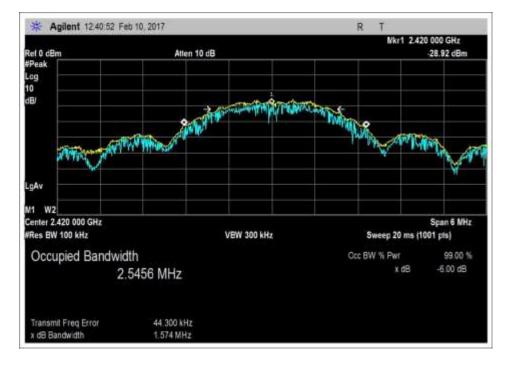
General Product Information:

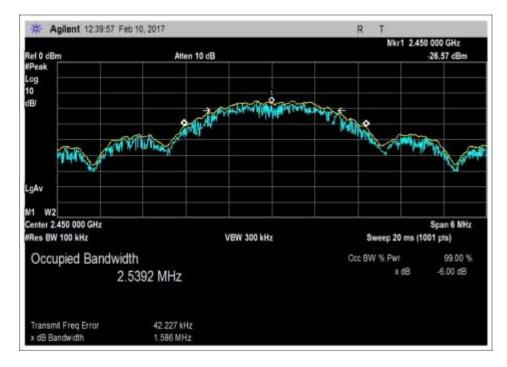
Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.15.4
Operating Frequency Range:	2420MHz-2480MHz
Modulation Type(s):	O-QPSK
Maximum Duty Cycle:	23%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Integral OdBi
Beamforming Type:	None
Antenna Connection Type:	Integral
Nominal Input Voltage:	1.5V battery
Firmware / Software used for Test:	6x0G XTest PRM 2.5A (M969745DOC)

FCC Part 15 Subpart C

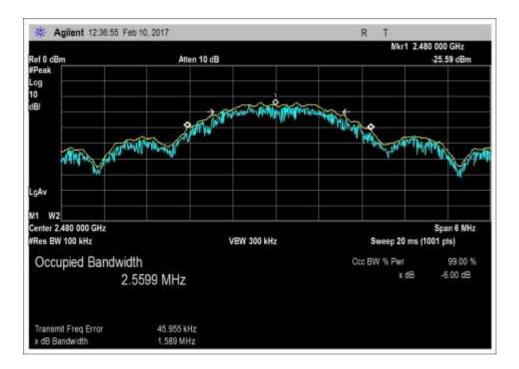
15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	S. Pittsford		
Test Method:	ANSI C63.10 (2013), KDB 558074 Test Date(s): 2/10/2017 D01 DTS Meas Guidance v03r05 (04/08/2016)				
Configuration:	2				
Test Setup:	2 Frequency tested: 2420MHz, 2450MHz, 2480MHz Firmware power setting: Max Power EUT Firmware: 6x0G XTest PRM 2.5A(M969745DOC) Duty Cycle: 100% Test Mode: Continuously modulated Test Setup: EUT is set in a test fixture (nearfield probe connected to spectrum analyzer via a cable).				


Environmental Conditions				
Temperature (^o C)	23.5	Relative Humidity (%):	30	


Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02673	Spectrum Analyzer	Agilent	E4446A	2/3/2017	2/3/2019	
P06867	Cable	Astrolab	32026-29080- 29080-84	10/16/2015	10/16/2017	

	Test Data Summary						
Frequency (MHz)	Antenna Port	Measured (kHz)	Limit (kHz)	Results			
2420	1	O-QPSK	1574	≥500	Pass		
2450	1	O-QPSK	1586	≥500	Pass		
2480	1	O-QPSK	1589	≥500	Pass		



Plot(s)

Test Setup Photo(s)

15.247(b)(3) Output Power

Test Setup / Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford		
Test Method:	ANSI C63.10 (2013), KDB 558074 Test Date(s): 2/11/2017 D01 DTS Meas Guidance v03r05 (04/08/2016)		2/11/2017		
Configuration:	2				
Test Setup:	See Data Sheet.				

Environmental Conditions					
Temperature (^o C)	22	Relative Humidity (%):	30		

Test Data Summary - Voltage Variations

This equipment is battery powered. Power output tests were performed using a fresh battery.

Power Output Test Data Summary - Radiated Measurement								
Measuremen	Measurement Option: RBW > DTS Bandwidth							
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Field Strength (dBuV/m @3m)	Calculated (dBm)	Limit (dBm)	Results		
2420	O-QPSK	Integral OdBi	91.4	-3.8	≤30	Pass		
2450	O-QPSK	Integral OdBi	92.2	-3.0	≤30	Pass		
2480	O-QPSK	Integral OdBi	91.4	-3.8	≤30	Pass		

For fixed point-to-point antennas, the limit is calculated in accordance with 15.247(c)(1): $Limit = 30 - Roundup\left(\frac{G-6}{3}\right)$

For directional beamforming antennas, the limit is calculated in accordance with 15.247(c)(2) and KDB 662911.

Conducted RF output power calculated in accordance with ANSI C63.10.

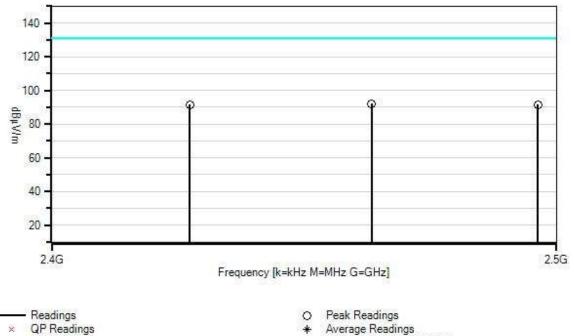
$$P(W) = \frac{(E \cdot d)^2}{30 \, G}$$

Or equivalently, in logarithmic form:

P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77

Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23rd Dr.	SE • Bothell, WA 98021	• (425) 402-1717
Customer:	Medtronic MiniMed		
Specification:	15.247(b) Power Output (2400-24	83.5 MHz DTS)	
Work Order #:	99536	Date:	2/11/2017
Test Type:	Maximized Emissions	Time:	14:04:29
Tested By:	Steven Pittsford	Sequence#:	2
Software:	EMITest 5.03.02		


Equipment Tested:

Device	Manufacturer	Model #	S/N		
Configuration 2					
Support Equipment:					
Device	Manufacturer	Model #	S/N		
Configuration 2					
Test Conditions / No	tes:				
Frequency tested: 242	0MHz, 2450MHz, 2480MHz				
Firmware power settin	ng: Max Power				
EUT Firmware: 6x0G	XTest PRM 2.5A(M969745I	DOC)			
Duty Cycle: 100%					
Test Mode: Continuously modulated					
Test Setup: The EUT case reported.	is set 1.5 meters high on a S	tyrofoam table. X, Y an	d Z axis are investigated with the worst		

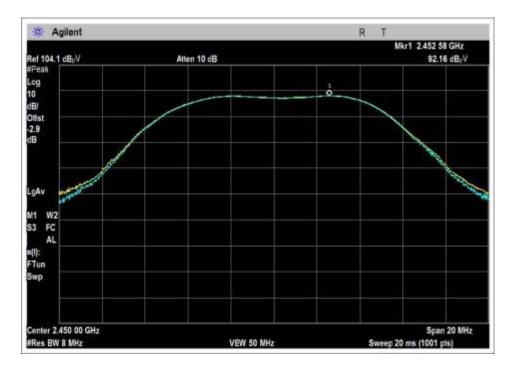
EUT has a fresh battery installed

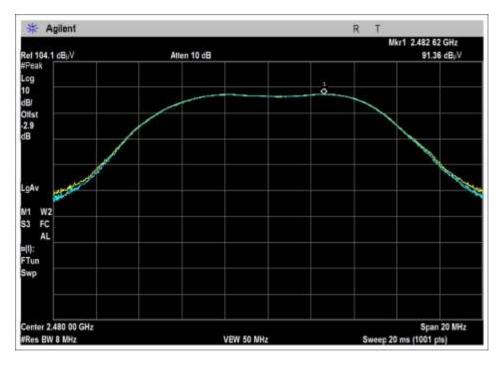
Medtronic MiniMed WO#: 99536 Sequence#: 2 Date: 2/11/2017 15.247(b) Power Output (2400-2483.5 MHz DTS) Test Distance: 3 Meters Vert

- Ambient
 - 1 15.247(b) Power Output (2400-2483.5 MHz DTS)
- Software Version: 5.03.02



Test Equipment:


ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T5	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	8/12/2015	8/12/2017
T6	ANP06935	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018


Meası	urement Data:	Re	eading lis	ted by ma	rgin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2452.600M	95.1	+0.0	+0.6	+2.9	-34.5	+0.0	92.2	131.2	-39.0	Vert
			+27.7	+0.4							
2	2480.320M	94.3	+0.0	+0.6	+2.9	-34.5	+0.0	91.4	131.2	-39.8	Vert
			+27.7	+0.4							
3	2422.600M	94.5	+0.0	+0.6	+2.8	-34.6	+0.0	91.4	131.2	-39.8	Vert
			+27.7	+0.4							

Test Setup Photo(s)

X AXIS

Y AXIS

Z AXIS

15.247(e) Power Spectral Density

Test Setup / Conditions / Data						
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford			
Test Method:	ANSI C63.10 (2013), KDB 558074 D01 DTS Meas Guidance v03r05 (04/08/2016)	Test Date(s):	2/11/2017			
Configuration:	2	•	•			
Test Setup:	See data sheet.					

Environmental Conditions					
Temperature (^o C)	2230	Relative Humidity (%):			

	PSD Test Data Summary - Radiated Measurement							
Measuremen	t Method: PKPSD							
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Field Strength (dBuV/m @3m)	Calculated (dBm/3kHz)	Limit (dBm/3kHz)	Results		
2420	O-QPSK	Integral OdBi	73.1	-22.1	≤8	Pass		
2450	O-QPSK	Integral OdBi	75.5	-19.7	≤8	Pass		
2480	O-QPSK	Integral OdBi	74.0	-21.2	≤8	Pass		

Conducted RF output power calculated in accordance with ANSI C63.10.

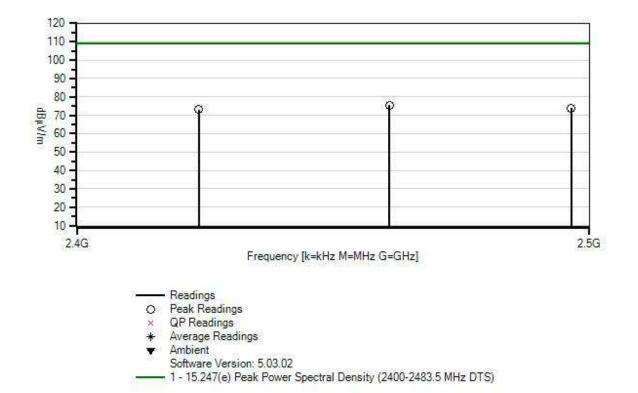
$$P(W) = \frac{(E \cdot d)^2}{30 \, G}$$

Or equivalently, in logarithmic form:

P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77

Test Setup / Conditions / Data

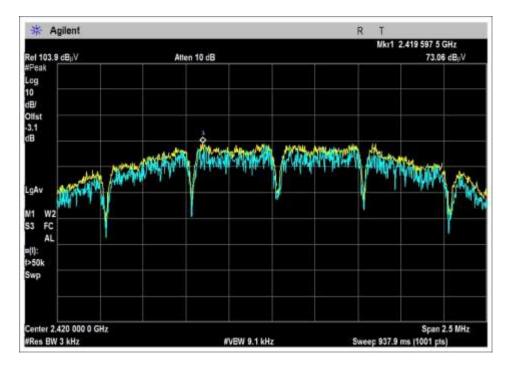
Test Location:	CKC Laboratories • 22116 23rd Da	. SE • Bothell, WA 98021 • (425) 402-1717
Customer:	Medtronic MiniMed	
Specification:	15.247(e) Peak Power Spectral D	ensity (2400-2483.5 MHz DTS)
Work Order #:	99536	Date: 2/11/2017
Test Type:	Maximized Emissions	Time: 14:23:22
Tested By:	Steven Pittsford	Sequence#: 2
Software:	EMITest 5.03.02	


Equipment Tested:

Device	Manufacturer	Model #	S/N			
Configuration 2						
Support Equipme	nt:					
Device	Manufacturer	Model #	S/N			
Configuration 2						
Test Conditions /	Notes:					
Frequency tested: 2	420MHz, 2450MHz, 2480MHz					
Firmware power se	tting: Max Power					
EUT Firmware: 6x	OG XTest PRM 2.5A(M969745I	DOC)				
Duty Cycle: 100%						
Test Mode: Continuously modulated Test Setup: The EUT is set 1.5 meters high on a Styrofoam table. X, Y and Z axis are investigated with the worst case reported.						

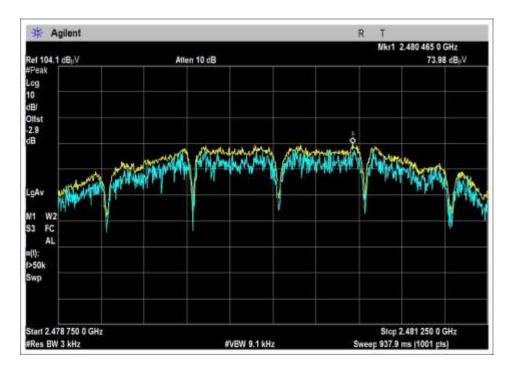
EUT has a fresh battery installed

Medtronic MiniMed WO#: 99536 Sequence#: 2 Date: 2/11/2017 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS) Test Distance: 3 Meters Vert


Test Equipment:


ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
Т3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T5	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	8/12/2015	8/12/2017
Т6	ANP06935	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018

Meası	Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2450.588M	78.4	+0.0	+0.6	+2.9	-34.5	+0.0	75.5	109.2	-33.7	Vert
			+27.7	+0.4							
2	2480.465M	76.9	+0.0	+0.6	+2.9	-34.5	+0.0	74.0	109.2	-35.2	Vert
			+27.7	+0.4							
3	2419.598M	76.2	+0.0	+0.6	+2.8	-34.6	+0.0	73.1	109.2	-36.1	Vert
			+27.7	+0.4							



Plot Data

Test Setup Photo(s)

X AXIS

Y AXIS

Z AXIS

15.247(d) Radiated Emissions & Band Edge

Test Setup/Conditions								
Test Location:	Bothell Lab C3	Test Engineer:	M. Atkinson/S Pittsford					
Test Method:	ANSI C63.10 (2013), KDB 558074 D01 DTS Meas Guidance v03r05 (04/08/2016)	Test Date(s):	2/8/2017 to 2/10/2017					
Configuration:	1							

	Environm	ental Conditions	
Temperature (^o C)	22-23	Relative Humidity (%):	24-30

See data sheets for test setup and test equipment.

Test Setup / Conditions / Data

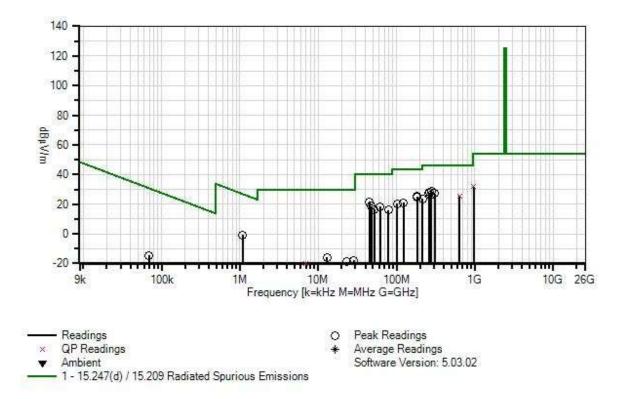
Test Location: Customer: Specification:	CKC Laboratories • 22116 23rd Dr. SE • Bo Medtronic MiniMed 15.247(d) / 15.209 Radiated Spurious Emi		• (425) 402-1717
Work Order #:	99536	Date:	2/8/2017
Test Type: Tested By: Software:	Maximized Emissions Michael Atkinson EMITest 5.03.02	Sequence#:	11:22:00 1

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				

Device	Manufacturer	Model #	S/N		
Configuration 1					

Test Conditions / Notes:


Frequency Range: 9kHz-1GHz Frequency tested: 2420MHz, 2450MHz, 2480MHz Firmware power setting: Max Power EUT Firmware: 6x0G XTest PRM 2.5A(M969745DOC)

Duty Cycle: 100%

Test Mode: Continuously modulated Test Setup: The EUT is set 0.8 meters high on a Styrofoam table. X, Y and Z axis are investigated with the worst case reported. EUT has a fresh battery installed

Medtronic MiniMed WO#: 99536 Sequence#: 1 Date: 2/8/2017 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Para

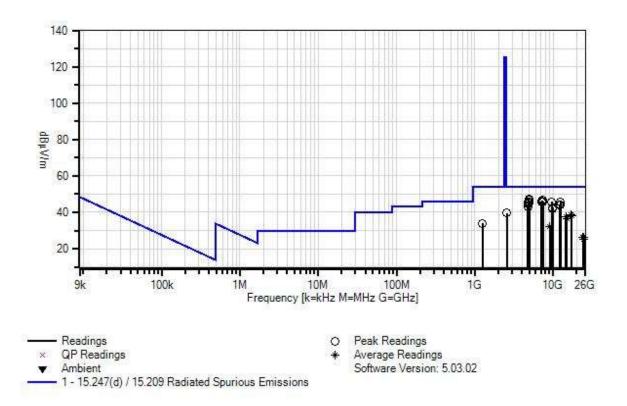
Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
T4	ANP05360	Cable	RG214	11/30/2016	11/30/2018
T5	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T6	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T7	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T8	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
Т9	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dBµV	dB	dB	dB	dB			dBµV/m	dB	Ant
1	280.300M	33.7	+0.0	+0.2	+1.6	+1.0	+0.0	28.5	46.0	-17.5	Horiz
			-27.0	+13.0	+6.0	+0.0			Z-Axis		
	2 < 0 < 0 0 1		+0.0			1.0		20.4	44.0	15.0	
2	268.600M	33.7	+0.0	+0.2	+1.5	+1.0	+0.0	28.1	46.0	-17.9	Horiz
			-27.0	+12.7	+6.0	+0.0			Z-Axis		
2	104 20014	25.0	+0.0	.0.0	. 1. 4	.0.0	.0.0	25.2	12.5	10.2	
3	184.200M	35.0	+0.0	+0.2	+1.4	+0.8	+0.0	25.2	43.5	-18.3	Horiz
			-27.3	+9.1	+6.0	+0.0			Z-Axis		
4	45.005M	31.7	+0.0 +0.0	+0.1	10.5	+0.4	+0.0	21.6	40.0	-18.4	Horiz
4	45.005M	51.7	+0.0 -27.9	$^{+0.1}_{+10.8}$	+0.5 +6.0	+0.4 +0.0	+0.0	21.0	40.0 X-Axis	-18.4	HOLIZ
			+0.0	+10.8	+0.0	± 0.0			A-AXIS		
5	260.900M	33.1	+0.0 +0.0	+0.2	+1.5	+1.0	+0.0	27.4	46.0	-18.6	Vert
5	200.900101	55.1	-27.0	+12.6	+6.0	+0.0	10.0	27.4	Z-Axis	-10.0	ven
			+0.0	112.0	10.0	10.0			2 1 MIS		
6	308.400M	31.7	+0.0	+0.2	+1.6	+1.1	+0.0	27.2	46.0	-18.8	Horiz
Ū			-27.1	+13.7	+6.0	+0.0			Z-Axis		
			+0.0								
7	184.200M	34.3	+0.0	+0.2	+1.4	+0.8	+0.0	24.5	43.5	-19.0	Horiz
			-27.3	+9.1	+6.0	+0.0			Y-Axis		
			+0.0								
8	276.400M	31.7	+0.0	+0.2	+1.6	+1.0	+0.0	26.4	46.0	-19.6	Vert
			-27.0	+12.9	+6.0	+0.0			Y-Axis		
			+0.0								
9	215.300M	32.3	+0.0	+0.2	+1.4	+0.9	+0.0	23.6	43.5	-19.9	Horiz
			-27.2	+10.0	+6.0	+0.0			Z-Axis		
			+0.0								

10	C1100011	02.1	.0.0	.0.2	.0.1	.17	.0.0	25.7	16.0	20.2	XZ
	644.000M	23.1			+2.1	+1.7	+0.0	25.7	46.0	-20.3	Vert
	QP		-28.1 +0.0	+20.6	+6.0	+0.0			Z-Axis		
^	644.000M	28.9		+0.3	+2.1	+1.7	+0.0	21.5	46.0	145	Vert
	044.000M	28.9	+0.0			+1.7 +0.0	+0.0	51.5		-14.5	ven
			-28.1 +0.0	+20.6	+6.0	+0.0			Z-Axis		
12	47.894M	30.0	+0.0 $+0.0$	+0.1	+0.6	+0.4	+0.0	18.6	40.0	-21.4	Vert
12	47.094101	50.0	-27.9	+0.1	+6.0	+0.4 +0.0	+0.0	10.0	X-Axis	-21.4	ven
			+0.0	12.4	10.0	10.0			11 11/15		
13	61.502M	33.1	+0.0	+0.1	+0.7	+0.4	+0.0	18 5	40.0	-21.5	Vert
15	01.502.01	55.1	-27.8	+6.0	+6.0	+0.0	10.0	10.5	X-Axis	21.5	vert
			+0.0	10.0	10.0	10.0			11 1 1115		
14	973.800M	22.4	+0.0	+0.4	+2.5	+2.2	+0.0	32.0	54.0	-22.0	Horiz
	QP		-27.1	+25.5	+6.1	+0.0		0210	Z-Axis		110112
			+0.0								
^	973.800M	28.3	+0.0	+0.4	+2.5	+2.2	+0.0	37.9	54.0	-16.1	Horiz
			-27.1	+25.5	+6.1	+0.0			Z-Axis		
			+0.0								
16	123.100M	29.0	+0.0	+0.1	+1.2	+0.6	+0.0	20.9	43.5	-22.6	Vert
			-27.6	+11.6	+6.0	+0.0			Z-Axis		
			+0.0								
17	102.789M	29.9	+0.0	+0.1	+1.2	+0.6	+0.0	20.4	43.5	-23.1	Vert
			-27.7	+10.3	+6.0	+0.0			X-Axis		
			+0.0								
18	52.300M	29.5	+0.0	+0.1	+0.6	+0.4	+0.0	16.5	40.0	-23.5	Vert
			-27.9	+7.8	+6.0	+0.0			Z-Axis		
			+0.0								
19	78.744M	29.6	+0.0	+0.1	+0.8	+0.5	+0.0	16.1		-23.9	Vert
			-27.8	+6.9	+6.0	+0.0			X-Axis		
			+0.0								
20	1.089M	29.3	+0.0	+0.0	+0.0		-40.0	-0.8	26.9	-27.7	Para
			+0.0	+0.0	+0.0	+0.1			Z-Axis		
	10.00535	1	+9.8	0.0		0.0	10.0		20.5	1.5.0	
21	12.905M	15.3	+0.0	+0.0	+0.0		-40.0	-15.7	29.5	-45.2	Para
			+0.0	+0.0	+0.0	+0.2			X-Axis		
	(0.0001	550	+8.8	.0.0	.0.0	.0.0	00.0	147	20.0	45.0	D
22	69.000k	55.3	+0.0	+0.0	+0.0		-80.0			-45.3	Para
			+0.0	+0.0	+0.0	+0.0			Z-Axis		
23	20 2001	157	+10.2				40.0	17.0	29.5	17 1	CrelDa
23	28.380M	15.7	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0	+0.0 +0.3	-40.0	-17.9		-47.4	GrdPe
			+0.0 +6.1	+0.0	+0.0	+0.3			X-Axis		
24	23.102M	13.3	+0.1 +0.0	+0.0	+0.0	+0.0	-40.0	-19.0	29.5	-48.5	Perp
24	23.102IVI	15.5	+0.0 $+0.0$	$^{+0.0}_{+0.0}$	+0.0 +0.0	+0.0 $+0.3$	-40.0	-17.0	Y-Axis	-40.3	reip
			+0.0 +7.4	± 0.0	± 0.0	± 0.5			1 -119		
L			·/. T								

25 Q	6.997M P	10.7	+0.0 +0.0 +9.3	+0.0 +0.0	+0.0 +0.0	+0.0 +0.1	-40.0	-19.9	29.5 Z-Axis	-49.4	Para
^	6.997M	17.1	+0.0 +0.0 +9.3	+0.0 +0.0	+0.0 +0.0	+0.0 +0.1	-40.0	-13.5	29.5 Z-Axis	-43.0	Para
27	28.470M	12.9	+0.0 +0.0 +6.1	+0.0 +0.0	+0.0 +0.0	+0.0 +0.3	-40.0	-20.7	29.5 Z-Axis	-50.2	Para


Test Location:	CKC Laboratories • 22116 23rd I	Dr SE • Bothell, WA 98021	• (425) 402-1717
Customer:	Medtronic MiniMed		
Specification:	15.247(d) / 15.209 Radiated Spu	irious Emissions	
Work Order #:	99536	Date:	2/8/2017
Test Type:	Radiated Scan	Time:	16:18:18
Tested By:	Michael Atkinson	Sequence#:	3
Software:	EMITest 5.03.02		

Equipment Tested:

Device	Manufacturer	Model #	S/N						
Configuration 1									
Support Equipment	•								
Device	Manufacturer	Model #	S/N						
Configuration 1									
Test Conditions / No	otes:								
Frequency Range: 1	-26GHz								
Frequency tested: 242	20MHz, 2450MHz, 2480MHz								
Firmware power setti	ng: Max Power								
EUT Firmware: 6x00	G XTest PRM 2.5A(M969745)	DOC)							
Duty Cycle: 100%									
Test Mode: Continuo	usly modulated								
Test Setup:	•								
The EUT is set 1.5 m	eters high on a Styrofoam tabl	e. X, Y and Z axis are in	vestigated with the worst case reported.						
EUT has a fresh batte	EUT has a fresh battery installed.								

Medtronic MiniMed WO#: 99536 Sequence#: 3 Date: 2/8/2017 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
Т3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
Т4	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T5	AN01467	Horn Antenna-ANSI	3115	8/12/2015	8/12/2017
		C63.5 Calibration			
Т6	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
Τ7	ANP06678	Cable	32026-29801-	9/19/2016	9/19/2018
			29801-144		
Т8	ANP06957	Cable	32026-29094K-	9/19/2016	9/19/2018
			29094K-72TC		
Т9	AN02742	Active Horn Antenna	AMFW-5F-	10/7/2016	10/7/2018
			18002650-20-		
			10P		

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	4899.300M	43.0	+0.0	+0.9	+4.4	-34.2	+0.0	47.3	54.0	-6.7	Horiz
			+32.7	+0.5	+0.0	+0.0			Mid		
			+0.0								
2	4959.900M	42.2	+0.0	+0.9	+4.4	-34.2	+0.0	46.6	54.0	-7.4	Horiz
			+32.8	+0.5	+0.0	+0.0			High		
			+0.0								
3	7351.100M	38.5	+0.0	+1.2	+4.7	-34.6	+0.0	46.6	54.0	-7.4	Horiz
			+36.2	+0.6	+0.0	+0.0			Mid		
			+0.0								
4	7260.600M	38.2	+0.0	+1.2	+4.6	-34.5	+0.0	46.0	54.0	-8.0	Horiz
			+35.9	+0.6	+0.0	+0.0			Low		
			+0.0								
5	12398.500	32.2	+0.0	+1.6	+6.4	-34.7	+0.0	45.9	54.0	-8.1	Horiz
	Μ		+39.5	+0.9	+0.0	+0.0					
			+0.0						High		
6	9667.000M	35.3	+0.0	+1.5	+6.1	-35.0	+0.0	45.9	54.0	-8.1	Horiz
			+37.3	+0.7	+0.0	+0.0			Low		
			+0.0								
7	7120.000M	38.4	+0.0	+1.2	+4.4	-34.4	+0.0	45.7	54.0	-8.3	Horiz
			+35.4	+0.7	+0.0	+0.0			Low		
			+0.0								
8	7438.500M	37.1	+0.0	+1.3	+4.8	-34.7	+0.0	45.7	54.0	-8.3	Horiz
			+36.6	+0.6	+0.0	+0.0			High		
			+0.0								
9	4843.000M	41.5	+0.0	+0.9	+4.3	-34.2	+0.0	45.7	54.0	-8.3	Horiz
			+32.7	+0.5	+0.0	+0.0			Low		
			+0.0								

10 4899.950M	41.2	+0.0	+0.9	+4.4	-34.2	+0.0	45.5	54.0	-8.5	Vert
10 10,5,5,50,00	11.2	+32.7	+0.5	+0.0	+0.0	10.0	10.0	Mid	0.0	vert
		+0.0								
11 4960.150M	40.9	+0.0	+0.9	+4.4	-34.2	+0.0	45.3	54.0	-8.7	Vert
		+32.8	+0.5	+0.0	+0.0			High		
		+0.0						U		
12 4839.200M	40.4	+0.0	+0.9	+4.3	-34.2	+0.0	44.6	54.0	-9.4	Vert
		+32.7	+0.5	+0.0	+0.0			Low		
		+0.0								
13 12100.600	31.1	+0.0	+1.5	+6.5	-34.9	+0.0	44.3	54.0	-9.7	Horiz
М		+39.3	+0.8	+0.0	+0.0					
		+0.0						Low		
14 12251.100	30.5		+1.5	+6.6	-34.8	+0.0	44.0	54.0	-10.0	Horiz
М		+39.4	+0.8	+0.0	+0.0					
		+0.0						Mid		
15 4762.000M	38.9	+0.0	+0.9	+4.3	-34.2	+0.0	43.1	54.0	-10.9	Vert
		+32.7	+0.5	+0.0	+0.0					
		+0.0								
16 9918.500M	32.3	+0.0	+1.3	+6.1	-35.2	+0.0	42.5	54.0	-11.5	Horiz
		+37.2	+0.8	+0.0	+0.0			High		
17 0 (00 (00) (01.6	+0.0	1.5	<u> </u>	25.0	0.0	12.2	54.0	11.0	
17 9680.600M	31.6		+1.5	+6.1	-35.0	+0.0	42.2	54.0	-11.8	Horiz
		+37.3 +0.0	+0.7	+0.0	+0.0			Low		
18 9801.100M	31.6	+0.0 +0.0	+1.4	+6.1	-35.1	+0.0	42.0	54.0	-12.0	Horiz
18 9801.100M	51.0	+0.0 +37.3	$^{+1.4}_{+0.7}$	+0.1 +0.0	+0.0	+0.0	42.0	Mid	-12.0	HOUTZ
		+37.3 +0.0	+0.7	+0.0	+0.0			MIU		
19 2566.000M	42.3		+0.6	+2.9	-34.5	+0.0	39.7	54.0	-14.3	Horiz
19 2300.000101	42.3	+28.0	+0.0 $+0.4$	+2.9 +0.0	+0.0	+0.0	39.1	54.0	-14.5	TIOUZ
		+0.0	10.1	10.0	10.0					
20 17151.100	19.7		+2.0	+8.7	-34.4	+0.0	38.8	54.0	-15.2	Horiz
20 17151.100 M	17.1	+41.8	+1.0	+0.0	+0.0	10.0	20.0	2.1.0	10.2	110112
Ave		+0.0						Mid		
^ 17151.100	29.6	+0.0	+2.0	+8.7	-34.4	+0.0	48.7	54.0	-5.3	Horiz
М		+41.8	+1.0	+0.0	+0.0					
		+0.0						Mid		
22 16940.600	20.0	+0.0	+2.1	+8.6	-34.4	+0.0		54.0	-15.4	Horiz
М		+41.3	+1.0	+0.0	+0.0					
Ave		+0.0						Low		
^ 16940.600	31.3	+0.0	+2.1	+8.6	-34.4	+0.0	49.9	54.0	-4.1	Horiz
М		+41.3	+1.0	+0.0	+0.0					
		+0.0						Low		

24 17358.500	18 /	+0.0	+2.0	+8.8	-34.5	+0.0	38.0	54.0	-16.0	Horiz
24 17538.500 M	10.4	+42.3	+1.0	+0.0	+0.0	10.0	50.0	54.0	-10.0	HOLL
Ave		+0.0	11.0	10.0	10.0			High		
^ 17358.500	29.8	+0.0	+2.0	+8.8	-34.5	+0.0	49.4	U	-4.6	Horiz
М		+42.3	+1.0	+0.0	+0.0					
		+0.0						High		
26 14520.600	21.7	+0.0	+1.8	+7.7	-34.9	+0.0	37.6	54.0	-16.4	Horiz
М		+40.3	+1.0	+0.0	+0.0					
Ave		+0.0						Low		
^ 14520.600	33.4	+0.0	+1.8	+7.7	-34.9	+0.0	49.3	54.0	-4.7	Horiz
М		+40.3	+1.0	+0.0	+0.0					
		+0.0						Low		
28 14701.100	22.2	+0.0	+1.8	+7.8	-34.9	+0.0	37.5	54.0	-16.5	Horiz
М		+39.7	+0.9	+0.0	+0.0					
Ave		+0.0						Mid		
^ 14701.100	32.8	+0.0	+1.8	+7.8	-34.9	+0.0	48.1	54.0	-5.9	Horiz
М		+39.7	+0.9	+0.0	+0.0					
		+0.0						Mid		
30 14878.557	21.9		+1.8	+7.7	-34.9	+0.0	36.4	54.0	-17.6	Horiz
M		+39.0	+0.9	+0.0	+0.0			*** 1		
Ave	25.0	+0.0	1.0		24.0	0.0		High		
^ 14878.557	35.0	+0.0	+1.8	+7.7	-34.9	+0.0	49.5	54.0	-4.5	Horiz
М		+39.0	+0.9	+0.0	+0.0			II: -1-		
20 1050 00014	42.2	+0.0	.0.1	.0.1	26.2	. 0. 0		High	20.0	
32 1252.000M	43.3	+0.0	+0.4	+2.1	-36.3	+0.0	34.0	54.0	-20.0	Horiz
		+24.2 +0.0	+0.3	+0.0	+0.0					
33 9019.000M	20.8	+0.0 +0.0	+1.3	+6.0	-34.6	+0.0	32.0	54.0	-22.0	Horiz
Ave	20.8	+0.0 +37.8	+1.3 $+0.7$	+0.0 +0.0	+0.0	± 0.0	52.0	Low	-22.0	TIOTIZ
Ave		+0.0	10.7	10.0	10.0			LOW		
^ 9019.000M	36.9	+0.0	+1.3	+6.0	-34.6	+0.0	48.1	54.0	-5.9	Horiz
JUIJ.000101	50.7	+37.8	+0.7	+0.0	+0.0	10.0	10.1	Low	5.7	HOHZ
		+0.0	10.7	10.0	10.0			2011		
35 24200.000	25.6	+0.0	+0.0	+0.0	+0.0	+0.0	26.2	54.0	-27.8	Vert
M	2010	+0.0	+0.0	+8.5	+4.5	1010	2012	0.110	2/10	
Ave		-12.4								
^ 24200.000	38.2	+0.0	+0.0	+0.0	+0.0	+0.0	38.8	54.0	-15.2	Vert
М		+0.0		+8.5						
		-12.4								
37 24500.000	25.1	+0.0	+0.0	+0.0	+0.0	+0.0	26.0	54.0	-28.0	Vert
М		+0.0	+0.0	+8.6	+4.5					
Ave		-12.2								
^ 24500.000	38.5	+0.0	+0.0	+0.0	+0.0	+0.0	39.4	54.0	-14.6	Vert
М		+0.0	+0.0	+8.6	+4.5					
		-12.2								
39 24800.000	24.0	+0.0	+0.0	+0.0	+0.0	+0.0	25.3	54.0	-28.7	Vert
М		+0.0	+0.0	+8.6	+4.6					
Ave		-11.9								
^ 24800.000	37.2	+0.0	+0.0	+0.0	+0.0	+0.0	38.5	54.0	-15.5	Vert
М		+0.0	+0.0	+8.6	+4.6					
		-11.9								

Band Edge

	Band Edge Summary									
Frequency (MHz)	Modulation	Modulation Ant. Type Field Strength (dBuV/m@3m)		Limit (dBuV/m @3m)	Results					
2390.0	O-QPSK	Integral OdBi	26.1 (Ave)	<54	Pass					
2390.0	O-QPSK	Integral OdBi	38.9 (Peak)	<74	Pass					
2400.0	O-QPSK	Integral OdBi	27.0 (Ave)	<54	Pass					
2400.0	O-QPSK	Integral OdBi	39.9 (Peak)	<74	Pass					
2483.5	O-QPSK	Integral OdBi	48.8 (Ave)	<54	Pass					
2483.5	O-QPSK	Integral OdBi	59.3 (peak)	<74	Pass					

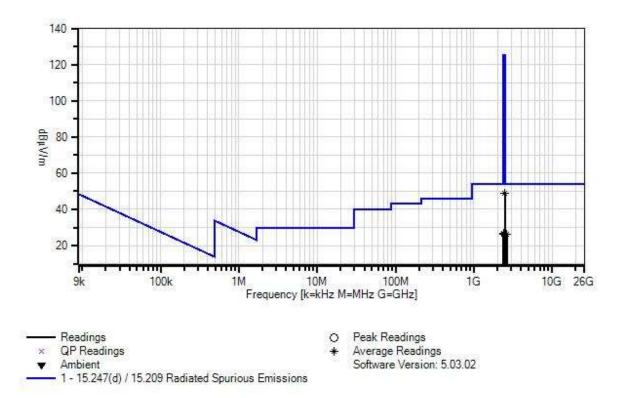
Test Setup / Conditions / Data

Test Location:	CKC Laboratories • 22116 23rd l	Dr. SE • Bothell, WA 98021	 (425) 402-1717
Customer:	Medtronic MiniMed		
Specification:	15.247(d) / 15.209 Radiated Spi	urious Emissions	
Work Order #:	99536	Date:	2/8/2017
Test Type:	Maximized Emissions	Time:	15:08:37
Tested By:	Michael Atkinson	Sequence#:	2
Software:	EMITest 5.03.02		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

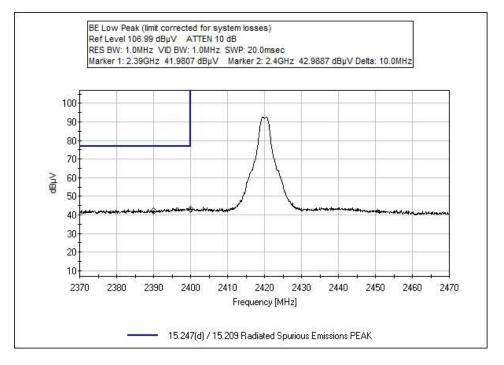
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Test Conditions / Notes:				

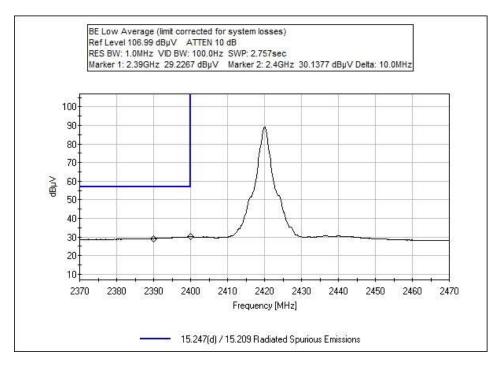

Frequency tested: 2420MHz, 2480MHz Firmware power setting: Max Power EUT Firmware: 6x0G XTest PRM 2.5A(M969745DOC)

Duty Cycle: 100%

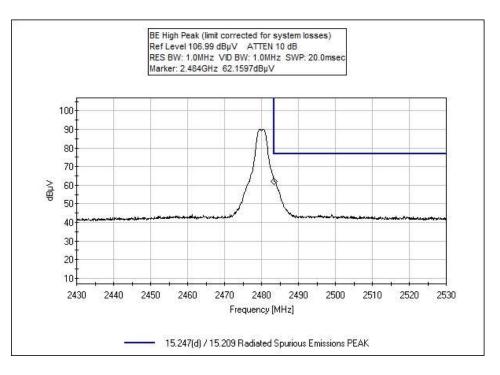
Test Mode: Continuously modulated Test Setup: The EUT is set 1.5 meters high on a Styrofoam table. X, Y and Z axis are investigated with the worst case reported.

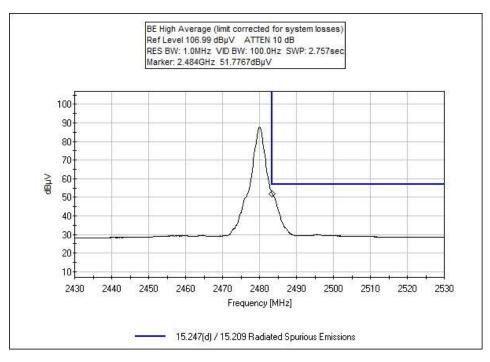
Medtronic MiniMed WO#: 99536 Sequence#: 2 Date: 2/8/2017 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

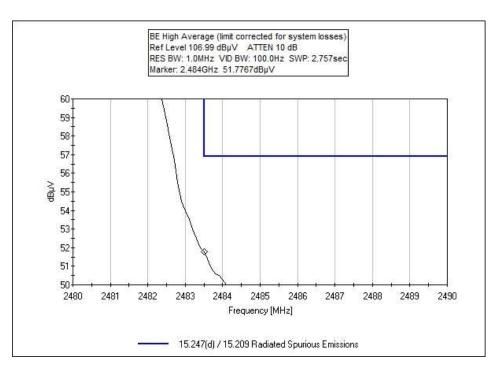



Test Equi ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
	ANP05360	Cable	RG214	11/30/2016	11/30/2018
	AN02307	Preamp	8447D	2/15/2016	2/15/2018
	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T4	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T5	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	8/12/2015	8/12/2017
T6	ANP06935	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018

Measu	urement Data:	Re	eading lis	ted by ma	rgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2483.500M	51.7	+0.0	+0.6	+2.9	-34.5	+0.0	48.8	54.0	-5.2	Horiz
	Ave		+27.7	+0.4							
^	2483.500M	62.2	+0.0	+0.6	+2.9	-34.5	+0.0	59.3	54.0	+5.3	Horiz
			+27.7	+0.4							
3	2400.000M	30.1	+0.0	+0.6	+2.8	-34.6	+0.0	27.0	54.0	-27.0	Horiz
	Ave		+27.7	+0.4							
^	2400.000M	43.0	+0.0	+0.6	+2.8	-34.6	+0.0	39.9	54.0	-14.1	Horiz
			+27.7	+0.4							
5	2390.000M	29.2	+0.0	+0.6	+2.8	-34.6	+0.0	26.1	54.0	-27.9	Horiz
	Ave		+27.7	+0.4							
^	2390.000M	42.0	+0.0	+0.6	+2.8	-34.6	+0.0	38.9	54.0	-15.1	Horiz
			+27.7	+0.4							
7	2655.000M	28.0	+0.0	+0.7	+3.0	-34.5	+0.0	26.0	54.0	-28.0	Horiz
	Ave		+28.4	+0.4							
^	2655.000M	40.3	+0.0	+0.7	+3.0	-34.5	+0.0	38.3	54.0	-15.7	Horiz
			+28.4	+0.4							




Band Edge Plots



Test Setup Photo(s)

9KHz – 1GHz

1-26GHz

X AXIS

Y AXIS

Z AXIS

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS								
	Meter reading (dBµV)								
+	Antenna Factor	(dB/m)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
-	Preamplifier Gain	(dB)							
=	Corrected Reading	(dBµV/m)							

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode, the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.