| <image/>                                                                                                                                         | APPLIED WIRELESS<br>SENTINEL-PROX LR-911<br>Model : LR-9<br>28 September<br>Report No.: SL0708<br>(This report superso          | 5 ID GROUP, INC.<br>2.6H3 RFID READER<br>911 2.6H3<br>er 2007<br>2012-WAT-004<br>edes NONE) | Report                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|
| Image: Notifications made to the product : None     This Test Report is Issued Under the Authority of:   Max   Max     Image: Desired integender |                                                                                                                                 |                                                                                             | To: FCC Part 15:247 ; IC RSS-210    |
| Benjamin Jing Leslie Bai                                                                                                                         | Modifications made to the product : None This Test Report is Issued Under the Auth Modifications Benjamin Jing Test Environment | nority of:<br>Leslie Bai                                                                    | SIEMIC, INC.<br>Accesses good maxes |

This test report may be reproduced in full only.



Serial#SL07082012-WAT-004Issue Date6 September 2007Page2 of 53www.sizelia.com

SIEMIC ACREDITATION DETAILS: NVLAP Lab Code: 200729-0



NVLAP-01C (REV. 2005-05-19)



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 3 of 53

SIEMIC ACREDITATION DETAILS: FCC Registration No. 783147

# FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

January 27, 2005

Registration Number: 783147

SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Attention: Leslie Bai

Re: Measurement facility located at San Jose 3 & 10 meter site Date of Renewal: January 27, 2005

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

ann

Phyllis Parrish Information Technician



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 4 of 53

## SIEMIC ACREDITATION DETAILS: Industry of Canada Registration No. 4842-1

Canada Canada

April 28, 2006

OUR FILE: 46405-4842 Submission No: 114591

Siemic Inc. 2206 Ringwood Ave., San Jose, CA 95131

Dear Sir/Madame:

The Bureau has received your application for the Alternate Test Site and the filing is satisfactory to Industry Canada.

Please reference to the file number (4842-1 ) in the body of all test reports containing measurements performed on the site.

Renewal of the filing is required every two years.

If you have any questions, you may contact the Bureau at the telephone number below or by e-mail at <u>certification bureau@ic.gc.ca</u>. Please reference our file number above for all correspondence.

Yours sincerely,

Robert Corey Manager Certification Certification and Engineering Bureau 3701 Carling Ave., Building 94 Ottawa, Ontario K2H 832 Tel. No. (613) 990-3869



Serial#SL07082012-WAT-004Issue Date6 September 2007Page5 of 53

## SIEMIC ACREDITATION DETAILS: Japan VCCI Registration No. 2195

|                                                                                                                                                | Voluntary Control Council for Interference<br>by Information Technology Equipment                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                | 7F NOA Bidg, 2-3-5, Azəbudəi,<br>Minuto-Ku, Tokyo, Japan, 105-0041<br>Tet+81-3-3575-3138<br>Fac+81-3-5575-3137<br>http://www.vociorjp |
|                                                                                                                                                | February 12 , 2004                                                                                                                    |
| TO: SIEMIC, INC.                                                                                                                               |                                                                                                                                       |
| Membership NO: 2195                                                                                                                            |                                                                                                                                       |
| We confirmed your payment for annual memb<br>you very much for your remitting.                                                                 | ership fee and admission fee. Thank                                                                                                   |
| Please find enclosed VCCI documents. As a<br>were confirmed, your company registered as                                                        | dmission fee and annual membership fee<br>VCCI official member.                                                                       |
| From now on, it is possible for your company<br>or/and application for registration of measure                                                 | to submit conformity verification report<br>ement facilities.                                                                         |
| Please find necessary forms for your submiss<br>www.vcci.or.jp                                                                                 | sion from VCCI web-site.                                                                                                              |
| When you submit conformity verification repo<br>inagaki@voci.or.jp and application for registral<br>submit to Mr. Masaru Denda / denda@voci.or | rt, please submit to Ms. Yoko Inagaki /<br>tion of measurement facilities, please<br>jp                                               |
| Their address, phone and fax number are abs<br>indicated on top right-hand corner of this pa                                                   | olutly same as L. Please refer address<br>ge.                                                                                         |
| If you have any other questions regarding me<br>Thank you very much.                                                                           | mbership, feel free to contact me.                                                                                                    |
| Best Regards.                                                                                                                                  |                                                                                                                                       |
| Naoko Hori (Ms.)<br>VCCI<br>hori®vcci.or.jp                                                                                                    |                                                                                                                                       |
| Enclosure                                                                                                                                      |                                                                                                                                       |
|                                                                                                                                                |                                                                                                                                       |
|                                                                                                                                                |                                                                                                                                       |



EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

essing global markets

SL07082012-WAT-004 Issue Date 6 September 2007 Page 6 of 53

SIEMIC ACREDITATION DETAILS: Japan RF Technologies Accreditation No. MRF050927





Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 7 of 53 www.siemic.com

SIEMIC ACREDITATION DETAILS: Korea MIC Lab Code: KR0032





Serial#SL07082012-WAT-004Issue Date6 September 2007Page8 of 53

## SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

| <text><text><text><text><text><text><text><text><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></text></text></text></text></text></text></text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MMERCE   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <text><text><text><text><text><text><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row><table-container></table-container></table-row><table-row></table-row><table-container><text><text></text></text></table-container></table-row></table-row></table-row></table-row></table-row></table-row></text></text></text></text></text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| Dear Mr. Bai:         Implemented to inform you that your laboratory (RRL) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a CAPEC Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a CAPEC Nutual Recognition Arrangement (MRA). Your laboratory is a follows:         CAPEC Mutual Recognition Arrangement (MRA). Your laboratory is designated to act as a CAPEC Nutual Recognition at your laboratory is designation is as follows:         CAPEC Mutual Recognition Arrangement (MRA). Your laboratory is designated to act as a CAPEC Tel MRA. To performing Assessment Body (CAB) under Appendix B, Phase I Poocedures, of the APEC Tel MRA. To performing Assessment Brow designated to act as a CAPEC Tel MRA. To perform to its interformation aboratory is designated to act as a CAPEC Tel MRA. To perform to X:         Marce Stelle Claboratories       Entitication No: USDIG         Bartification No: USDIG       Entitication Ro: USDIG         Standards       Entitication Ro: USDIG         Magnetic Interforence       1. RRI. Notice No. 2005-82: Technical Requirements for Electromagnetic Interforence         Electro Magnetic Susceptibility       1. RRI. Notice No. 2005-131: Conformity Assessment Procedure for Electromagnetic Interforence         Magnetic Susceptibility       1. RRI. Notice No. 2005-130: Technical Requirements for Electromagnetic Interforence         Magnetic Susceptibility       1. RRI. Notice No. 2005-130: Technical Requirements for Electromagnetic Interforence         Magnetic Susceptibility       1. RRI. Notice No. 2005-13                                                                                                                                                                                                                                     |          |
| Impleased to inform you that your laboratory (RRL) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:         CAB Name: SIEMIC Laboratories Hermity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:         CAB Name: SIEMIC Laboratories Hermity (MRL) and the Apendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:         CAB Name: SIEMIC Laboratories Hermity (MRL) and the Apendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:         CAB Name: SIEMIC Laboratories Hermity (MRL) and the Apendix B, Phase I Procedures, of the APEC Tel MRA. The perinent information about your laboratory's designation is as follows:         CAB Name: SIEMIC Laboratories Hermity (MRL) and the Apendix April 13, 2006 (CAB) under Apendix April Assessment Procedure for Electromagnetic Interference Susceptibility (Annex 1-7(KN-61000-4-2, -4.3, -4.4, -4.5, -4.6, -4.6, -4.4, -4.1)). RRL Notice No. 2005-130. Technical Requirements for Electromagnetic Susceptibility (Annex 1-7(KN-61000-4-2, -4.3, -4.4, -4.5, -4.6, -4.6, -4.4, -4.1)). RRL Notice No. 2005-131. Conformity Assessment Procedure for Electromagnetic Susceptibility (Annex 1-7(KN-61000-4-2, -4.3, -4.4, -4.5, -4.6, -4.6, -4.4, -4.1)). RRL Notice No. 2005-132. Conformity Assessment Procedure for Electromagnetic Susceptibility (Annex 1-7(KN-61000-4-2, -4.3, -4.4, -4.5, -4.6, -4.6, -4.4, -4.1)). RRL Notice No. 2005-132. Conformity ass |          |
| Coverage         Standards         Date of Reco           Electro Magnetic Interference         1. RRL Notice No. 2005-82: Technical<br>Requirements for Electromagnetic Interference         April 13, 2006           2. Annex 8(KN-22), RRL Notice No. 2005-131:<br>Conformity Assessment Procedure for<br>Electromagnetic Susceptibility         April 13, 2006           Electro Magnetic Susceptibility         I. RRL Notice No. 2005-130:<br>Conformity Assessment Procedure for<br>Electromagnetic Susceptibility         April 13, 2006           Von may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the<br>applicable requirements. The designation of your organization will remain in force as long as its<br>accreditation for the designated scope remains valid and comply with the designation requirements.           The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mm. If you<br>have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your<br>continued interest in our international conformity assessment activities.           Sincerely,           Date of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mm. If you<br>have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your<br>continued interest in our international conformity assessment activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Electro Magnetic Interference         I. RRL Notice No. 2005-82: Technical<br>Requirements for Electromagnetic Interference         April 13, 2006           2. Annex 8(KN-22), RRL Notice No. 2005-131:<br>Conformity Assessment Procedure for<br>Electromagnetic Interference         April 13, 2006           Electro Magnetic Susceptibility         1. RRL Notice No. 2005-130: Technical<br>Requirements for Electromagnetic<br>Susceptibility         April 13, 2006           Electro Magnetic Susceptibility         1. RRL Notice No. 2005-130: Technical<br>Requirements for Electromagnetic<br>Susceptibility         April 13, 2006           You may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the<br>applicable requirements. The designation of your organization will remain in force as long as its<br>accreditation for the designated scope remains valid and comply with the designation requirements.<br>The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you<br>have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your<br>continued interest in our international conformity assessment activities.           Sincerely,         David E. Allowman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ognition |
| Electro Magnetic Susceptibility         I. RRL Notice No. 2005-130: Technical<br>Requirements for Electromagnetic<br>Susceptibility         April 13, 2006           2. Annex 1–7(KN-61000-4-2, 4-3, 4-4, 4-5,<br>-4-6, 4-8, 4-11), RRL Notice No. 2005-132:<br>Conformity Assessment Procedure for<br>Electromagnetic Susceptibility         April 13, 2006           You may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the<br>applicable requirements. The designation of your organization will remain in force as long as its<br>accreditation for the designated scope remains valid and comply with the designation requirements.<br>The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mm. If you<br>have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your<br>continued interest in our international conformity assessment activities.           Sincerely,         Devid F. Aldeman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6        |
| You may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mm. If you have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your continued interest in our international conformity assessment activities. Sincerely,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6        |
| Lavie F. Aldeman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Group Leader, Standards Coordination and Conformity Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |



Serial#SL07082012-WAT-004Issue Date6 September 2007Page9 of 53

### SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Geithersburg, Maryland 20898-May 3, 2006 Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131 Dear Mr. Bai: I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows: BSMI number: SL2-IN-E-1130R (Must be applied to the test reports) 10 U.S Identification No: US0160 CNS 13438 Scope of Designation: Mr. Leslie Bai Authorized signatory: The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities. Sincerely, 2 ach de David F. Alderman Group Leader, Standards Coordination and Conformity Group Jogindar Dhillon OUT. NIC



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 10 of 53 www.siemic.com

### SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gethersburg, Maryland 20899-August 8, 2006 Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131 Dear Mr. Bai: I am pleased to inform you that SIEMIC Laboratories has been recognized by the Chinese Taipei's National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications' and Information, Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies their applicable requirements using the following guidelines: Your laboratory's assigned 6-digit U.S. identification number is US0160. You should reference this number in your correspondence. The scope of designation is limited to LP0002. Your designation will remain in force as long as your accreditation remains valid for the scope of designation. If you have any questions please contact Mr. Jogindar Dhillon via email at dhillon@nist.gov or via fax at 301-975-5414. The names of all recognized laboratories will be posted on the NIST website at http://ts.nist.gov/mra. We appreciate your continued interest in our international conformity assessment activities. Sincerely, 2 ach David F. Alderman Group Leader, Standards Coordination and Conformity Group Jogindar Dhillon 000 NIST



EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007) Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 11 of 53

### SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

Laboratorio Valentín V. Rivero CANIETI CAMARA NACIONAL BE LA INDUSTRIA ELECTRONICA, DE TELECOMUNICACIONES E INFORMATICA México D.F. a 16 de octubre de 2006. LESLIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuerdo en Idioma ingles y español pretenado de los cuales le pido sea revisado y en su caso corregido, para que si esta de ecuerdo poder firmarlo para mandarlo con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho ecuerdo. Aprovecho este escrito para mencionarle que nuestro intermediario gestor será la empresa Isatel de México. S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo refacionado a la evaluación de la conformidad y que cuenta con amplia experiencia en la gestoria de la cartificación de cumplimiento con Normas Oficiales Mexicanas de producto en México. Me despido de ustad enviêndole un cordial saludo y esperando sus comentarios al Acuerdo que nos ocupa. Atentamente: Ing. Fausting-Bornez González Gerente Terrico del Laboratorio de GANIER. Callander Pr Hasterotria Condesa De tou Maleon, D.F. 5254-0308 con 12 linees Fax 5264-0488



Serial#SL07082012-WAT-004Issue Date6 September 2007Page12 of 53

## SIEMIC ACREDITATION DETAILS: Hong Kong OFTA Recognition No. D23/16V

| OFTA<br>電訊管理局 | Your Ref 来函檔號:D23/16 V Fax<br>Our Ref 本局檔號:D23/16 V Fax<br>E-m                                                                                                                                                                                  | sphone 電話: (852) 2961 6320<br>No 副文傳典: (852) 2838 5004<br>al 電動地址: 20 July 2005                                            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|               | Mr. Leslie Bai<br>Director of Certification,<br>SIEMIC Laboratories<br>2206 Ringwood Avenue<br>San Jose, California 95131<br>USA                                                                                                                |                                                                                                                            |
|               | Dear Mr. Bai,                                                                                                                                                                                                                                   |                                                                                                                            |
|               | Application of Recognised Testing                                                                                                                                                                                                               | Agency (RTA)                                                                                                               |
|               | Referring your submission of 28 June 200<br>RTA, I am pleased to inform you that OFTA has<br>(SIEMIC) as a Recognised Testing Agency (RTA) :                                                                                                    | 5 in relation to the application of<br>appointed SIEMIC Laboratories                                                       |
|               | Please note that, under the Hong Kong<br>Evaluation and Certification (HKTEC) Scheme, St<br>evaluation tests on telecommunications equipment<br>specifications :                                                                                | Telecommunications Equipment<br>IEMIC is authorized to conduct<br>t against the following HKTA                             |
|               | Scope of recognition (HKTA Specification<br>1001, 1002, 1004, 1006, 1007, 1008<br>1010, 1015, 1016<br>1022, 1026, 1027, 1029<br>1030, 1031, 1032, 1033, 1034, 1035, 1039<br>1041, 1042, 1043, 1045, 1047, 1048<br>2001                          | <u>s)</u> :                                                                                                                |
|               | You are requested to refer to and comp<br>guidelines for RTA as given in the Information Note<br>Agency (RTA) for Conducting Evaluation Test of '<br>which can be downloaded from<br><u>http://www.ofta.gov.hk/tec/information-notes.html</u> . | ly with the code of practice and<br>OFTA I 411 "Recognised Testing<br>felecommunications Equipment",<br>OFTA's homepage at |
|               | If you have any queries, please do not hesit                                                                                                                                                                                                    | ate to contact me.                                                                                                         |
|               |                                                                                                                                                                                                                                                 | ours sincerely,                                                                                                            |
|               |                                                                                                                                                                                                                                                 | ellini                                                                                                                     |
|               | for I<br>of Tel                                                                                                                                                                                                                                 | (K K Sin)<br>Director-General<br>ecommunications                                                                           |
|               | Office of the Telecommunications Authority<br>29/F We Chung House 213 Queen's Road East Ward                                                                                                                                                    | http://www.ofta.gov.hk                                                                                                     |
|               | 電訊管理局<br>香港進行銀行大道東 213 朝胡忠大康 29 字庫                                                                                                                                                                                                              |                                                                                                                            |



This page has been left blank intentionally.



# **CONTENTS**

| 1    | EXECUTIVE SUMMARY & EUT INFORMATION           | .15 |
|------|-----------------------------------------------|-----|
| 2    | TECHNICAL DETAILS                             | .15 |
| 3    | MODIFICATION                                  | .15 |
| 4    | TEST SUMMARY                                  | .15 |
| 5    | MEASUREMENTS, EXAMINATION AND DERIVED RESULTS | .15 |
| ANNE | EX A. TEST INSTRUMENT & METHOD                | .15 |
| ANNE | EX B EUT AND TEST SETUP PHOTOGRAPHS           | .15 |
| ANNE | EX C. TEST SETUP AND SUPPORTING EQUIPMENT     | .15 |
| ANNE | EX D USER MANUAL, BLOCK & CIRCUIT DIAGRAM     | .15 |



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 15 of 53 www.siemic.com

This page has been left blank intentionally.

Title: To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007) Serial#SL07082012-WAT-004Issue Date6 September 2007Page16 of 53

# 1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the Applied Wireless ID Group, Inc. Sentinel-Prox LR-911 2.6H3 RFID Reader, against the current Stipulated Standards. The Sentinel-Prox LR-911 2.6H3 RFID Reader have demonstrated compliance with the FCC 15.247 2007 and RSS-210 Issue 6(2007).

# **EUT Information**

| EUT<br>Description                                | : | The EUT is a long-range RFID reader , it is a frequency hopping system operating in the 902-928MHz band. |
|---------------------------------------------------|---|----------------------------------------------------------------------------------------------------------|
| Model No<br>Serial No                             | : | LR-911 2.6H3<br>N/A                                                                                      |
| Input Power                                       | : | 120 Vac                                                                                                  |
| Classification<br>Per Stipulated<br>Test Standard | : | Spread Spectrum System / device                                                                          |



Title: To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 17 of 53 www.siemic.com

|                                 | 2 <u>TECHNICAL DETAILS</u>                                                               |
|---------------------------------|------------------------------------------------------------------------------------------|
| Purpose                         | Compliance testing of Sentinel-Prox LR-911 2.6H3 RFID Reader<br>with stipulated standard |
| Applicant / Client              | Applied Wireless ID Group, Inc                                                           |
| Manufacturer                    | Applied Wireless ID Group, Inc<br>18300 Sutter Blvd,<br>Morgan Hill, CA 95037            |
| Laboratory performing the tests | SIEMIC Laboratories                                                                      |
| Test report reference number    | SL07082012-WAT-004                                                                       |
| Date EUT received               | 28 August 2007                                                                           |
| Standard applied                | 47 CFR §15.247 (2007) & RSS-210 Issue 7(2007)                                            |
| Dates of test (from – to)       | 30 August 2007 - 6 September 2007                                                        |
| No of Units:                    | N/A                                                                                      |
| Equipment Category:             | DSS                                                                                      |
| Trade Name:                     | Applied Wireless ID Group, Inc.                                                          |
| Model :                         | LR-911 2.6H3                                                                             |
| RF Operating Frequency (        | 902.8 MHz to 927.2 MHz                                                                   |
| Number of Channels :            | 123                                                                                      |
| Modulation :                    | AM                                                                                       |
| FCC ID :                        | OGSR26H3LR911                                                                            |
| IC ID :                         | 6449A-R26H3LR                                                                            |



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 18 of 53 www.siemic.com

# 3 MODIFICATION

NONE

SIEMIC, INC. Accessing global maritets Title: EMC Test Report of Sentinel-Prox LR-911 ;

То

EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007) Serial#SL07082012-WAT-004Issue Date6 September 2007Page19 of 53unumber 200719 of 53

# 4 TEST SUMMARY

The product was tested in accordance with the following specifications. All Testing has been performed according to below product classification:

Spread Spectrum System / device

| Test Standard            |                      | Description                      | Pass / Fail |  |
|--------------------------|----------------------|----------------------------------|-------------|--|
| CFR 47 Part 15.247: 2007 | RSS 210 Issue6: 2007 | _                                |             |  |
| 15.203                   |                      | Antenna Requirement              | Pass        |  |
| 15.205                   | RSS210(A8.5)         | Restricted Band of Operation     | Pass        |  |
| 15.207(a)                | RSSGen(7.2.2)        | Conducted Emissions Voltage      | Pass        |  |
| 15.247(a)(1)             | RSS210(A8.1)         | Channel Separation               | Pass        |  |
| 15.247(a)(1)             | RSS210(A8.1)         | Occupied Bandwidth               | Pass        |  |
| 15.247(a)(1)             | RSS210(A8.1)         | Number of Hopping Channels       | Pass        |  |
| 15.247(a)(1)             | RSS210(A8.1)         | Time of Occupancy                | Pass        |  |
| 15.247(b)                | RSS210(A8.4)         | Output Power                     | Pass        |  |
| 15.247(c)                | RSS210(A8.4)         | Antenna Gain > 6 dBi             | Pass        |  |
| 15.247(d)                | RSS210(A8.5)         | Conducted Spurious Emissions     | Pass        |  |
| 15.209; 15.247(d)        | RSS210(A8.5)         | Radiated Spurious Emissions      | Pass        |  |
| 15.247(e)                | RSS210(A8.3)         | Power Spectral Density           | N/A         |  |
| 15.247(f)                | RSS210(A8.3)         | Hybrid System Requirement        | N/A         |  |
| 15.247(g)                | RSS210(A8.1)         | Hopping Capability               | Pass        |  |
| 15.247(h)                | RSS210(A8.1)         | Hopping Coordination Requirement | Pass        |  |
| 15.247(i)                | RSSGen(5.5)          | Maximum Permissible Exposure     | Pass        |  |
|                          | RSSGen(4.8)          | Receiver Spurious Emissions      | Pass        |  |
| ANSI C63.4: 2003/ RSS-G  | en Issue 2: 2007     | ·                                | •           |  |

## **Test Results Summary**



#### Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 20 of 53 www siemic com

# 5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

Test Result

N/A



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 21 of 53

# 5.1 Occupied Bandwidth

 <u>Conducted Measurement</u> EUT was set for low , mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal.
 Environmental Conditions Temperature 23°C Relative Humidity 50% Atmospheric Pressure 1019mbar Test Date : August 30 2007 Tested By : Benjamin Jing

Standard Requirement :

# 47 CFR §15.247(a)(1) & RSS-210 Issue 6(A 8.1)

Per FCC rule §15.247(a)(1), the 20 dB bandwidth were measured by conducted method using a spectrum analyzer for the low, mid, and high channels. 20 dB bandwidth limit : < 500 KHz.

### **Test Result:**

| Channel | Channel<br>frequency<br>(MHz) | 20 dB Bandwidth<br>(kHz) | 99 % Bandwidth<br>(kHz) |
|---------|-------------------------------|--------------------------|-------------------------|
| Low     | 902.8                         | 93.3                     | 250.0                   |
| Mid     | 915.0                         | 94.2                     | 248.3                   |
| High    | 927.2                         | 93.3                     | 256.7                   |

Refer to the attached plots.



20 dB Bandwidth - Low Channel



Serial#SL07082012-WAT-004Issue Date6 September 2007Page22 of 53



20 dB Bandwidth - Mid Channel



20 dB Bandwidth - High Channel

Title To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007) Serial#SL07082012-WAT-004Issue Date6 September 2007Page23 of 53



99% Bandwidth - Low Channel



99% Bandwidth - Mid Channel

SIEMIC, INC. Accessing global markets Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 24 of 53 EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007) Title: To ATTEN 4.83dB 20dB RL 30.0dBm 10dB/ 256.7kHz m Λ w./ OCCUPIED BW A N ×0CC 99.00 D R 256.7kHz v Λ Δ ٧V Ŵ W N R

99% Bandwidth - High Channel

3.0MHz

SPAN

SMP

500.0kHz

140ms

CENTER

3.0kHz

×RB₩

927.2000MHz

×VBW



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 25 of 53

# 5.2 Carrier Frequency Separation

## <u>Conducted Measurement</u> EUT was set for hopping mode with highest RF output power. The spectrum analyzer was connected to the antenna terminal. Environmental Conditions Relative Humidity Atmospheric Pressure

Test Date : August 30 2007 Tested By : Benjamin Jing

Standard Requirement : 47 CFR §15.247(a)(1) & RSS-210 Issue 6(A 8.1)

Per 15.247(a), carrier frequencies will be separated by a minimum of 25 KHz or the 20 dB bandwidth of the hopping channel, whichever is greater..

### **Test Result :**

Carrier Frequency Separation : 200 KHz



Low Channel

SIEMIC, INC. Accessing global markets Title: To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

Serial#SL07082012-WAT-004Issue Date6 September 2007Page26 of 53



Middle Channel



High channel



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 27 of 53

1019mbar

# 5.3 Number of Hopping Channels

| 1. | Conducted Measurement       |                                   |      |
|----|-----------------------------|-----------------------------------|------|
|    | EUT was set for hopping mod | le with highest RF output power.  |      |
|    | The spectrum analyzer was c | onnected to the antenna terminal. |      |
| 2. | Environmental Conditions    | Temperature                       | 23°C |
|    |                             | Relative Humidity                 | 50%  |

Atmospheric Pressure

Test Date : August 30 2007 Tested By : Benjamin Jing

Standard Requirement :

47 CFR §15.247(a)(1) & RSS-210 Issue 6(A 8.1)

### **Test Result :**

Number of Hopping Channels : 123



Title: To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007) Serial#SL07082012-WAT-004Issue Date6 September 2007Page28 of 53





Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 29 of 53

# 5.4 Time of Occupancy

1. <u>Conducted Measurement</u> EUT was set for hopping mode with highest RF output power. The spectrum analyzer was connected to the antenna terminal. The span set to o Hz.

| 2. | Environmental Conditions |  |
|----|--------------------------|--|
|    |                          |  |

Temperature Relative Humidity Atmospheric Pressure 23°C 50% 1019mbar

Test Date : August 30 2007 Tested By : Benjamin Jing

### Standard Requirement :

47 CFR §15.247(a)(1) & RSS-210 Issue 6(A 8.1)

Per FCC rule §15.247(a), time of occupancy shall not be greater than 0.4 second within a period of 20 second.

## Test Result:

Dwell time = 0.3167 sec

Time between occupancy = 37.4 sec

Time of occupancy = period / time between occupancy \* dwell time

Therefore → (20 / 37.4) \* 0.3167 = 0.1694 second < 0.4 second



Title: To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

Serial#SL07082012-WAT-004Issue Date6 September 2007Page30 of 53





Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 31 of 53

# 5.5 Peak RF Output Power

| Conducted Measurement                                   |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EUT was set for hopping mod                             | le with highest RF output power                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
| The spectrum analyzer was c                             | onnected to the antenna termina                                                                                                                                                   | al.                                                                                                                                                                                                                                                                                                                                       |
| Environmental Conditions                                | Temperature                                                                                                                                                                       | 23°C                                                                                                                                                                                                                                                                                                                                      |
|                                                         | Relative Humidity                                                                                                                                                                 | 50%                                                                                                                                                                                                                                                                                                                                       |
|                                                         | Atmospheric Pressure                                                                                                                                                              | 1019mbar                                                                                                                                                                                                                                                                                                                                  |
| Test Date : August 30 2007<br>Tested By : Benjamin Jing |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
|                                                         | <u>Conducted Measurement</u><br>EUT was set for hopping mod<br>The spectrum analyzer was c<br>Environmental Conditions<br>Test Date : August 30 2007<br>Tested By : Benjamin Jing | Conducted Measurement         EUT was set for hopping mode with highest RF output power         The spectrum analyzer was connected to the antenna termina         Environmental Conditions       Temperature         Relative Humidity         Atmospheric Pressure         Test Date : August 30 2007         Tested By : Benjamin Jing |

### **Standard Requirement :**

47 CFR §15.247(b)) & RSS-210 Issue 6(A 8.4)

Per FCC 515.247(b), the maximum peak power is 1W for systems operating in the band 902 – 928 MHz and employing at least 50 hopping channels.

### **Test Result:**

| Channel | Channel<br>Frequency<br>(MHz) | Peak<br>Power<br>(dBm) | Peak<br>Power<br>(milliWatt) |
|---------|-------------------------------|------------------------|------------------------------|
| Low     | 902.75                        | 28.83                  | 763.8                        |
| Mid     | 914.75                        | 29.00                  | 794.3                        |
| High    | 927.25                        | 29.33                  | 857.0                        |



Low Channel

SIEMIC, INC. Accessing global markets Titlle: EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

Serial#SL07082012-WAT-004Issue Date6 September 2007Page32 of 53



**Mid Channel** 



High Channel



SL07082012-WAT-004 Issue Date 6 September 2007 Page 33 of 53

#### 5.6 Spurious Emissions at Antenna Terminals 1.

Conducted Measurement EUT was set for fix mode with highest RF output power at low, mid, and high channel. The spectrum analyzer was connected to the antenna terminal. **Environmental Conditions** Temperature 23°C Relative Humidity 50%

Atmospheric Pressure

1019mbar

Test Date : August 30 2007 Tested By : Benjamin Jing

Standard Requirement :

47 CFR §15.247(d)) & RSS-210 Issue 6(A 8.5)

### **Test Result:**

2.

| Channel | Channel Frequency<br>(MHz) | Pass/Fail |
|---------|----------------------------|-----------|
| Low     | 902.8                      | Pass      |
| Mid     | 915.0                      | Pass      |
| Hi      | 927.2                      | Pass      |



Low Channel (0.3 - 1 GHz)

Title: To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

Serial#SL07082012-WAT-004Issue Date6 September 2007Page34 of 53



Low Channel (1 - 5 GHz)



Low Channel (5 - 10 GHz)

Title: To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

Serial#SL07082012-WAT-004Issue Date6 September 2007Page35 of 53



Mid Channel (0.3 - 1 GHz)



Mid Channel (1 - 5 GHz)

Title: To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

Serial#SL07082012-WAT-004Issue Date6 September 2007Page36 of 53



Mid Channel (5 - 10 GHz)



High Channel (0.3 - 1 GHz)

Title To EMC Test Report of Sentinel-Prox LR-911 2.6H3 RFID Reader FCC 15.247 2007) and RSS-210 (2007)

Serial#SL07082012-WAT-004Issue Date6 September 2007Page37 of 53



High Channel (1 - 5 GHz)



High Channel (5 - 10 GHz)



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 38 of 53 www.siemic.com

# 5.7 Radiated Spurious Emission

- 1. Radiated emissions below 1 GHz were measured according to ANSI C63.4. For radiated emissions above 1 GHz, equipment was setup in a semi-anechoic chamber, average measurement was taken with a 10Hz video bandwidth. Peak measurement was taken with 1 MHz BW. The EUT was tested at low, mid and high channel with the highest output power and worse case protocol. Note that while single channel mode is set, the side skirts of the fundamental is the same emissions
- All possible modes of operation were investigated. The worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant. The EUT was tested at three orthogonal plans.
- 3. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 4. Radiated Emissions Measurement Uncertainty
- All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz 1GHz (QP only @ 3m & 10m) is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m). In range of 1-40Ghz is ±3.6dB
- 5. Environmental Conditions Temperature 23°C Relative Humidity 50% Atmospheric Pressure 1019mbar Test date : Aug. 30, 2007 Tested By : Benjamin Jing

Standard requirement : 47 CFR §15.247(d)) & RSS-210 Issue 6(A 8.5)

# Test Result for Radiated Spurious Emissions < 1 GHz

Sample Calculation: Corrected Amplitude = Raw Amplitude(dBµV/m) + ACF(dB) + Cable Loss(dB)



| Frequency | Azimuth   | Measure     | Antenna<br>Polarity | Antenna<br>Height | Raw<br>Amplitude<br>@ 3 m | ACF           | CBL<br>loss   | Corrected<br>Amplitude<br>@ 3 m | Limit<br>@ 3 m | Delta  |
|-----------|-----------|-------------|---------------------|-------------------|---------------------------|---------------|---------------|---------------------------------|----------------|--------|
| (MHz)     | (degrees) | (Avg/QP/Pk) | (H/V)               | (m)               | (dBuV/m)                  | ( <b>dB</b> ) | ( <b>dB</b> ) | (dBuV/m)                        | (dBuV/m)       | (dB)   |
| 199.85    | 120       | QP          | Н                   | 1.5               | 22.57                     | 12.3          | 0.9           | 35.77                           | 43.5           | -7.73  |
| 402.59    | 270       | QP          | V                   | 1.2               | 18.43                     | 15.9          | 1.6           | 35.93                           | 46.0           | -10.07 |

Note: 1) Emission collected is the worse case using Restricted Band Limit.

2) A notch filter is used for the test, the fundamental level is 108 dBuV/m at 3 meters distance.



# Test Result for Radiated Spurious Emissions > 1 GHz

Sample Calculation:

EUT Field Strength = Raw Amplitude(dBµV/m) – Amplifier Gain(dB) + Antenna Factor(dB) + Cable Loss(dB) + Filter Attenuation(dB, if used)

| Frequency | Azimuth   | Antenna  | Antenna | Raw     | Pre   | Ant.Corr. | Cable | Corrected | Limit    | Delta  | Detector |
|-----------|-----------|----------|---------|---------|-------|-----------|-------|-----------|----------|--------|----------|
|           |           | Polarity | Heigh   | Reading | Amp.  | Factor    | Loss  | Reading   | @ 3 m    |        |          |
| (GHz)     | (Degrees) | (H/V)    | (m)     | (dBuV)  | (dB)  | (dB)      | (dB)  | (dBuV/m)  | (dBuV/m) | (dB)   | (pk/avg) |
| 1.8056    | 0         | v        | 1.2     | 48.2    | 32.20 | 26.92     | 1.84  | 44.76     | 74       | -29.24 | pk       |
| 1.8056    | 0         | v        | 1.2     | 46.3    | 32.20 | 26.92     | 1.84  | 42.86     | 54       | -11.14 | avg      |
| 1.8056    | 0         | Н        | 1.5     | 42.9    | 32.20 | 26.94     | 1.84  | 39.48     | 74       | -34.52 | pk       |
| 1.8056    | 0         | Н        | 1.5     | 40.7    | 32.20 | 26.94     | 1.84  | 37.28     | 54       | -16.72 | avg      |
| 3.6112    | 130       | v        | 1.1     | 45.5    | 33.23 | 31.49     | 2.53  | 46.29     | 74       | -27.71 | pk       |
| 3.6112    | 130       | v        | 1.1     | 42.6    | 33.23 | 31.49     | 2.53  | 43.39     | 54       | -10.61 | avg      |
| 3.6112    | 90        | Н        | 1.7     | 40.8    | 33.23 | 31.44     | 2.53  | 41.54     | 74       | -32.46 | pk       |
| 3.6112    | 90        | Н        | 1.7     | 37.9    | 33.23 | 31.44     | 2.53  | 38.64     | 54       | -15.36 | avg      |

### Fundamental = 0.9027 GHz (Low Channel)

Fundamental = 0.915 GHz (Mid Channel)

| Frequency | Azimuth   | Antenna  | Antenna | Raw     | Pre   | Ant.Corr. | Cable | Corrected | Limit    | Delta  | Detector |
|-----------|-----------|----------|---------|---------|-------|-----------|-------|-----------|----------|--------|----------|
|           |           | Polarity | Heigh   | Reading | Amp.  | Factor    | Loss  | Reading   | @ 3 m    |        |          |
| (GHz)     | (Degrees) | (H/V)    | (m)     | (dBuV)  | (dB)  | (dB)      | (dB)  | (dBuV/m)  | (dBuV/m) | (dB)   | (pk/avg) |
| 1.83      | 0         | v        | 1.1     | 48.1    | 32.21 | 27.04     | 1.86  | 44.79     | 74       | -29.21 | pk       |
| 1.83      | 0         | V        | 1.1     | 45.9    | 32.21 | 27.04     | 1.86  | 42.59     | 54       | -11.41 | avg      |
| 1.83      | 0         | Н        | 1.4     | 42.3    | 32.21 | 27.06     | 1.86  | 39.01     | 74       | -34.99 | pk       |
| 1.83      | 0         | н        | 1.4     | 40.2    | 32.21 | 27.06     | 1.86  | 36.91     | 54       | -17.09 | avg      |
| 3.66      | 45        | v        | 1.3     | 44.6    | 33.29 | 31.57     | 2.59  | 45.47     | 74       | -28.53 | pk       |
| 3.66      | 45        | v        | 1.3     | 41.8    | 33.29 | 31.57     | 2.59  | 42.67     | 54       | -11.33 | avg      |
| 3.66      | 60        | Н        | 1.6     | 40.3    | 33.29 | 31.51     | 2.59  | 41.11     | 74       | -32.89 | pk       |
| 3.66      | 60        | Н        | 1.6     | 37.1    | 33.29 | 31.51     | 2.59  | 37.91     | 54       | -16.09 | avg      |

Fundamental = 0.9272 GHz (High Channel)

| Frequency | Azimuth  | Antenna  | Antenna | Raw     | Pre   | Ant.Corr. | Cable | Corrected | Limit    | Delta    | Detector |
|-----------|----------|----------|---------|---------|-------|-----------|-------|-----------|----------|----------|----------|
|           |          | Polarity | Heigh   | Reading | Amp.  | Factor    | Loss  | Reading   | @ 3 m    |          |          |
| (GHz)     | (Degrees | (H/V)    | (m)     | (dBuV)  | (dB)  | (dB)      | (dB)  | (dBuV/m)  | (dBuV/m) | (dBuV/m) | (pk/avg) |
| 1.8544    | 0        | v        | 1.5     | 47.6    | 32.23 | 27.16     | 1.88  | 44.41     | 74       | -29.59   | pk       |
| 1.8544    | 0        | v        | 1.5     | 44.8    | 32.23 | 27.16     | 1.88  | 41.61     | 54       | -12.39   | avg      |
| 1.8544    | 0        | н        | 1.7     | 41.7    | 32.23 | 27.17     | 1.88  | 38.53     | 74       | -35.47   | pk       |
| 1.8544    | 0        | Н        | 1.7     | 39.5    | 32.23 | 27.17     | 1.88  | 36.33     | 54       | -17.67   | avg      |
| 3.7088    | 230      | v        | 1.3     | 44.1    | 33.36 | 31.66     | 2.67  | 45.07     | 74       | -28.93   | pk       |
| 3.7088    | 230      | v        | 1.3     | 41.3    | 33.36 | 31.66     | 2.67  | 42.27     | 54       | -11.73   | avg      |
| 3.7088    | 120      | Н        | 1.3     | 39.9    | 33.36 | 31.59     | 2.67  | 40.80     | 74       | -33.20   | pk       |
| 3.7088    | 120      | н        | 1.3     | 36.2    | 33.36 | 31.59     | 2.67  | 37.10     | 54       | -16.90   | avg      |

Note : The levels of the spurious emissions above 4 GHz are too low to be tested .



# Band-edge Test Result :



Band-edge : Lowest Channel



Band-edge : Highest Channel



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 41 of 53

50%

1019mbar

# 5.8 AC Line Conducted Emission Test Result

<u>Note:</u> 1.

Standard requirement: 47 CFR §15.207 & RSS-Gen Issue 1(7.2.2)

- 2. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 3. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- <u>Conducted Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±2.64dB.
   Environmental Conditions Temperature 23°C
- 5. Environmental Conditions Temperature Relative Humidity Atmospheric Pressure Test Date : Aug. 30 2007 Tested By : Benjamin Jing



Serial#SL07082012-WAT-004Issue Date6 September 2007Page42 of 53www.siemie.com

Quasi-Peak

Average Limit



|                    | 120V, 60Hz, Neutral Line |                                 |                   |                |                        |                                 |                   |                |         |
|--------------------|--------------------------|---------------------------------|-------------------|----------------|------------------------|---------------------------------|-------------------|----------------|---------|
| Frequency<br>(MHz) | QP<br>Value<br>(dBµV)    | FCC<br>15.207<br>Limitt<br>(dB) | Pass<br>/<br>Fail | Margin<br>(dB) | Avg<br>Value<br>(dBµV) | FCC<br>15.207<br>Limitt<br>(dB) | Pass<br>/<br>Fail | Margin<br>(dB) | Line    |
| 0.41               | 39.85                    | 57.65                           | PASS              | -17.80         | 30.22                  | 47.65                           | PASS              | -17.43         | Neutral |
| 0.46               | 40.92                    | 56.69                           | PASS              | -15.77         | 31.73                  | 46.69                           | PASS              | -14.96         | Neutral |
| 0.74               | 39.53                    | 56.00                           | PASS              | -16.47         | 30.15                  | 46.00                           | PASS              | -15.85         | Neutral |
| 1.73               | 37.87                    | 56.00                           | PASS              | -18.13         | 29.81                  | 46.00                           | PASS              | -16.19         | Neutral |
| 2.94               | 39.62                    | 56.00                           | PASS              | -16.38         | 31.47                  | 46.00                           | PASS              | -14.53         | Neutral |
| 3.73               | 35.44                    | 56.00                           | PASS              | -20.56         | 28.81                  | 46.00                           | PASS              | -17.19         | Neutral |



Serial#SL07082012-WAT-004Issue Date6 September 2007Page43 of 53unumeration of the sector of the secto

Quasi-Peak

Average Limit



### 120V, 60Hz, Phase Line

| Frequency<br>(MHz) | QP<br>Value<br>(dBµV) | FCC<br>15.207<br>Limit<br>(dB) | Pass<br>/<br>Fail | Margin<br>(dB) | Avg<br>Value<br>(dBµV) | FCC<br>15.207<br>Limit<br>(dB) | Pass<br>/<br>Fail | Margin<br>(dB) | Line  |
|--------------------|-----------------------|--------------------------------|-------------------|----------------|------------------------|--------------------------------|-------------------|----------------|-------|
| 0.47               | 43.95                 | 56.51                          | PASS              | -12.56         | 35.87                  | 46.51                          | PASS              | -10.64         | Phase |
| 0.69               | 44.62                 | 56.00                          | PASS              | -11.38         | 36.04                  | 46.00                          | PASS              | -9.96          | Phase |
| 0.93               | 43.61                 | 56.00                          | PASS              | -12.39         | 34.25                  | 46.00                          | PASS              | -11.75         | Phase |
| 1.95               | 38.96                 | 56.00                          | PASS              | -17.04         | 29.57                  | 46.00                          | PASS              | -16.43         | Phase |
| 3.11               | 34.32                 | 56.00                          | PASS              | -21.68         | 26.69                  | 46.00                          | PASS              | -19.31         | Phase |
| 3.96               | 32.88                 | 56.00                          | PASS              | -23.12         | 24.75                  | 46.00                          | PASS              | -21.25         | Phase |

# 5.9 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

This EUT antenna is attached permanently to the device which meets the requirement

# Annex A. TEST INSTRUMENT & METHOD

## Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

| Instrument            | Manufacturer         | Model         | CAL Due Date |
|-----------------------|----------------------|---------------|--------------|
| Spectrum Analyzer     | HP                   | 8568B         | 04/26/2008   |
| Quasi-Peak Adapter    | HP                   | 85650A        | 04/26/2008   |
| RF Pre-Selector       | HP                   | 85685A        | 04/26/2008   |
| Spectrum Analyzer     | HP                   | 8564E         | 12/29/2007   |
| Power Meter           | HP                   | 437B          | 04/26/2008   |
| Power Sensor          | HP                   | 8485A         | 04/26/2008   |
| Bilog Antenna         | Sunol Sciences, Inc. | JB1           | 09/11/2007   |
| Horn Antenna          | Emco                 | 3115          | 08/17/2008   |
| Signal Generator      | Wiltron              | 68169B        | 04/26/2008   |
| Chamber               | Lingren              | 3m            | 08/21/2008   |
| Pre-Amplifier         | HP                   | 8449          | 05/01/2008   |
| Variac                | KRM                  | AEEC-2090     | See Note     |
| Environment Chamber   | TestEquity           | 1007H         | 10/27/2007   |
| DMM                   | Fluke                | 5111          | See Note     |
| 900 MHz Notch Filter  | AWID                 | N/A           | See Note     |
| 4GHz High Pass Filter | LORCH Microwave      | 4HPD-X4000-3R | See Note     |

Note: No calibration required.



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 46 of 53 www.siemic.com

## Annex A. ii RADIATED EMISSIONS TEST DESCRIPTION

## **EUT Characterisation**

EUT characterisation, over the frequency range from 30MHz to 10<sup>th</sup> Harmonic , was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

### Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.





Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 47 of 53 www.siemic.com

### Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

### Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from  $0 \circ to 360 \circ$  with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.

5. Repeat step 4 until all frequencies need to be measured were complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

| Frequency Band (MHz) | Function | Resolution bandwidth | Video Bandwidth |
|----------------------|----------|----------------------|-----------------|
| 30 to 1000           | Peak     | 100 kHz              | 100 kHz         |
| Above 1000           | Peak     | 1 MHz                | 1 MHz           |
| Above 1000           | Average  | 1 MHz                | 10 Hz           |

### Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows: Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

Average = Peak Value + Duty Factor

Note :

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 48 of 53

# Annex B EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment.



Serial# SL07082012-WAT-004 Issue Date 6 September 2007 Page 49 of 53

# Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

# **EUT TEST CONDITIONS**

## Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

| Equipment Description<br>(Including Brand Name) | Model & Serial Number | Cable Description<br>(List Length, Type & Purpose) |
|-------------------------------------------------|-----------------------|----------------------------------------------------|
| Laptop PC                                       | Compaq 2100           | RS232 Cable: 20 cm.                                |



# Block Configuration Diagram for Radiated Emission





# **Block Configuration Diagram for Conducted Emission**



# Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

| Test          | Description Of Operation                                   |
|---------------|------------------------------------------------------------|
| Emissions The | EUT was controlled via PC to enter test modes necessary to |
| comp          | olete the testing.                                         |
| EUT           | is configured for worst case with AWID software.           |



Serial#SL07082012-WAT-004Issue Date6 September 2007Page53 of 53www.siomic.com

# Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment