

According to 447498 D01 General RF Exposure Guidance v05

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

10^{((dBuV/m)/20)}/10⁶

--f(GHz) is the RF channel transmit frequency in GHz

--Power and distance are rounded to the nearest mW and mm before calculation

--The result is rounded to one decimal place for comparison

eirp = pt x qt = $(EXd)^2/30$ where: pt = transmitter output power in watts, gt = numeric gain of the transmitting antenna (unitless), E = electric field strength in V/m,---

d = measurement distance in meters (m) ---3m So $pt = (EXd)^2/30 x qt$

For BT mode

Field strength = 91.48dBuV/m @3m Ant gain =1dBi, so Ant numeric gain=1.26

So pt={ $[10^{(91.48/20)}/10^6 \times 3]^2/30 \times 1.26$ } x1000 mW = 0.335 mW So $(0.335 \text{mW} / 5 \text{mm}) \times \sqrt{2.480} = 0.106 < 3$

For BLE mode

Field strength = 92.22dBuV/m @3m Ant gain =1dBi, so Ant numeric gain= 1.26

So pt={ $[10^{92.22/20})/10^6 \times 3]^2/30 \times 1.26$ x1000 mW =0.397mW So $(0.397 \text{mW} / 5 \text{mm}) \times \sqrt{2.440} = 0.124 < 3$

Then SAR evaluation is not required