KTL Test Report:	8L0174EUS
Applicant:	Airtech Wireless, Inc. 1420 Valwood Pkwy., Suite 200 Carrollton, TX. 75006
Equipment Under Test: (E.U.T.)	PCS 1900 Booster, Single Feed - Single Antenna
FCC ID:	OGAS21008
In Accordance With:	FCC Part 24, Subpart E Broadband PCS Repeaters
Tested By:	KTL Dallas, Inc. 802 N. Kealy Lewisville, TX 75057-3136
Authorized By:	T. Tidwell, Laboratory Manager
Date:	03/31/99
Total Number of Pages:	51

Table of Contents

Section 1. Summary of Test Results	4
General	
Summary of Test Data	
Section 2. General Equipment Specification	6
Specifications	
Description of Modifications for Class II Permissive Change	
Modifications Made During Testing	
Theory of Operation	
System Diagram	
Section 3. RF Power Output	
Test Results	
Test Data	
Section 4. Occupied Bandwidth	
Occupied Bandwidth (CDMA)	
Test Results	
CDMA Input and Output Graphs	
Occupied Bandwidth (GSM)	
Test Results	
GSM Input and Output Graphs	
Occupied Bandwidth (NADC)	
Test Results	
NADC Input and Output Graphs	
Section 5. Spurious Emissions at Antenna Terminals	25
Test Results	
Test Data	
Graphs	
Section 6. Field Strength of Spurious Radiation	
Test Results	
Test Data	
Test Data - Radiated Emissions - Uplink	
Test Data - Radiated Emissions - Downlink	
Photographs of Test Setup	

Table of Contents (Continued):

Section 7.	Frequency Stability	

Annex A - Test Methodologies RF Power Output Occupied Bandwidth (CDMA) Occupied Bandwidth (GSM) Occupied Bandwidth (NADC) Spurious Emission at Antenna Terminals Field Strength of Spurious Frequency Stability

Annex B - Test Diagrams

R.F. Power Output Occupied Bandwidth Spurious Emissions at Antenna Terminals Field Strength of Spurious Frequency Stability

Section 1. Summary of Test Results

General:

General:	All measurements are traceable to national standards.
Serial No.:	None
Model No.:	PCS 1900 Booster, Single Feed - Single Antenna
Manufacturer:	Airtech Wireless, Inc.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 24, Subpart E.

\square	New Submission	\square	Production Unit
	Class II Permissive Change		Pre-Production Unit
A M P	Equipment Code		

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE: NONE.

NVLAP LAB CODE: 100351-0

TESTED BY:	Ron Gaytan	DATE:	03/29/99
	Ron Gaytan, RF Senior Technician		

KTL Dallas, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Dallas, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS REPORT NO.: 8L0174EUS

Summary Of Test Data:

NAME OF TEST	PARA. NO.	SPEC.	MEAS.	RESULT
RF Power Output	24.232	20W	19.9526	Complies
Occupied Bandwidth (CDMA)	24.238	Input/Output	See Plots	Complies
Occupied Bandwidth (GSM)	24.238	Input/Output	See Plots	Complies
Occupied Bandwidth (NADC)	24.238	Input/Output	See Plots	Complies
Spurious Emissions at Antenna Terminals	24.238(a)	-13 dBm	-14.1	Complies
Field Strength of Spurious Emissions	24.238(a)	-13 dBm E.I.R.P.	58.6	Complies
Frequency Stability	24.235	N/A*	N/A*	N/A*

*The E.U.T. is an amplifier; therefore, Frequency Stability is not applicable.

Test Conditions:

Indoor:	Temperature: Humidity:	24°C 42%
Outdoor:	Temperature: Humidity:	22°C 40%

Section 2. General Equipment Specification

Specifications:

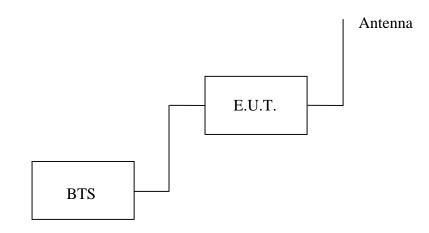
Supply	Voltage Input:	12 V DC
Suppry	vonage mput.	12 V DC

Frequency Range: Downlink: 1930-1990 MHz

Frequency Range: Uplink: 1850-1910 (Connected to base station via coaxial cable.)

Type of Modulation and Designator:			CDMA (F9W)	GSM (GXW)	NADC (DXW)
Output Impedance:		50 Ohms			
Gain:		2-12 dB			
Nominal Input Power from BTS:		+31 dBm			
RF Output (Rated):	Single: Composite:	20 Watts N/A			
Frequency Translation:			F1-F1	F1-F2	N/A
Band Selection:			Software	Duplexer Change	Fullband Coverage

Description of Modifications for Class II Permissive Change:


Modifications Made During Testing:

Theory of Operation:

The E.U.T. is a booster amplifier installed at the masthead of a PCS 1900 MHz GSM/TDMA system. The booster amplifer is fed with a signal level of +31 dBm and delivers 20 watts nominally to the transmit antenna.

System Diagram:

Section 3. RF Power Output

NAME OF TEST: RF Power Output	PARA. NO.: 2.1046
TESTED BY: Ron Gaytan	DATE: 03/24/99, 03/29/99

Test Results: Complies.

Test Data: See attached tables.

	Modulation Type	Per Channel Output Power (dBm)	Composite Output Power (dBm)
Uplink	CDMA	N/A	N/A
Downlink	CDMA	N/A	N/A
Uplink	GSM	26.95	N/A
Downlink	GSM	43.07	N/A
Uplink	NADC	29.2	N/A
Downlink	NADC	43	N/A

See test data on the following page.

GSM Modulation Data Sheet:

Freq.	Meter	Attn.	Cable	Correction	Corrected	Corrected	Pol.	Comments:
	Reading		Loss	Factor	Reading	Reading		
(GHz)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(Watts)		
1.93125	12.67	30	0.4		43.07	20.2768	N/A	
1.93125	-3.45	30	0.4		26.95	0.4955	N/A	Input Power Level

NADC Modulation Data Sheet:

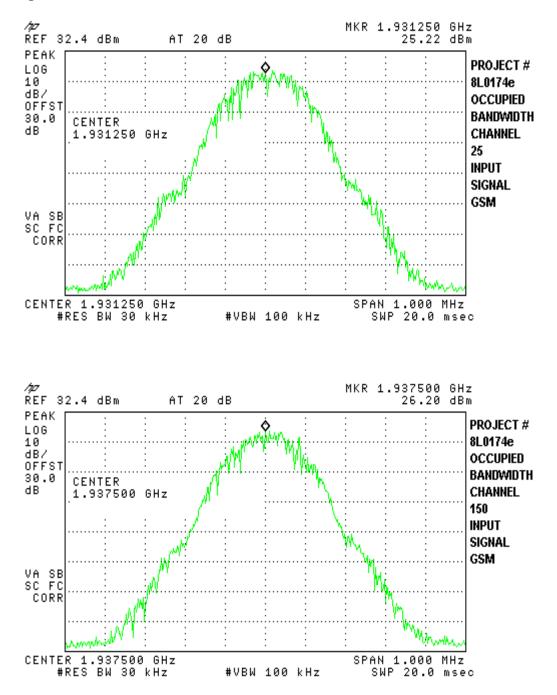
Freq.	Meter	Attn.	Cable	Correction	Corrected	Corrected	Pol.	Comments:
	Reading		Loss	Factor	Reading	Reading		
(GHz)	(dBm)	(dB)	(dB)	(dB)	(dBm)	(Watts)		
1.93125	12.6	30	0.4		43	19.9526	N/A	
1	4.0	00	0.4		00.0	0.0040	NI/A	land Devian Land
1.93125	-1.2	30	0.4		29.2	0.8318	N/A	Input Power Level

Section 4. Occupied Bandwidth

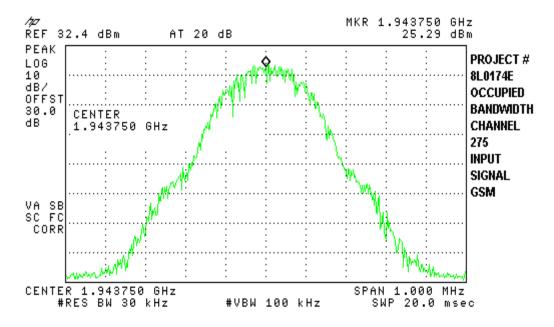
NAME OF TEST: Occupied Bandwidth (CDMA)PARA. NO.: 2.1049

TESTED BY: N/A

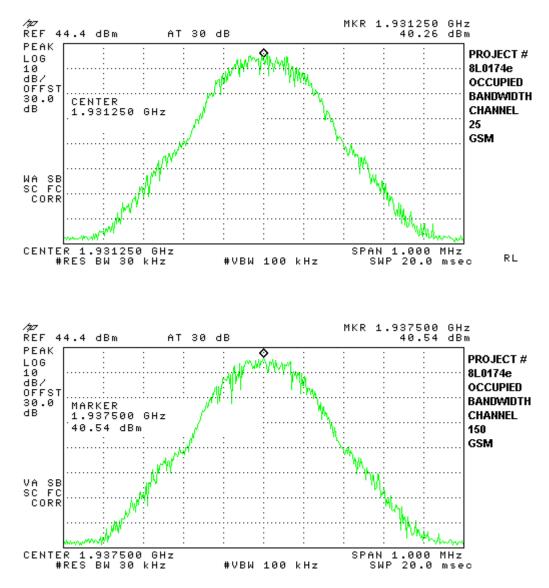
DATE: N/A

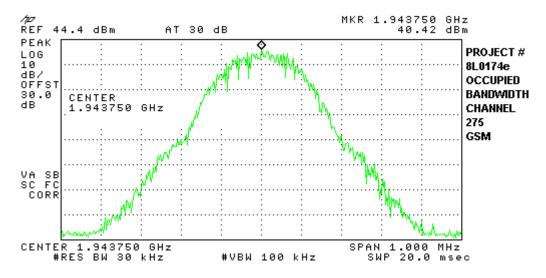

Not Applicable

NAME OF TEST: Occupied Bandwidth (GSM)	PARA. NO.: 2.1049
TESTED BY: Ron Gaytan	DATE: 03/29/99


Test Results: Complies.

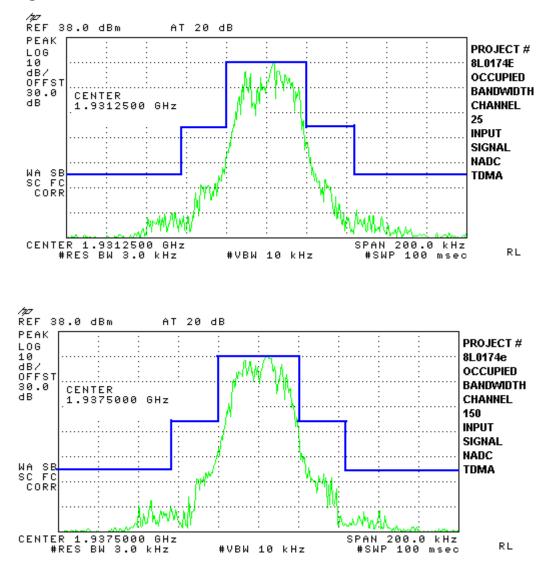
Test Data: See attached graph(s).


Input Signal:

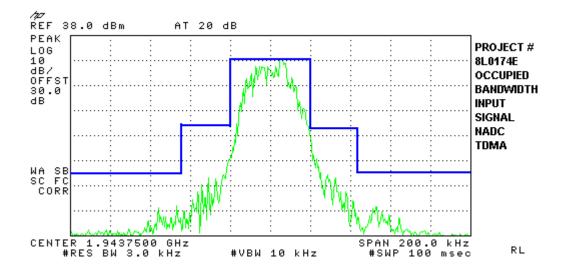

Input Signal (Continued):

Max Power:

Max Power (Continued):



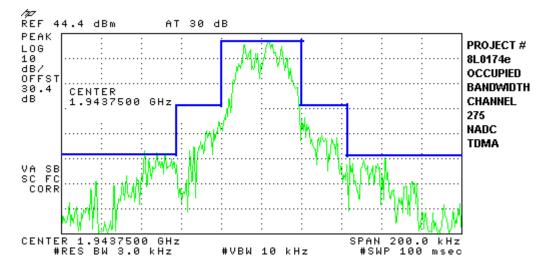
NAME OF TEST: Occupied Bandwidth (NADC)	PARA. NO.: 2.1049
TESTED BY: Ron Gaytan	DATE: 03/29/99


Test Results: Complies.

Test Data: See attached graph(s).

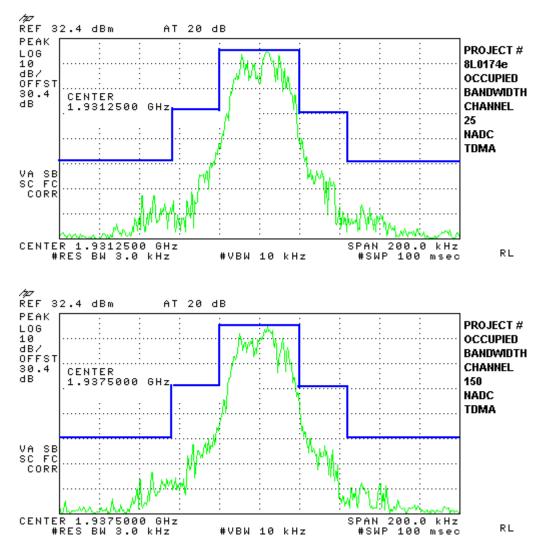
Input Signal:

Input Signal (Continued):

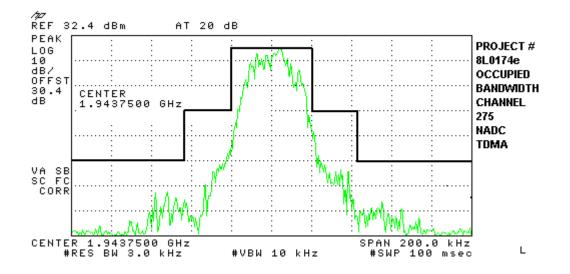

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS REPORT NO.: 8L0174EUS

EQUIPMENT: PCS 1900 Booster, Single Feed - Single Antenna FCC ID: OGAS21008

Max Power:



EQUIPMENT: PCS 1900 Booster, Single Feed - Single Antenna FCC ID: OGAS21008



Max Power (Continued):

Low Power:

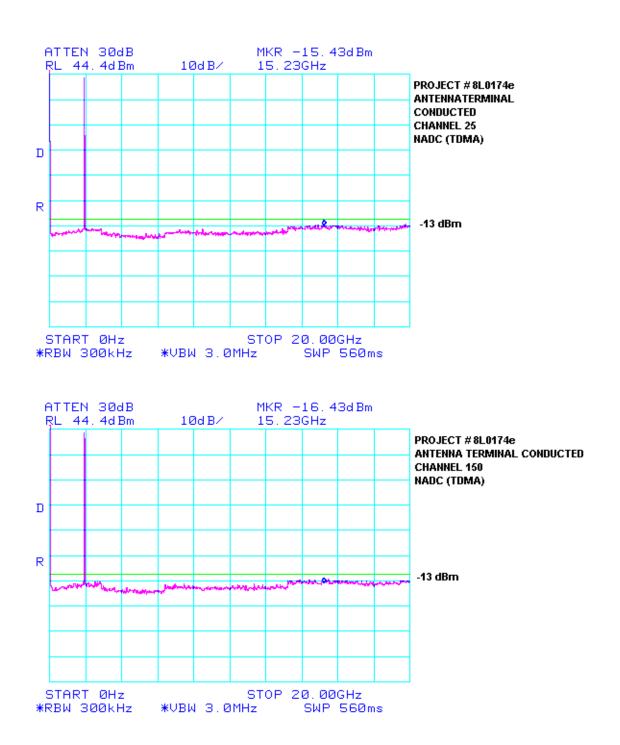
Low Power (Continued):

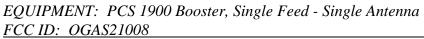
Section 5. Spurious Emissions at Antenna Terminals

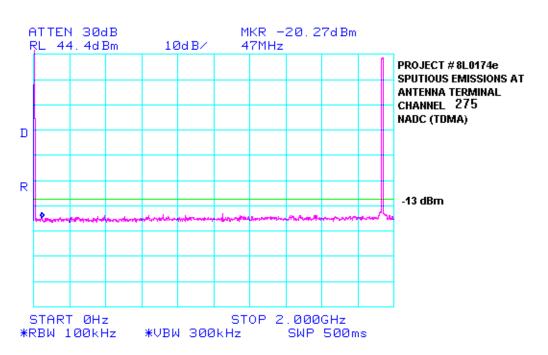
NAME OF TEST: Spurious Emissions @ Antenna Terminals	PARA. NO.: 2.1051
TESTED BY: Ron Gaytan	DATE: 03/25/99

Test Results: Complies.

Test Data: See attached test data and graphs.


NAME OF TEST	WORST-CASE SPURIOUS LEVEL(dBm)
0 to 20 GHz spurious (Uplink)	N/A
0 to 20 GHz spurious (Downlink)	-15.4
3 – signal intermodulation (Uplink)	N/A
3 - signal intermodulation (Downlink)	N/A
Lower band edge spurious (Uplink)	N/A
Lower band edge spurious (Downlink)	N/A
Upper band edge spurious (Uplink)	N/A
Upper band edge spurious (Downlink)	N/A


Freq.	Meter	Attn.	Cable	Correction	Corrected		Pol.	Comments:
	Reading		Loss	Factor	Reading	Spec.limit		500MHz-1000MHz RBW= 100 kHz
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBm)	(dBm)		1GHz-20GHz RBW= 1MHz
500	3	30	0.2	-107	-73.8	-13	N/A	
920	5	30	0.2	-107	-71.8	-13	N/A	
1.924	120	30	0.4	-107	43.4	N/A	N/A	Fundemental Frequency
1.947	54	30	0.4	-107	-22.6	-13	N/A	
3.862	59	30	0.8	-107	-17.2	-13	N/A	
5.79	62	30	0.9	-107	-14.1	-13	N/A	
7.726	36	30	2.1	-107	-38.9	-13	N/A	
9.679	40	30	2.2	-107	-34.8	-13	N/A	
11.57	19	30	3	-107	-55	-13	N/A	
13.529	29	30	3	-107	-45	-13	N/A	
15.404	18	30	3	-107	-56	-13	N/A	Noise Floor
17.392	19	30	3	-107	-55	-13	N/A	Noise Floor
								SCANNED FROM 1GHz-20GHz


Test Data – Spurious Emissions at Antenna Terminal Test # SE-1:

Test Data – Spurious Emissions at Antenna Terminal Test # SE-2:

Freq.	Meter	Attn.	Cable	Correction	Corrected		Pol.	Comments:
	Reading		Loss	Factor	Reading	Spec.limit		500MHz-1000MHz RBW= 100 kHz
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBm)	(dBm)		1GHz-20GHz RBW= 1MHz
500	3	30	0.2	-107	-73.8	-13	N/A	
920	5	30	0.2	-107	-71.8	-13	N/A	
1.924	120	30	0.4	-107	43.4	N/A	N/A	Fundemental Frequency
1.932	60	30	0.4	-107	-16.6	-13	N/A	
3.859	60	30	0.8	-107	-16.2	-13	N/A	
5.786	60	30	0.9	-107	-16.1	-13	N/A	
7.72	32	30	2.1	-107	-42.9	-13	N/A	
9.676	34	30	2.2	-107	-40.8	-13	N/A	
11.57	18	30	3	-107	-56	-13	N/A	
13.515	26	30	3	-107	-48	-13	N/A	
15.404	18	30	3	-107	-56	-13	N/A	Noise Floor
17.392	19	30	3	-107	-55	-13	N/A	Noise Floor
								SCANNED FROM 1GHz-20GHz

Section 6. Field Strength of Spurious Radiation

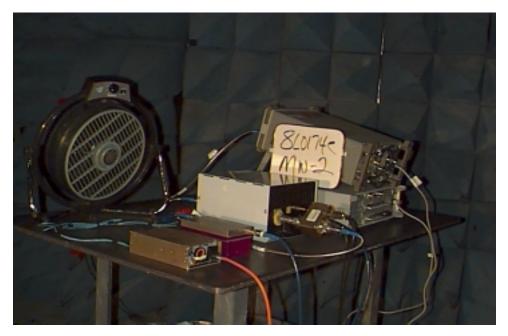
NAME OF TEST: Field Strength of Spurious Radiation	PARA. NO.: 2.1053
TESTED BY: Ron Gaytan	DATE: 03/26/99

Test Results: Complies. The maximum field strength is $56.5 \text{ dB}\mu\text{V/m} @ 3\text{m}$.

Test Data: See attached graph(s).

Test Data - Radiated Emissions – Uplink:

Test Data - Radiated Emissions Test # MW-2 (1 GHz-20 GHz) – Downlink (GSM):


Freq.	Meter Reading	Antenna Factor	Cable Loss	RF Gain	Corrected Reading	Spec. Limit	Pol.	Comments:
(GHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)		
1.923	35	28.1	2.8	0	65.9	N/A	Н	FUNDAMENTAL FREQ.
3.862	30	31.6	4.0	0	65.6	82.2	Н	
5.79	17	35	5.1	0	57.1	82.2	Н	Noise Floor
7.726	18	37.2	6.0	0	61.2	82.2	Н	Noise Floor
9.679	18	37.8	6.9	0	62.7	82.2	Н	Noise Floor
11.57	18	39.7	7.5	0	65.2	82.2	Н	Noise Floor
13.529	18	41.4	8.3	0	67.7	82.2	Н	Noise Floor
15.404	18	40.8	8.7	0	67.5	82.2	Н	Noise Floor
17.392	18	44.4	9.5	0	71.9	82.2	Н	Noise Floor
1.923	35	28.1	2.8	0	65.9	N/A	V	FUNDAMENTAL FREQ.
3.862	29	31.6	4.0	0	64.6	82.2	V	
5.79	17	35	5.1	0	57.1	82.2	V	
7.726	18	37.2	6.0	0	61.2	82.2	V	Noise Floor
9.679	18	37.8	6.9	0	62.7	82.2	V	Noise Floor
11.57	18	39.7	7.5	0	65.2	82.2	V	Noise Floor
13.529	18	41.4	8.3	0	67.7	82.2	V	Noise Floor
15.404	18	40.8	8.7	0	67.5	82.2	V	Noise Floor
17.392	18	44.4	9.5	0	71.9	82.2	V	Noise Floor
								Scanned 1GHz-20GHz

Radiated Emissions Photographs for Test # MW-2 (1 GHz-20 GHz) – Downlink (GSM):

FRONT VIEW:

REAR VIEW:

Test Data - Radiated Emissions Test # RE-3 (30 MHz-1000 MHz) – Downlink (GSM):

33.3		0.0	58.1	11.9	1.1	25.0	46.1	82.2	-36.11	Pass	BROADBAND NOISE BROADBAND NOISE
39.2	V	0.0	63.0	11.9	1.1	25.0	51.0	82.2	-31.21	Pass	
44.0	V	0.0	65.0	11.4	1.4	25.0	52.9	82.2	-29.34	Pass	BROADBAND NOISE
47.4	V	0.0	64.0	11.2	1.4	25.0	51.7	82.2	-30.54	Pass	BROADBAND NOISE
59.3	V	0.0	71.0	10.1	1.8	24.9	58.0	82.2	-24.21	Pass	BROADBAND NOISE
62.5	V	0.0	68.0	9.8	1.8	24.9	54.6	82.2	-27.59	Pass	BROADBAND NOISE
71.1	V	0.0	67.0	8.8	1.3	24.9	52.1	82.2	-30.06	Pass	BROADBAND NOISE
81.0	V	0.0	58.0	8.7	1.3	24.9	43.1	82.2	-39.11	Pass	BROADBAND NOISE
87.0	V	0.0	58.0	9.3	1.3	24.9	43.7	82.2	-38.51	Pass	BROADBAND NOISE
109.0	V	0.0	47.0	9.9	2.7	24.9	34.7	82.2	-47.47	Pass	BROADBAND NOISE
142.4	V	0.0	49.0	11.8	3.0	24.8	39.0	82.2	-43.19	Pass	BROADBAND NOISE
183.6	V	0.0	52.0	13.9	3.0	24.6	44.3	82.2	-37.86	Pass	BROADBAND NOISE
256.0	V	0.0	45.0	18.7	4.6	24.7	43.6	82.2	-38.6	Pass	
33.4	H	0.0	44.0	11.9	1.1	25.0	32.0	82.2	-50.21	Pass	BROADBAND NOISE
39.2	H	0.0	47.0	11.9	1.1	25.0	35.0	82.2	-47.21	Pass	BROADBAND NOISE
44.0	Н	0.0	51.0	11.3	1.4	25.0	38.7	82.2	-43.5	Pass	BROADBAND NOISE
45.3	Н	0.0	57.0	11.1	1.4	25.0	44.5	82.2	-37.66	Pass	BROADBAND NOISE
48.8	Н	0.0	60.0	11.3	1.4	25.0	47.7	82.2	-34.48	Pass	BROADBAND NOISE
59.3	н	0.0	58.0	10.1	1.8	24.9	45.0	82.2	-37.21	Pass	BROADBAND NOISE
61.3	н	0.0	58.0	9.9	1.8	24.9	44.7	82.2	-37.47	Pass	BROADBAND NOISE
71.1	H	0.0	53.0	8.8	1.3	24.9	38.1	82.2	-44.06	Pass	BROADBAND NOISE
81.0	H	0.0	52.0	8.7	1.3	24.9	37.1	82.2	-45.11	Pass	BROADBAND NOISE
87.0	H	0.0	52.0	9.3	1.3	24.9	37.7	82.2	-44.51	Pass	BROADBAND NOISE
109.3	H	0.0	55.0	9.9	2.7	24.9	42.7	82.2	-39.47	Pass	BROADBAND NOISE
119.5	H	0.0	59.0	11.2	2.7	24.9	48.1	82.2	-34.12	Pass	BROADBAND NOISE
119.5	H	0.0	59.0	11.5	3.0	24.9	48.7	82.2	-33.52	Pass	BROADBAND NOISE
143.0	H	0.0	60.0	11.9	3.0	24.8	50.1	82.2	-32.12	Pass	BROADBAND NOISE BROADBAND NOISE
143.0	H	0.0	56.0	12.3	3.0	24.8	46.5	82.2	-35.7	Pass	BROADBAND NOISE BROADBAND NOISE
									-30.42		
165.5	H	0.0	60.0	13.6	3.0	24.8	51.8	82.2		Pass	BROADBAND NOISE
170.4	H	0.0	64.0	13.6	3.0	24.8	55.8	82.2	-26.37	Pass	BROADBAND NOISE
181.7	H	0.0	63.0	13.8	3.0	24.6	55.3	82.2	-26.95	Pass	BROADBAND NOISE
196.6	H	0.0	56.0	14.7	3.0	24.6	49.1	82.2	-33.07	Pass	BROADBAND NOISE
224.7	H	0.0	51.0	15.2	4.1	24.6	45.7	82.2	-36.53	Pass	BROADBAND NOISE
252.0	H	0.0	42.0	17.9	4.6	24.7	39.8	82.2	-42.42	Pass	BROADBAND NOISE
256.0	H	0.0	55.0	18.7	4.6	24.7	53.6	82.2	-28.6	Pass	
265.4	H	0.0	42.0	19.7	4.6	24.7	41.6	82.2	-40.58	Pass	
272.1	H	0.0	38.0	20.0	4.6	24.7	37.9	82.2	-44.3	Pass	
288.0	H	0.0	41.0	20.6	4.6	24.7	41.5	82.2	-40.7	Pass	
309.6	H	0.0	34.0	19.2	4.7	24.7	33.2	82.2	-48.96	Pass	
317.0	Н	0.0	35.0	16.7	4.7	24.7	31.7	82.2	-50.46	Pass	
325.7	Н	0.0	35.0	15.4	4.7	24.7	30.5	82.2	-51.71	Pass	
339.0	Н	0.0	36.0	15.4	4.7	24.7	31.5	82.2	-50.71	Pass	
352.0	Н	0.0	43.0	15.9	4.7	24.7	39.0	82.2	-43.21	Pass	
383.9	Н	0.0	38.0	16.7	4.7	24.7	34.8	82.2	-47.41	Pass	
516.4	н	0.0	40.0	17.7	6.4	24.7	39.3	82.2	-42.91	Pass	
545.4	H	0.0	33.0	19.4	6.4	24.7	34.0	82.2	-48.23	Pass	
600.0	H	0.0	34.0	19.9	7.1	24.8	36.2	82.2	-45.99	Pass	
700.2	H	0.0	34.0	20.8	7.9	25.0	37.7	82.2	-44.48	Pass	
309.5	v	0.0	36.0	19.2	4.7	24.7	35.2	82.2	-46.96	Pass	
317.0	ν.	0.0	35.0	16.7	4.7	24.7	31.7	82.2	-50.46	Pass	
324.2	Ý v	0.0	37.0	15.4	4.7	24.7	32.5	82.2	-49.71	Pass	
339.0	- v	0.0	37.0	15.4	4.7	24.7	32.5	82.2	-49.71	Pass	
352.0	v	0.0	42.0	15.4	4.7	24.7	38.0	82.2	-44.21	Pass	
368.6	v	0.0	42.0	16.5	4.7	24.7	32.6	82.2	-44.21	Pass Pass	
383.9	v	0.0	35.0	16.5	4.7	24.7	31.8	82.2	-49.64	Pass	
412.8	v	0.0	36.0	16.7	4.7	24.7	33.7	82.2	-48.49	Pass Pass	
412.8	v	0.0	34.0			24.8	32.4	82.2	-48.49		
427.5				17.1	6.0					Pass	
	V	0.0	42.0	18.4	6.4	24.7	42.0	82.2	-40.19	Pass	
516.0 529.5	V	0.0	43.0	17.7	6.4	24.7	42.3	82.2	-39.91	Pass	
538.5	V	0.0	30.0	18.3	6.4	24.7	29.9	82.2	-52.31	Pass	
545.4	V	0.0	28.0	19.4	6.4	24.7	29.0	82.2	-53.23	Pass	
600.0	V	0.0	35.0	19.9	7.1	24.8	37.2	82.2	-44.99	Pass	
700.1	V	0.0	32.0	20.8	7.9	25.0	35.7	82.2	-46.48	Pass	
737.1	V	0.0	35.0	20.4	7.9	25.0	38.3	82.2	-43.86	Pass	
747.7	V	0.0	33.0	19.9	7.9	25.0	35.9	82.2	-46.34	Pass	
											Scanned from 30 MHz to 1 Ghz
	_										

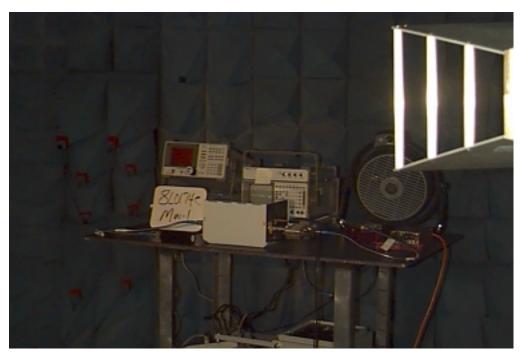
KTL Dallas, Inc.

EQUIPMENT: PCS 1900 Booster, Single Feed - Single Antenna FCC ID: OGAS21008

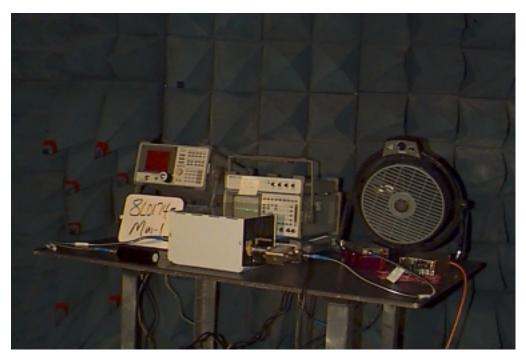
Radiated Emissions Photographs for Test # RE-3 (30 MHz-1000 MHz) – Downlink (GSM):

FRONT VIEW:

REAR VIEW:


NOTE: Photographs for RE-3 are unavailable; however RE-2 set up is identical other than modulation type.

Test Data - Radiated Emissions Test # MW-1 – Downlink (TDMA):


Freq. (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	RF Gain (dB)	Corrected Reading (dBuV/m)	Spec. Limit (dBuV/m)	Pol.	Comments:
1.923	35	28.1	2.8	0	65.9	N/A	Н	FUNDAMENTAL FREQ.
3.862	30	31.6	4.0	0	65.6	82.2	Н	
5.79	17	35	5.1	0	57.1	82.2	Н	Noise Floor
7.726	18	37.2	6.0	0	61.2	82.2	Н	Noise Floor
9.679	18	37.8	6.9	0	62.7	82.2	Н	Noise Floor
11.57	18	39.7	7.5	0	65.2	82.2	Н	Noise Floor
13.529	18	41.4	8.3	0	67.7	82.2	Н	Noise Floor
15.404	18	40.8	8.7	0	67.5	82.2	Н	Noise Floor
17.392	18	44.4	9.5	0	71.9	82.2	Н	Noise Floor
1.923	35	28.1	2.8	0	65.9	N/A	V	FUNDAMENTAL FREQ.
3.862	29	31.6	4.0	0	64.6	82.2	V	
5.79	17	35	5.1	0	57.1	82.2	V	
7.726	18	37.2	6.0	0	61.2	82.2	V	Noise Floor
9.679	18	37.8	6.9	0	62.7	82.2	V	Noise Floor
11.57	18	39.7	7.5	0	65.2	82.2	V	Noise Floor
13.529	18	41.4	8.3	0	67.7	82.2	V	Noise Floor
15.404	18	40.8	8.7	0	67.5	82.2	V	Noise Floor
17.392	18	44.4	9.5	0	71.9	82.2	V	Noise Floor
								Scanned 1GHz-20GHz

Radiated Emissions Photographs for Test # MW-1 – Downlink (TDMA):

FRONT VIEW:

REAR VIEW:

Test Data - Radiated Emissions Test # RE-2 (30 MHz-1000 MHz) – Downlink (TDMA):

Notes	Pass	CRISE	Spec.	Corrected	RF	Path	Antenna	Meter	Det.	Ant.	Emission
	Fail	Delta	Limit	Reading	Gain	Loss	Factor	Reading	Atten.	Pol.	Frequency
	Marginal	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV)	(dB)	(H/V)	(MHz)
BROADBAND NOISE	Pass	-36.11	82.2	46.1	25.0	1.1	11.9	58.1	0.0	V	33.3
BROADBAND NOISE	Pass	-31.21	82.2	51.0	25.0	1.1	11.9	63.0	0.0	V	39.2
BROADBAND NOISE	Pass	-29.34	82.2	52.9	25.0	1.4	11.4	65.0	0.0	V V	44.0
BROADBAND NOISE	Pass	-30.54	82.2	51.7	25.0	1.4	11.2	64.0	0.0	v V	47.4 59.3
BROADBAND NOISE BROADBAND NOISE	Pass Pass	-24.21	82.2 82.2	58.0 54.6	24.9 24.9	1.8 1.8	10.1 9.8	71.0 68.0	0.0	V	62.5
BROADBAND NOISE	Pass Pass	-30.06	82.2	52.1	24.9	1.8	7.0 8.8	67.0	0.0	v	71.1
BROADBAND NOISE	Pass	-39.11	82.2	43.1	24.9	1.3	8.7	58.0	0.0	ÿ	81.0
BROADBAND NOISE	Pass	-38.51	82.2	43.7	24.9	1.3	9.3	58.0	0.0	ÿ	87.0
BROADBAND NOISE	Pass	-47.47	82.2	34.7	24.9	2.7	9.9	47.0	0.0	ÿ	109.0
BROADBAND NOISE	Pass	-43.19	82.2	39.0	24.8	3.0	11.8	49.0	0.0	ÿ	142.4
BROADBAND NOISE	Pass	-37.86	82.2	44.3	24.6	3.0	13.9	52.0	0.0	v	183.6
	Pass	-38.6	82.2	43.6	24.7	4.6	18.7	45.0	0.0	V	256.0
BROADBAND NOISE	Pass	-50.21	82.2	32.0	25.0	1.1	11.9	44.0	0.0	Н	33.4
BROADBAND NOISE	Pass	-47.21	82.2	35.0	25.0	1.1	11.9	47.0	0.0	Н	39.2
BROADBAND NOISE	Pass	-43.5	82.2	38.7	25.0	1.4	11.3	51.0	0.0	Н	44.0
BROADBAND NOISE	Pass	-37.66	82.2	44.5	25.0	1.4	11.1	57.0	0.0	Н	45.3
BROADBAND NOISE	Pass	-34.48	82.2	47.7	25.0	1.4	11.3	60.0	0.0	H	48.8
BROADBAND NOISE	Pass	-37.21	82.2	45.0	24.9	1.8	10.1	58.0	0.0	H	59.3
BROADBAND NOISE	Pass	-37.47	82.2	44.7	24.9	1.8	9.9	58.0	0.0	H	61.3
BROADBAND NOISE	Pass	-44.06	82.2	38.1	24.9	1.3	8.8	53.0	0.0	H	71.1
BROADBAND NOISE	Pass	-45.11	82.2	37.1	24.9	1.3	8.7	52.0	0.0	H	81.0
BROADBAND NOISE	Pass	-44.51	82.2	37.7	24.9	1.3	9.3	52.0	0.0	H	87.0
BROADBAND NOISE	Pass	-39.47	82.2	42.7	24.9	2.7	9.9	55.0	0.0	H	109.3
BROADBAND NOISE	Pass	-34.12	82.2	48.1	24.9	2.7	11.2	59.0	0.0	H	119.5
BROADBAND NOISE	Pass	-33.52	82.2	48.7	24.9	3.0	11.5	59.0	0.0	H	127.1
BROADBAND NOISE	Pass	-32.12	82.2	50.1	24.8	3.0	11.9	60.0	0.0	H	143.0
BROADBAND NOISE	Pass	-35.7	82.2	46.5	24.8	3.0	12.3	56.0 50.0	0.0	H	149.7
BROADBAND NOISE	Pass Pass	-30.42	82.2 82.2	51.8 55.8	24.8 24.8	3.0 3.0	13.6	60.0 64.0	0.0	H H	165.5 170.4
BROADBAND NOISE BROADBAND NOISE	Pass Pass	-26.37 -26.95	82.2	55.3	24.8	3.0	13.6 13.8	63.0	0.0	н Н	170.4
BROADBAND NOISE BROADBAND NOISE	Pass Pass	-26.93	82.2	49.1	24.6	3.0	13.8	56.0	0.0	H	196.6
BROADBAND NOISE	Pass	-36.53	82.2	45.7	24.6	4.1	14.7	51.0	0.0	H	224.7
BROADBAND NOISE	Pass	-42.42	82.2	39.8	24.0	4.6	17.9	42.0	0.0	H	252.0
DIGADDAND NOISE	Pass	-28.6	82.2	53.6	24.7	4.6	18.7	55.0	0.0	H	256.0
	Pass	-40.58	82.2	41.6	24.7	4.6	19.7	42.0	0.0	H	265.4
	Pass	-44.3	82.2	37.9	24.7	4.6	20.0	38.0	0.0	H	272.1
	Pass	-40.7	82.2	41.5	24.7	4.6	20.6	41.0	0.0	H	288.0
	Pass	-48.96	82.2	33.2	24.7	4.7	19.2	34.0	0.0	H	309.6
	Pass	-50.46	82.2	31.7	24.7	4.7	16.7	35.0	0.0	Н	317.0
	Pass	-51.71	82.2	30.5	24.7	4.7	15.4	35.0	0.0	Н	325.7
	Pass	-50.71	82.2	31.5	24.7	4.7	15.4	36.0	0.0	Н	339.0
	Pass	-43.21	82.2	39.0	24.7	4.7	15.9	43.0	0.0	H	352.0
	Pass	-47.41	82.2	34.8	24.7	4.7	16.7	38.0	0.0	H	383.9
	Pass	-42.91	82.2	39.3	24.7	6.4	17.7	40.0	0.0	Н	516.4
	Pass	-48.23	82.2	34.0	24.7	6.4	19.4	33.0	0.0	H	545.4
	Pass	-45.99	82.2	36.2	24.8	7.1	19.9	34.0	0.0	H	600.0
	Pass	-44.48	82.2	37.7	25.0	7.9	20.8	34.0	0.0	H	700.2
	Pass	-46.96	82.2	35.2	24.7	4.7	19.2	36.0	0.0	V	309.5
	Pass	-50.46	82.2	31.7	24.7	4.7	16.7	35.0	0.0	V	317.0
	Pass	-49.71	82.2	32.5	24.7	4.7	15.4	37.0	0.0	V	324.2
	Pass	-49.71	82.2	32.5	24.7	4.7	15.4	37.0	0.0	V	339.0
	Pass	-44.21	82.2	38.0	24.7	4.7	15.9	42.0	0.0	V	352.0
	Pass	-49.64	82.2	32.6	24.7	4.7	16.5	36.0	0.0	V V	368.6
	Pass	-50.41	82.2	31.8	24.7	4.7	16.7	35.0	0.0	V	383.9
	Pass Dass	-48.49 -49.83	82.2 82.2	33.7 32.4	24.8 24.8	6.0	16.4 17.1	36.0 34.0	0.0	V V	412.8 427.5
	Pass Pass	-49.83	82.2	42.0	24.8	6.0 6.4	17.1	34.0 42.0	0.0	v V	427.5 501.1
	Pass Pass	-39.91	82.2	42.0	24.7	6.4 6.4	18.4	42.0	0.0	v	516.0
	Pass Pass	-59.91	82.2	29.9	24.7	6.4 6.4	17.7	45.0	0.0	v	538.5
	Pass Pass	-53.23	82.2	29.9	24.7	6.4 6.4	18.5	28.0	0.0	v	545.4
	Pass	-44.99	82.2	37.2	24.8	7.1	19.4	35.0	0.0	v	600.0
		-46.48	82.2	35.7	25.0	7.9	20.8	32.0	0.0	v	700.1
	I Pass I										
	Pass Pass									V	737.1
	Pass Pass Pass	-43.86	82.2 82.2	38.3 35.9	25.0 25.0	7.9	20.4 19.9	35.0 33.0	0.0	V V	737.1 747.7

KTL Dallas, Inc.

EQUIPMENT: PCS 1900 Booster, Single Feed - Single Antenna FCC ID: OGAS21008

Radiated Emissions Photographs for Test # RE-2 (30 MHz-1000 MHz) – Downlink (TDMA):

FRONT VIEW:

REAR VIEW:

Section 7. Frequency Stability

NAME OF TEST: Frequency Stability

PARA. NO.: 2.1055

TESTED BY: N/A

DATE: N/A

Not Applicable

Section 8. Test Equipment List

The listing below indicates the test equipment utilized for the test (s). Calibration interval on all items is typically 12 months from the calibration date shown.

<u>KTL ID</u>	<u>Nomenclature</u>	<u>Manufacturer</u> Model Number	<u>Serial Number</u>	Calibration Date
C1A	A O.A.T.S. Cable Set			04/03/98
CF31	Storm Cable (7.6 meters)	Semi Flex		11/11/98
398	Preamplifier, 25dB (30 MHz - 1.5 GHz)	ICC LNA25	398	06/18/98
494	Horn Antenna	A.H. Systems SAS-200/571	162	04/29/98
606	Autotransformer	General Radio W20HMT3A	NSN	CNR
660(a)	Spectrum Analyzer	Hewlett Packard 8567A	2541A00109	08/05/98
660(b)	Display Unit	Hewlett Packard 85662A	2542A10537	08/05/98
660(c)	Quasi-Peak Adapter	Hewlett Packard 85650A	2551A00608	08/05/98
677	Receiver (1 - 18 GHz)	Electro Metrics EMC 50	185	07/24/97
G1017B	Attenuator	Narda 776B-20	N/A	08/14/98
G1018	Attenuator	Narda 776B-10	N/A	10/27/98
G2017	Antenna, Log Periodic	A.H. Systems SAS-200/510	556	01/25/99
G2031	Biconical Antenna	ICC BCON-30300	N/A	11/17/98
G2624	Spectrum Analyzer	Hewlett Packard 8563E	3551A04428	10/05/98
N/A	Coaxial Cable (Type N)	Huber & Suhner SUCOFLEX 104PB	16156/4PB	03/24/99

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS REPORT NO.: 8L0174EUS

EQUIPMENT: PCS 1900 Booster, Single Feed - Single Antenna FCC ID: OGAS21008

Test Equipment List (Continued):

KTL ID	<u>Nomenclature</u>	<u>Manufacturer</u> <u>Model Number</u>	<u>Serial Number</u>	<u>Calibration</u> <u>Date</u>
		ANECHOIC CHAMBER # 1		
	Antenna Tripod	Polarad HFU-2		CNR
		SITE A O.A.T.S. (OPEN AREA TEST SITE) 10 Meter Site		
	Turntable, 4 foot	RF Consultants (Automated)		CNR
	Antenna Mast, 4 Meter	EMCO Part # 1050 (Automated)		CNR

LEGEND:

- CNR CALIBRATION NOT REQUIRED
- N/A NOT APPLICABLE
- CBU CALIBRATED BEFORE USE

ANNEX A

TEST METHODOLOGIES

NAME OF TEST: RF Power OutputPARA. NO.: 2.1046
--

Minimum Standard:Para. No.24.232. Base stations are limited to 1640 watts peakE.I.R.P. with an antenna height up to 300 meters HAAT. In no case
may the peak output power of a base station transmitter exceed 100
watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter. Power output is measured with the maximum rated input level.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation GP/4 π R² = E²/120 π and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

Minimum Standard: Para. No. 24.238(b). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB.

Method Of Measurement:

<u>CDMA</u>

Spectrum analyzer settings: RBW: 30 kHz VBW: ≥ RBW Span: 5 MHz Sweep: Auto Mask: Set markers to -26 dB from peak of CW.

<u>GSM</u>

RBW: 3 kHz VBW: ≥ RBW Span: 2 MHz Sweep: Auto Mask: Set markers to -26 dB from peak of CW.

<u>NADC</u>

RBW: 1 kHz VBW: ≥ RBW Span: 1 MHz Sweep: Auto Mask: Set markers to -26 dB from peak of CW.

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Minimum Standard:Para. No.24.238(a). On any frequency outside a licensee's
frequency block, the power of any emission shall be attenuated
below the transmitter power by at least 43 + 10 log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

<u>CDMA</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1MHz from Band Edge) VBW: ≥ RBW Sweep: Auto Video Avg: 6 Sweeps

<u>GSM</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge) VBW: ≥ RBW Sweep: Auto Video Avg: Disabled

NADC

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge) VBW: ≥ RBW Sweep: Auto Video Avg: Disabled

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard:Para. No.24.238(a). On any frequency outside a licensee's
frequency block, the power of any emission shall be attenuated
below the transmitter power by at least 43 + 10 log (P) dB.

Calculation Of Field Strength Limit:

An example of attenuation requirement of 43 + 10 Log P is equivalent to $-13 \text{ dBm} (5 \times 10^{-5} \text{ Watts})$ at the antenna terminal. We determine the field strength limit by using the plane wave relation.

 $GP/4\pi R^2 = E^2/120\pi$

For emissions ≤ 1 GHz:

G = 1.64 (Dipole Gain) $P = 10^{-5}$ Watts (Maximum spurious output power) R = 3m (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R}$$
$$E = \frac{\sqrt{30 \times 1.64 \times 5 \times 10^{-5}}}{3} = 0.016533 \text{ V/m} = 84.4 \text{ dB}\mu\text{V/m}$$

For emissions > 1 GHz:

G = 1 (Isotropic Gain) $P = 1 \times 10^{-5}$ Watts (Maximum spurious output power) R = 3m (Measurement Distance)

$$E = 84.4 - 20 Log \sqrt{1.64} = 82.3 dB \mu V / m@3m$$

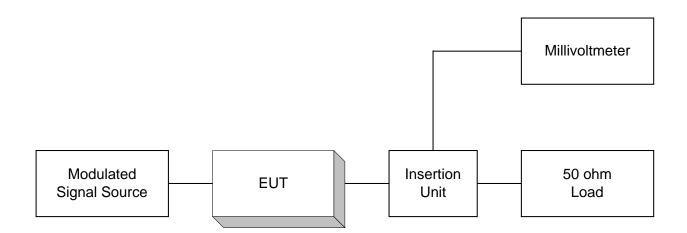
NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

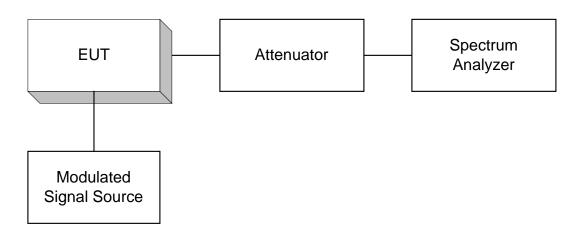
Method Of Measurement:

Frequency Stability With Voltage Variation:

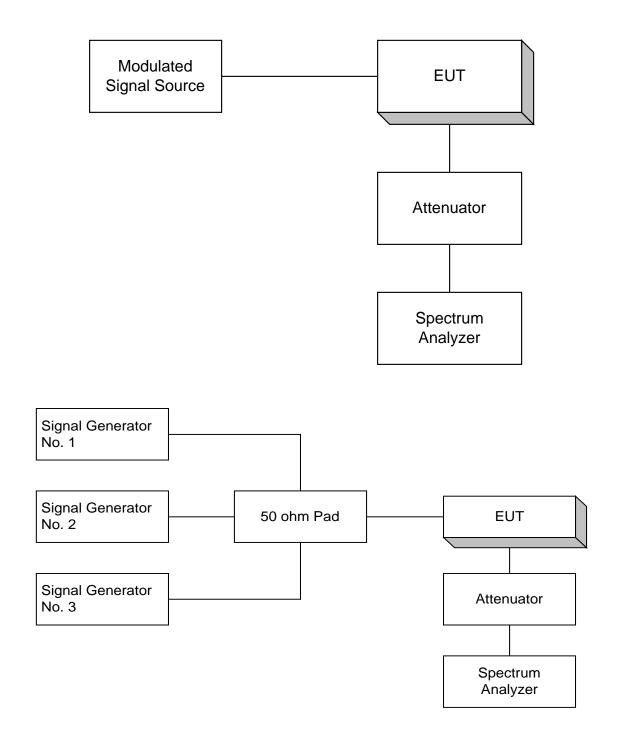
The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

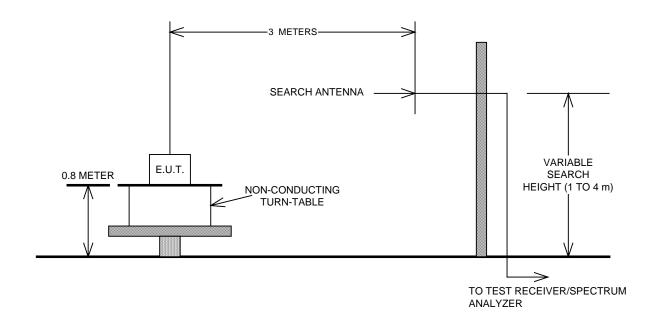

Frequency Stability With Temperature Variation:

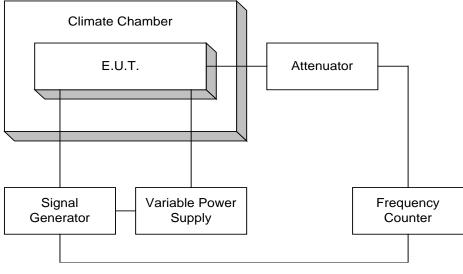
The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.


ANNEX B

TEST DIAGRAMS


Para. No. 2.985 - R.F. Power Output:


Para. No. 2.989 - Occupied Bandwidth:


Para. No. 2.991 Spurious Emissions at Antenna Terminals:

Para. No. 2.993 - Field Strength of Spurious Radiation:

Para. No. 2.995 - Frequency Stability:

10 MHz Reference