

TEST REPORT

Report Number: 103479767MPK-014S Project Number: G103479767 December 05, 2018

Testing performed on Temperature Sensor Marketing Name: Sensor HWR-D

> FCC ID: OG3-HWRSENS IC: 10447A-HWRSENS to

FCC Part 15 Subpart C (15.247) Industry Canada RSS-247 Issue 2 FCC Part 15, Subpart B Industry Canada ICES-003

For

Grundfos Holding A/S

Test Performed by: Intertek 1365 Adams Court Menlo Park, CA 94025 USA Test Authorized by: Grundfos Holding A/S Poul Due Jensens Vej 7 8850 Bjerringbro Denmark

Prepared by:

Reviewed by:

Anderson Soungpanya

Krishna K Vemuri

Date: December 05, 2018

Date: December 05, 2018

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Report No. 103479767MPK-014S		
Equipment Under Test:	Temperature Sensor	
Trade Name:	Grundfos Holding A/S	
Marketing Name:	Sensor HWR-D	
Applicant:	Grundfos Holding A/S	
Contact:	Allan Moos	
Address:	Grundfos Holding A/S Poul Due Jensens Vej 7 8850 Bjerringbro	
Country:	Denmark	
Tel. Number:	+45 87504387	
Email:	amoos@grundfos.com	
Applicable Regulation:	FCC Part 15 Subpart C (15.247) Industry Canada RSS-247 Issue 2 FCC Part 15, Subpart B Industry Canada ICES-003 Issue 6	
Date of Test:	August 24 – November 20, 2018	

We attest to the accuracy of this report:

Anderson Soungpanya Project Engineer

NC

Krishna K Vemuri Engineering Team Lead

TABLE OF CONTENTS

1.0	Sum	mary of Tests	4
2.0	Gene	eral Information	5
	2.1	Product Description	5
	2.2	Related Submittal(s) Grants	
	2.3	Test Facility	
	2.4	Test Methodology	
	2.5	Measurement Uncertainty	
3.0	Syste	em Test Configuration	8
	3.1	Support Equipment	
	3.2	Block Diagram of Test Setup	
	3.3	Justification	
	3.4	Software Exercise Program	9
	3.5	Mode of Operation during Test	
	3.6	Modifications Required for Compliance	
	3.7	Additions, Deviations and Exclusions from Standards	
4.0	Meas	surement Results	10
	4.1	6-dB Bandwidth and 99% Occupied Bandwidth	
	4.2	Maximum Peak Conducted Output Power at Antenna Terminals	
	4.3	Maximum Power Spectral Density	
	4.4	Out of Band Antenna Conducted Emission	
	4.5	Transmitter Radiated Emissions	
	4.6	Radiated Emissions from Digital Parts	44
5.0	List	of Test Equipment	49
6.0	Docu	ıment History	50

1.0 Summary of Tests

Test	Reference FCC	Reference Industry Canada	Result
RF Output Power	15.247(b)(3)	RSS-247, 5.4.4	Complies
6 dB Bandwidth	15.247(a)(2)	RSS-247, 5.2.1	Complies
Power Density	15.247(e)	RSS-247, 5.2.2	Complies
Out of Band Antenna Conducted Emission	15.247(d)	RSS-247, 5.5	Complies
Digital Radiated Emissions	15.109	ICES-003	Complies
Transmitter Radiated Emissions	15.247(d), 15.209, 15.205	RSS-247, 5.5	Complies
AC Line Conducted Emission	15.107 & 15.207	ICES-003 & RSS-GEN	Not Applicable*
Antenna Requirement	15.203	RSS-GEN	Complies (Internal Antenna)

*EUT is Battery powered by non-rechargeable batteries.

EUT receive date:	August 18, 2018
EUT receive condition:	The pre-production version of the EUT was received in good condition with no apparent damage. As declared by the Applicant, it is identical to the production units.
Test start date:	August 24, 2018
Test completion date:	November 20, 2018

The test results in this report pertain only to the item tested.

2.0 General Information

2.1 Product Description

Grundfos Holding A/S supplied the following description of the EUT:

System Overview

Figure 1 depicts the HWR-D system with all possible types of devices and communication paths.

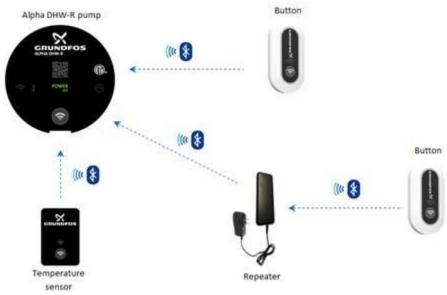


Figure 1 – Block diagram of the HWR-D system

Communication between devices is BLE and devices in the system are the following:

- Alpha 15-55 HWR-D (1)
- Temp. sensor HWR-D (1)
- Push Button HWR-D (1..10)
- Repeater HWR-D (0..*)

2.1 Product Description (continued)

Overall function specification

The purpose of the HWR-D system is to save Energy, as per "California Water Heater Regulations - Title 24". This means that contrary to running the recirculation pump permanently, thus wasting energy when hot water is not needed, this pump system is only recirculating hot water when there is a demand.

Alpha 15-55 HWR-D pump

This is the central unit in the system to control water recirculation based on inputs from Push button(s) (via repeater if needed) and temperature sensor. Furthermore, it monitors the time of recirculation to provide an extra means for shutting off recirculation. All intelligence regarding start and stop of recirculation resides in the Display Board software in the pump.

Push button HWR-D 99410377

The number of buttons in the system can be one or several depending on the physical need in the household. The button is simply a unit for activating water recirculation from remote with the extra functionality that it monitors its own battery level.

Temp. sensor HWR-D 99410349

Only one temperature sensor is needed in the system and the placement is in proximity of the pump. It measures temperature, monitors its own battery level and transmits the data to the pump.

Repeater HWR-D 99410216

A repeater is not always present in the system, or it may be necessary to have several. It has the task to relay data from the button(s) to the pump.

For more information, refer to the following product specification, declared by the manufacturer.

Applicant	Grundfos Holding A/S	
Marketing Name	Sensor HWR-D	
FCC Identifier	OG3-HWRSENS	
IC	10447A-HWRSENS	
Type of transmission	Digital Transmission System (DTS)	
Rated RF Output	4.49 dBm	
Antenna(s) & Gain	Internal Antenna, Peak Gain: 2 dBi	
Frequency Range	2402 – 2480 MHz	
Type of modulation/data rate	GFSK / 1Mbit/s	
Number of Channel(s)	40	
Applicant Name &	Grundfos Holding A/S	
Address	Poul Due Jensens Vej 7	
	8850 Bjerringbro	
	Denmark	

Information about the Temperature Sensor 2.4 GHz radio is presented below:

2.2 Related Submittal(s) Grants

None.

2.3 **Test Facility**

The test site used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC, IC and A2LA accredited.

2.4 Test Methodology

Antenna conducted measurements were performed according to the FCC documents "Guidance for Performing Compliance Measurement on Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System devices Operating under §15.247" (KDB 558074 D01 Meas Guidance v05), RSS-247 Issue 2, ANSI C63.10: 2013 and RSS-GEN Issue 4.

Radiated emissions and AC mains conducted emissions measurements were performed according to the procedures in ANSI C63.10: 2013. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Data Sheet" of this report.

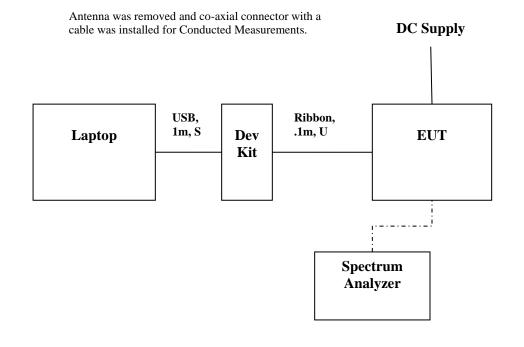
2.5 Measurement Uncertainty

Compliance with the limits was based on the results of the measurements and doesn't take into account the measurement uncertainty.

Estimated	Measurement Uncertain	ty		
	Expanded Uncertainty (k=2)			
Measurement	0.15 MHz – 1 GHz	1 GHz – 2.5 GHz	> 2.5 GHz	
RF Power and Power Density – antenna conducted	-	0.7 dB	-	
Unwanted emissions - antenna conducted	1.1 dB	1.3 dB	1.9 dB	
Bandwidth – antenna conducted	-	30 Hz	-	

Estimated Measure of Handerteint

	Expanded Uncertainty (k=2)			
Measurement	0.15 MHz –	30 – 200 MHz	200 MHz –	1 GHz – 18
	30MHz	30 - 200 MHZ	1 GHz	GHz
Radiated emissions	-	4.7	4.6	5.1 dB
AC mains conducted emissions	2.1 dB	-	-	-


3.0 System Test Configuration

3.1 Support Equipment

Support Equipment			
Description	Manufacturer	Model Number	
Laptop	Pakard Bell	ENTG71BM	
Development kit	TI	CC2640R2	
DC Power Supply	BK Precision	1670A	

3.2 Block Diagram of Test Setup

Equipment Under Test			
DescriptionManufacturerMarketing NameSerial Number			
Radiated Sample of Temperature Sensor	Grundfos Holding A/S	Sensor HWR-D	MPK1808231102-004
Conducted Sample of Temperature Sensor	Grundfos Holding A/S	Sensor HWR-D	MPK1808231102-003

$\mathbf{S} = $ Shielded	$\mathbf{F} = $ With Ferrite
$\mathbf{U} = \mathbf{U}$ nshielded	\mathbf{m} = Length in Meters

3.3 Justification

For radiated emission measurements the EUT is placed on a non-conductive table.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was provided by Grundfos Holding A/S

3.5 Mode of Operation during Test

As instructed by the manufacturer, the EUT's power setting was set to 4 dBm on the low, middle and high frequencies/channels.

3.6 Modifications Required for Compliance

No modifications were made by the manufacturer or Intertek to the EUT in order to bring the EUT into compliance.

3.7 Additions, Deviations and Exclusions from Standards

No additions, deviations or exclusions from the standard were made.

4.0 Measurement Results

4.1 6-dB Bandwidth and 99% Occupied Bandwidth FCC Rule: 15.247(a)(2); RSS-247, 5.2.1 and RSS-GEN;

4.1.1 Requirement

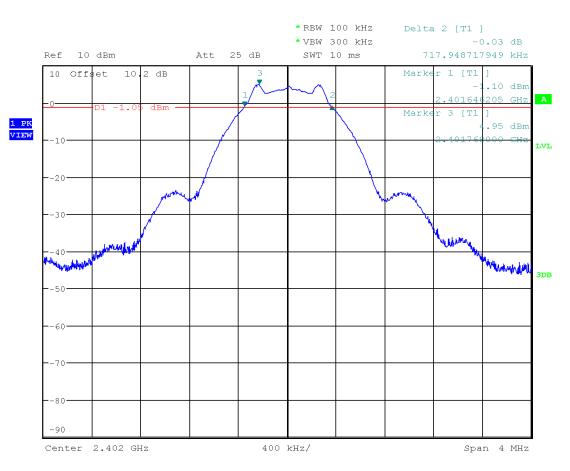
The minimum 6-dB bandwidth shall be at least 500 kHz

4.1.2 Procedure

A spectrum analyzer was connected to the antenna port of the transmitter.

For FCC 6dB Channel Bandwidth the Procedure described in the FCC Publication KDB 558074 D01 Meas Guidance v05 was used to determine the DTS occupied bandwidth. Section 11.8.1 Option 1 of ANSI 63.10 was used.

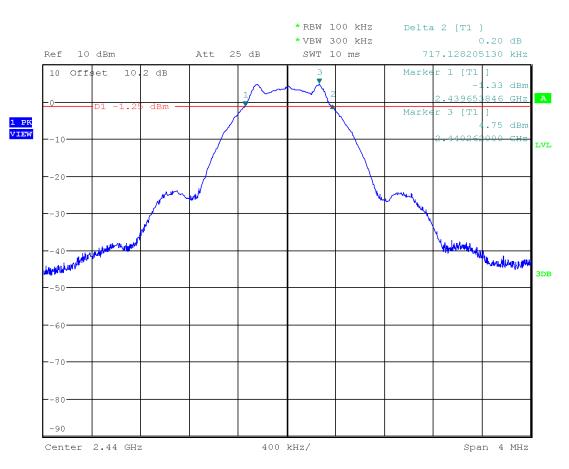
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


For 99% power bandwidth measurement, the bandwidth was determined by using the built-in 99% occupied bandwidth function of the spectrum analyzer. The resolution bandwidth is set to 1% of the selected span as is without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.

Frequency (MHz)	6-dB bandwidth FCC 15.247 & RSS-GEN	Occupied bandwidth, RSS-GEN	Plot
MHz	kHz	MHz	
2402	717.949		1.1
		1.058	1.4
2440	717.128		1.2
2440		1.062	1.5
2490	717.949		1.3
2480		1.062	1.6

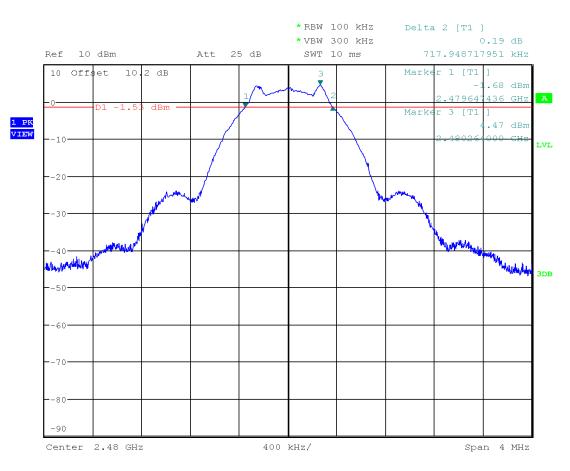
4.1.3 Test Result

Tested By	Test Date
Anderson Soungpanya	August 24, 2018



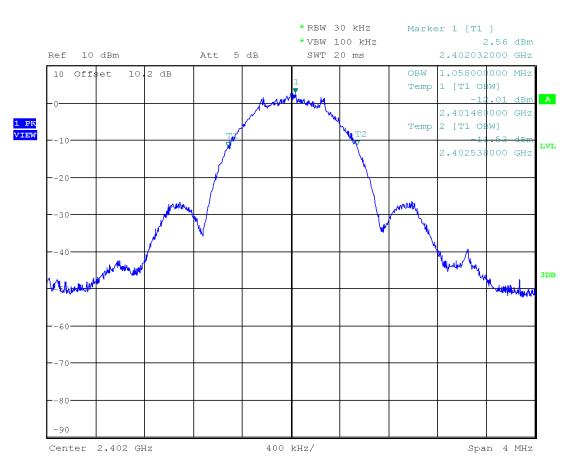

```
Plot 1.1
```

Date: 24.AUG.2018 10:49:44



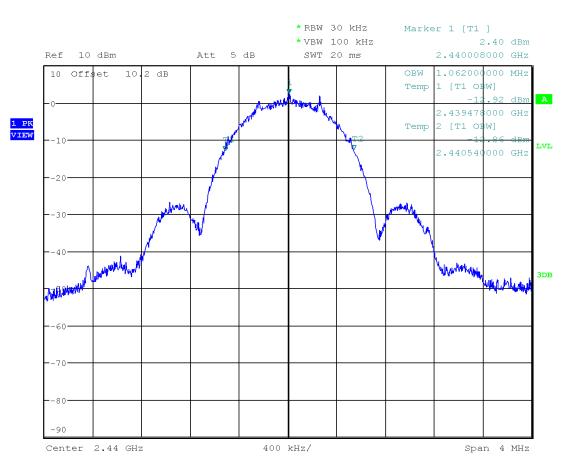

```
Plot 1. 2
```

Date: 24.AUG.2018 10:51:56



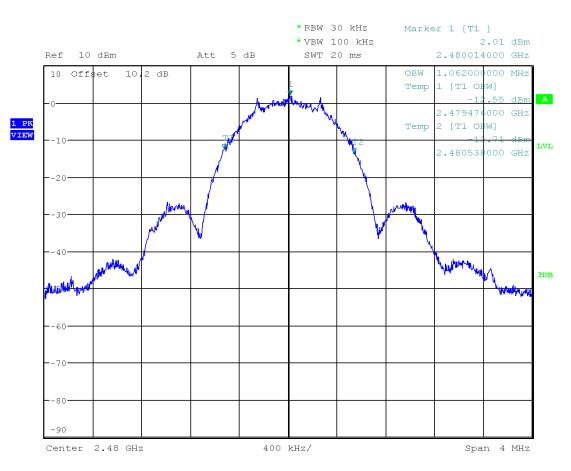

```
Plot 1. 3
```

Date: 24.AUG.2018 10:53:55



Plot 1.4

Date: 24.AUG.2018 10:58:19



Plot 1.5

Date: 24.AUG.2018 10:56:19

Plot 1.6

Date: 24.AUG.2018 10:55:12

4.2 Maximum Peak Conducted Output Power at Antenna Terminals FCC Rule: 15.247(b)(3); RSS-247, 5.4.4;

4.2.1 Requirement

For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt or 30 dBm. For antennas with gains greater than 6 dBi, transmitter output level must be decreased appropriately, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

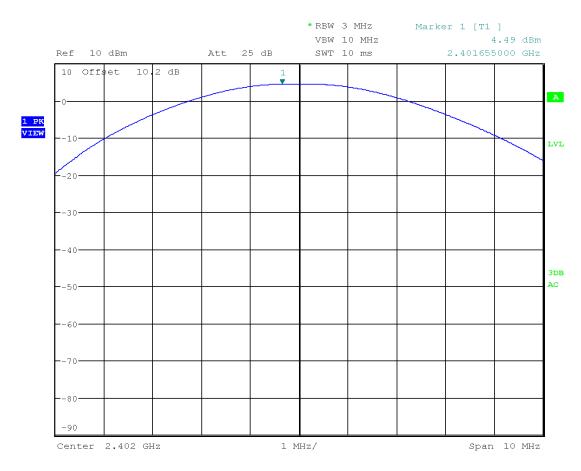
4.2.2 Procedure

The procedure described in FCC Publication KDB 558074 D01 Meas Guidance v05 was used. Specifically, section $11.9.1.1 \text{ RBW} \ge \text{DTS}$ bandwidth in ANSI 63.10.

- 1. Set the RBW \geq DTS Bandwidth
- 2. Set the VBW \ge 3 x RBW
- 3. Set the span \ge 3 x RBW
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max Hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

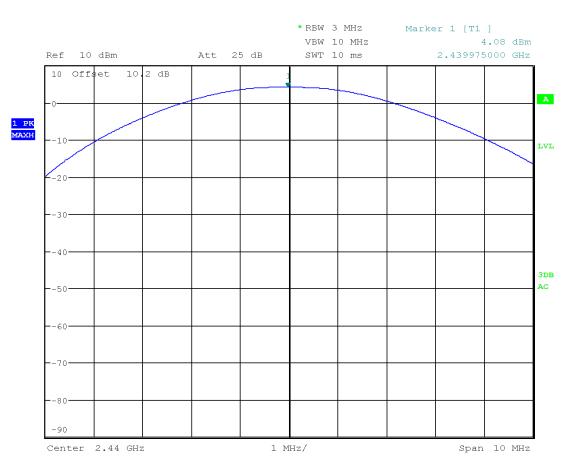
A spectrum analyzer was connected to the antenna port of the transmitter.

4.2.3 Test Result

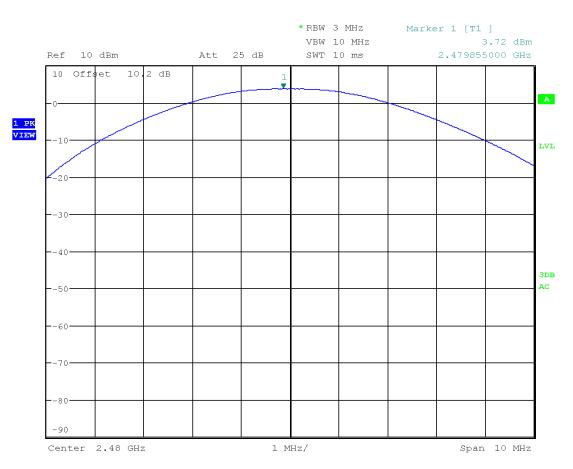

Refer to the following plots 2.1 - 2.3 for the test details.

Frequency,	Conducted Power (peak)	Conducted Power (peak)	Plot
MHz	dBm	mW	
2402	4.49	2.812	2.1
2440	4.08	2.559	2.2
2480	3.72	2.355	2.3

Tested By	Test Date		
Anderson Soungpanya	November 20, 2018		



Date: 20.NOV.2018 07:03:54



Plot 2. 2

Date: 20.NOV.2018 07:05:28

Plot 2. 3

Date: 20.NOV.2018 07:06:10

4.3 Maximum Power Spectral Density FCC: 15.247 (e); RSS-247, 5.2.2;

4.3.1 Requirement

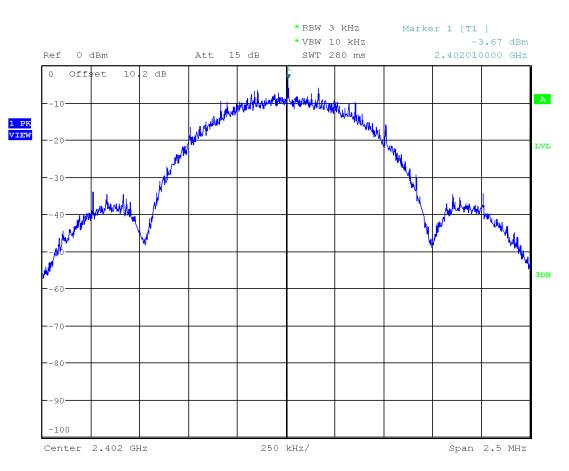
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna should not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2 Procedure

The antenna port of the EUT was connected to the input of a spectrum analyzer to measure the Transmitter Power Density (PSD). The offset programmed on the analyzer is corrected to include cable loss, attenuator.

The procedure described in FCC Publication KDB 558074 D01 Meas Guidance v05, specifically section 11.10.2 Method PKPSD (peak PSD) of ANSI 63.10.

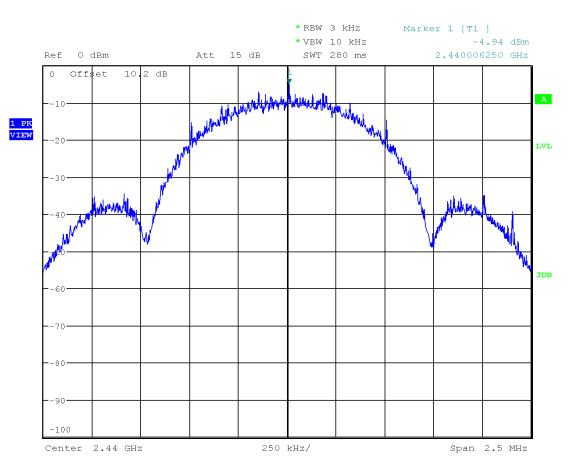
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the *DTS bandwidth*.
- 3. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


4.3.3 Test Result

Refer to the following plots for the test result

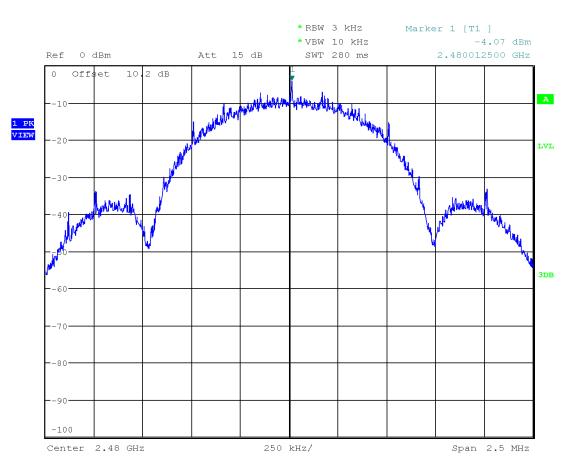
Frequency,	Maximum Power Spectral Density	Maximum Power Spectral Density Limit	Margin	Plot
MHz	dBm	dBm	dB	
2402	-3.67	8.0	-11.67	3.1
2440	-4.94	8.0	-12.94	3.2
2480	-4.07	8.0	-12.07	3.3

Tested By	Test Date		
Anderson Soungpanya	August 24, 2018		




```
Plot 3. 1
```

Date: 24.AUG.2018 10:46:37



Plot 3. 2

Date: 24.AUG.2018 10:45:04

Plot 3. 3

Date: 24.AUG.2018 10:43:47

4.4 Out of Band Antenna Conducted Emission FCC: 15.247(d); RSS-247, 5.5;

4.4.1 Requirement

In any 100 kHz bandwidth outside the EUT pass-band, the RF power shall be below the maximum inband 100 kHz emissions by at least 20 dB (if peak power of in-band emission is measured) or 30 dB (if average power of in-band emission is measured).

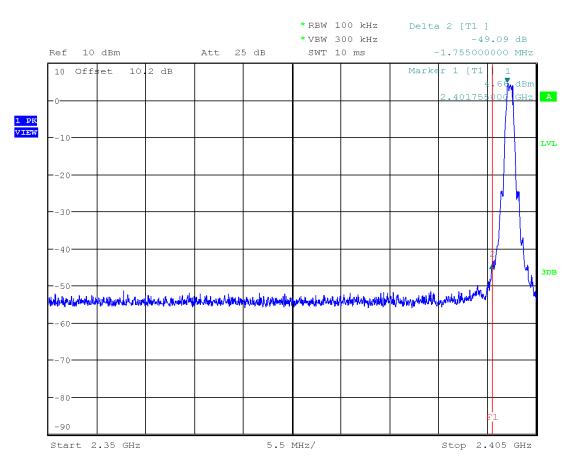
In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

4.4.2 Procedure

The procedure described in FCC Publication KDB 558074 D01 Meas Guidance v05, specifically section 11.11 DTS Emissions in non-restricted frequency bands of ANSI 63.10.

A spectrum analyzer was connected to the antenna port of the transmitter.

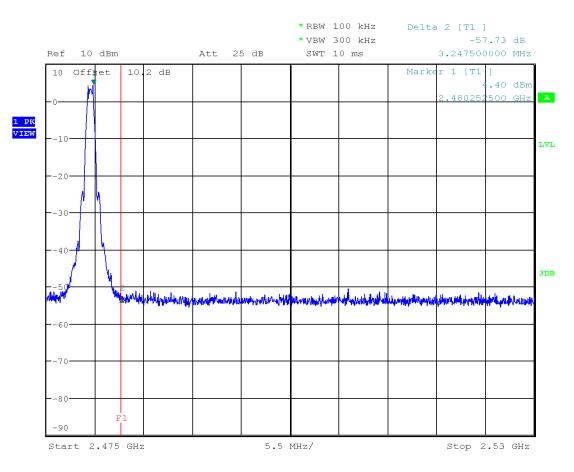
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 3 x RBW.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.


The unwanted emissions were measured from 30 MHz to 25 GHz. Plots below are corrected for cable loss and then compared to the limits.

4.4.3 Test Result

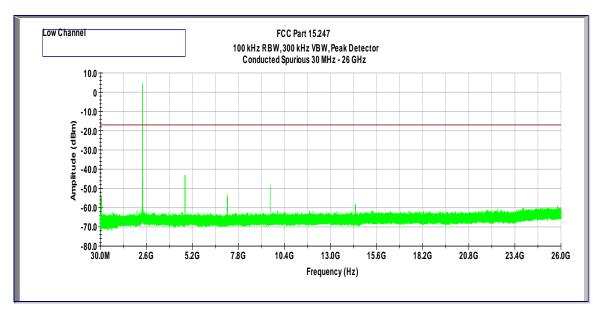
Refer to the following plots 4.1 - 4.5 for unwanted conducted emissions. Plot 4.1 & 4.2 shows the delta marker greater than -20dBc at the band edge. Plot 4.3-4.5 shows the delta -20dB attenuation limit line.

Tested By	Test Date		
Anderson Soungpanya	August 24, 2018		

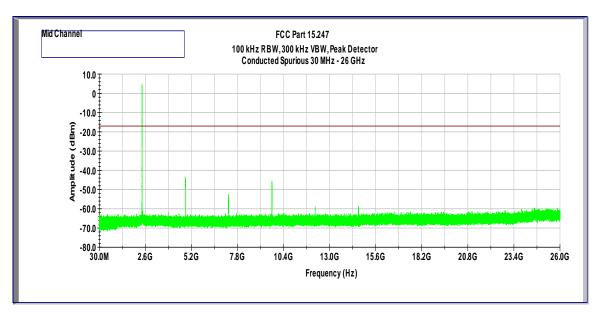


Tx @ Low Channel, 2400 MHz Band Edge Plot 4.1

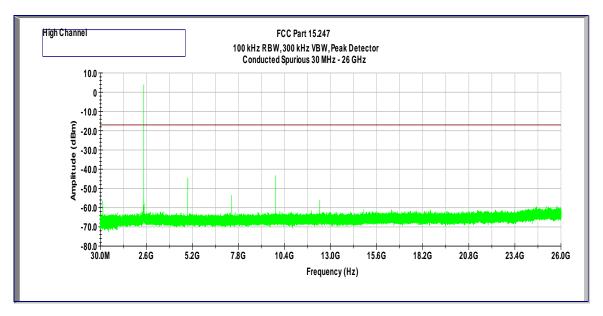
Date: 24.AUG.2018 10:59:42



Tx @ Low Channel, 2483.5 MHz Band Edge Plot 4.2


Date: 24.AUG.2018 11:01:06

Tx @ Low Channel, 2402 MHz 30MHz -26GHz Conducted Spurious Plot 4.3



Tx @ Mid Channel, 2440 MHz 30MHz -26GHz Conducted Spurious Plot 4.4

Tx @ High Channel, 2480 MHz 30MHz -26GHz Conducted Spurious Plot 4.5

4.5 Transmitter Radiated Emissions FCC Rules: 15.247(d), 15.209, 15.205; RSS-247, 5.5;

4.5.1 Requirement

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

For out of band radiated emissions (except for frequencies in restricted bands), in any 100 kHz bandwidths outside the EUT pass-band, the RF power shall be at least 20dB (peak) or 30 dB (average) below that of the maximum in-band 100 kHz emissions.

4.5.2 Procedure

Radiated emission measurements were performed from 30 MHz to 25 GHz according to the procedure described in ANSI C63.10: 2013. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz for frequencies above 1000 MHz. Above 1000 MHz Peak and Average measurements were performed.

The EUT is placed on a plastic turntable that is 80 cm in height for below 1000MHz and 1.5m in height for above 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 3 meters for frequencies above 1 GHz and at 10 meters for frequencies below 1 GHz.

Measurements made from 1 GHz to 18GHz had a 2.4-2.5GHz notch filter in place. A preamp was used from 30MHz to 26GHz.

All measurements were made with a Peak Detector and compared to QP limits for 30MHz - 1GHz and Average limits for 1GHz - 26GHz.

Radiated measurements were performed on the X, Y and Z orientation of the EUT. Data is presented with the worst-case configuration (the configuration which resulted in the highest emission levels).

4.5.3 Field Strength Calculation

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG; if measurement is performed at a distance other than specified in the rule, a Distance Correction Factor (DCF) shall be added.

Where FS = Field Strength in $dB(\mu V/m)$ RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$; AF = Antenna Factor in dB(1/m)CF = Cable Attenuation Factor in dB; AG = Amplifier Gain in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m. RA = 52.0 dB(μ V) AF = 7.4 dB(1/m) CF = 1.6 dB AG = 29.0 dB FS = 52.0+7.4+1.6-29.0 = 32 dB(μ V/m). Level in μ V/m = Common Antilogarithm [(32 dB μ V/m)/20] = 39.8 μ V/m.

4.5.4 Antenna-port conducted measurements

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

4.5.5 General Procedure for conducted measurements in restricted bands

a) Measure the conducted output power (in dBm) using the detector specified for determining quasi-peak, peak, and average conducted output power, respectively.

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)

c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (*e.g.*, Watts, mW).

e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8 + DCF (DCF for Average measurements)

where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

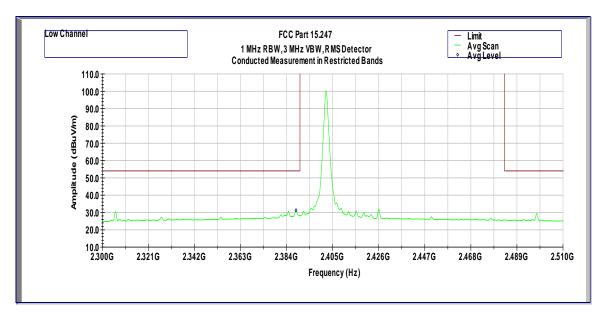
D = specified measurement distance in meters.

DCF = Duty Cycle Correction Factor

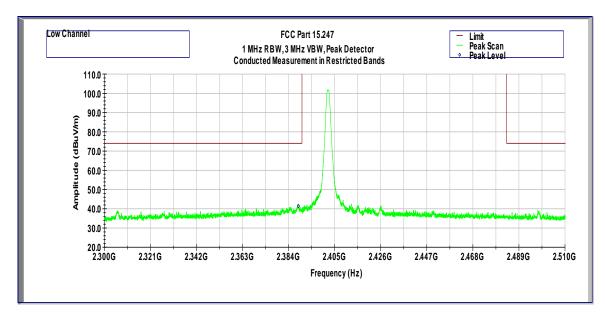
f) Compare the resultant electric field strength level to the applicable limit.

g) Perform radiated spurious emission test

4.5.6 Test Results

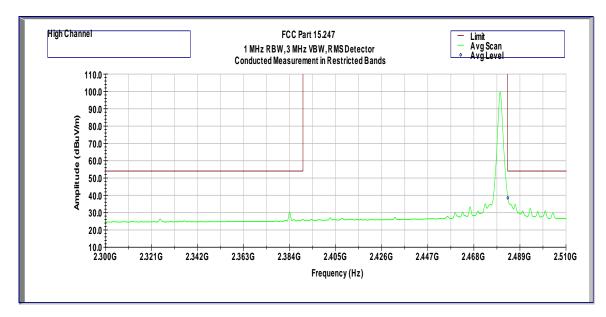

Tested By	Test Date		
Anderson Soungpanya	September 4 – November 14, 2018		

Conducted Out-of-Band Spurious Emissions at the Band Edge were made with the consideration of cable loss and the addition of a 2dBi Antenna.


Test Results: 15.209/15.205 Radiated Restricted Band Emissions

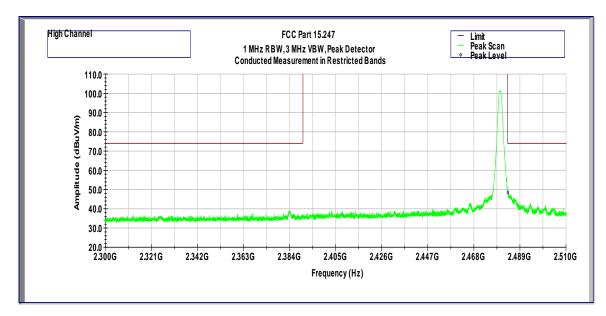
Conducted Out-of-Band Spurious Emissions at the Band Edge - Tx @ 2402 MHz, Average

Frequency	Corrected Amplitude	Limit	Margin	Detector	Results
GHz	dB(µV/m)	dB(µV/m)	dB		
2.388	31.28	54	-22.72	RMS	Pass



Conducted Out-of-Band Spurious Emissions at the Band Edge - Tx @ 2402 MHz, Peak

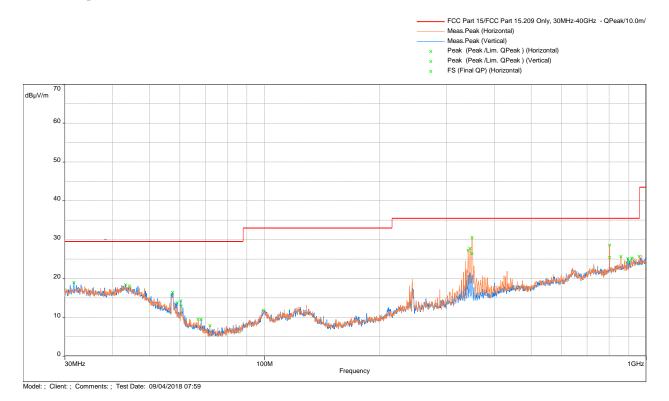
Frequency	Corrected Amplitude	Limit	Margin	Detector	Results
GHz	dB(µV/m)	dB(µV/m)	dB		
2.389	41.38	74	-32.62	Peak	Pass



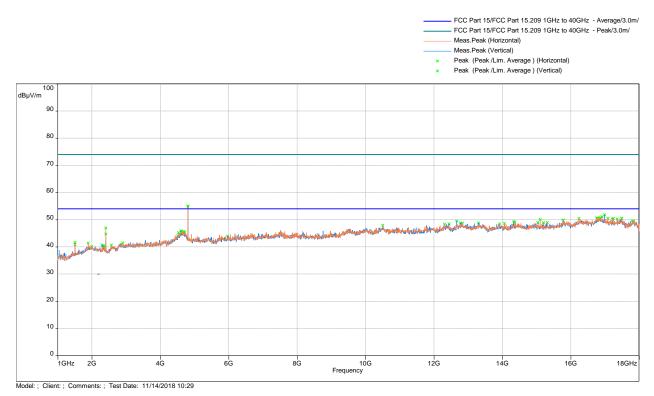
Conducted Out-of-Band Spurious Emissions at the Band Edge - Tx @ 2480 MHz, Average

Frequency	Corrected Amplitude	Limit	Margin	Detector	Results
GHz	dB(µV/m)	dB(µV/m)	dB		
2.4835	38.50	54	-15.50	RMS	Pass

Conducted Out-of-Band Spurious Emissions at the Band Edge - Tx @ 2480 MHz, Peak


Frequency	Corrected Amplitude	Limit	Margin	Detector	Results
GHz	dB(µV/m)	dB(µV/m)	dB		
2.4835	48.53	74	-25.47	Peak	Pass

Out-of-Band Radiated Spurious Emissions


Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 2402MHz

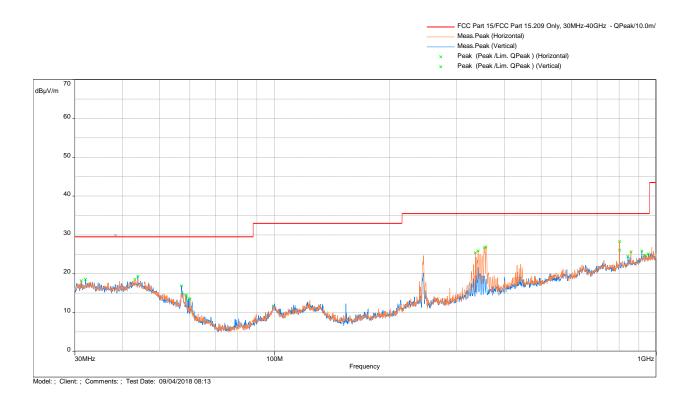
Radiated Spurious Emissions 30 MHz - 1000 MHz

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Avg & Peak Limit

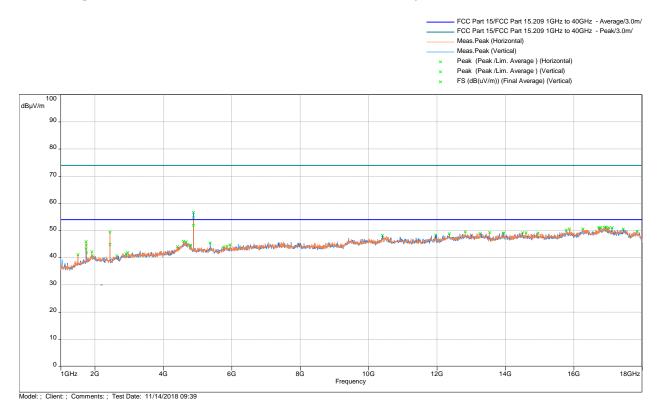
Frequency	Average @ 3m	Limit @ 3m	Margin	Angle	Height	Polarization	Correction
MHz	dB(µV/m)	dB(µV/m)	(dB)	(°)	(m)	Polarization	(dB)
4804.488	52.20	54	-1.80	135.75	1.89	Vertical	-7.26

Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz

Note: FS@3m = RA + AF + CF - Preamp


Results

Complies



Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 2440MHz

Radiated Spurious Emissions 30 MHz - 1000 MHz

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Avg & Peak Limit

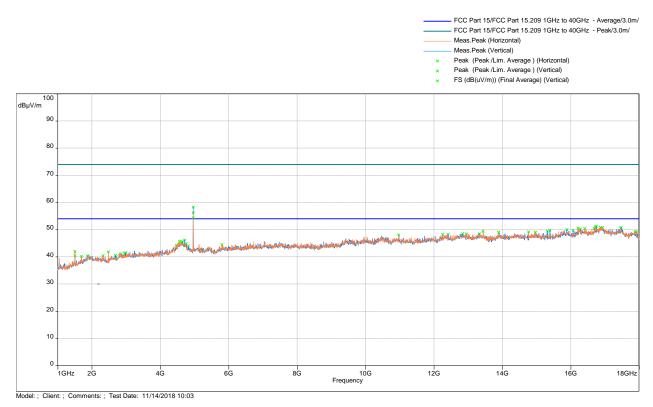
Frequency	Average @ 3m	Limit @ 3m	Margin	Angle	Height	Polarization	Correction
MHz	dB(µV/m)	dB(µV/m)	(dB)	(°)	(m)	Folarization	(dB)
4879.487	53.80	54	-0.2	137.5	1.94	Vertical	-7.89

Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz

Note: FS@3m = RA + AF + CF - Preamp

Results

Complies


Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 2480MHz

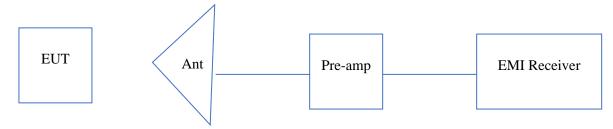
Radiated Spurious Emissions 30 MHz - 1000 MHz

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Avg & Peak Limit

Frequency	Average @ 3m	Limit @ 3m	Margin	Angle	Height	Polarization	Correction
MHz	dB(µV/m)	dB(µV/m)	(dB)	(°)	(m)	Polarization	(dB)
4959.483	53.90	54	-0.1	136.5	2.13	Vertical	-8.03

Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz

Note: FS@3m = RA + AF + CF - Preamp


Results

Complies

4.5.7 Test Setup Configuration

The following show the testing configurations used.

4.6 Radiated Emissions from Digital Parts

FCC Ref: 15.109, ICES 003

4.6.1 Requirement

Limits for Electromagnetic Radiated Emissions FCC Section 15.109(b), ICES 003*, RSS GEN

Frequency (MHz)	Class A at 10m dB(µV/m)	Class B at 3m dB(µV/m)
30-88	39	40.0
88-216	43.5	43.5
216-960	46.4	46.0
Above 960	49.5	54.0

* According to FCC Part 15.109(g) an alternative to the radiated emission limits shown above, digital devices may be shown to comply with the limit of CISPR Pub. 22

4.6.2 Procedures

Measurements are conducted with a quasi-peak detector instrument in the frequency range of 30 MHz to 1000 MHz and with the average detector instrument in the frequency range above 1000 MHz. The measuring receiver meets the requirements of Section One of CISPR 16 and the measuring antenna correlates to a balanced dipole.

Measurements of the radiated field are made with the antenna located at a distance of 10 meters from the EUT. If the field-strength measurements at 10m cannot be made because of high ambient noise level or for other reasons, measurements of Class B equipment may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data or limit line to the specified distance for determining compliance.

The antenna is adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

The antenna-to-EUT azimuth is varied during the measurement to find the maximum field-strength readings.

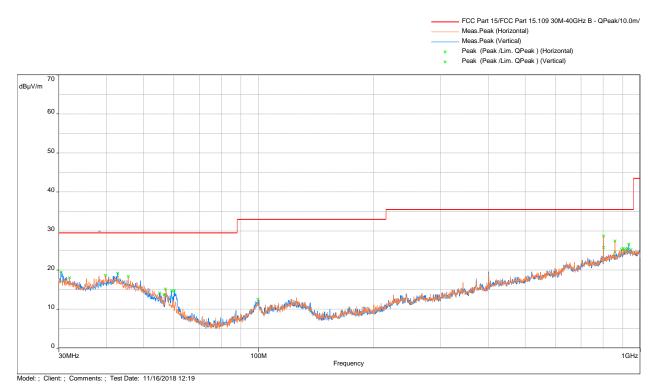
The antenna-to-EUT polarization (horizontal and vertical) is varied during the measurements to find the maximum field-strength readings.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for a larger EUT.

Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material.

Equipment setup for radiated disturbance tests followed the guidelines of ANSI C63.4: 2014

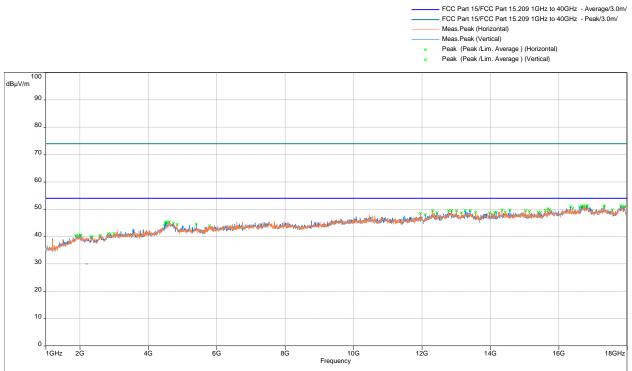
4.6.3 Test Results


Radiated emission measurements were performed from 30 MHz to 1000 MHz. The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

An inverse proportionality factor of 20 dB per decade was used to normalize the limit line of 30MHz to 1000MHz to the specified distance for determining compliance

Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz.

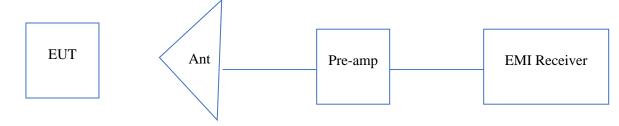
Tested By	Test Date
Anderson Soungpanya	November 16, 2018



Test Results: Radiated Emissions 30 MHz - 1000

Frequency MHz	FS@10m dB(µV/m)	Limit@10m dB(µV/m)	Margin (dB)	Azimuth (deg)	Height (m)	Polarity	RA (dBuV)	Correction (dB)
30.420	19.45	29.5	-10.05	106	3.44	Vertical	29.13	-9.68
39.765	18.62	29.5	-10.88	103	2.10	Horizontal	28.15	-9.53
42.804	19.18	29.5	-10.32	69	1.64	Vertical	28.51	-9.33
45.617	18.35	29.5	-11.15	315	1.00	Horizontal	28.44	-10.09
801.829	28.64	35.5	-6.86	6	1.00	Horizontal	31.78	-3.14
859.124	27.42	35.5	-8.08	359	2.32	Horizontal	29.88	-2.46
Result:	Compli	es by 6.86 dB		-		•		

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Average & Peak Limit



Model: ; Client: ; Comments: ; Test Date: 11/16/2018 12:08

4.6.4 Test Setup Configuration

The following photographs show the testing configurations used.

intertek Total Quality. Assured.

5.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Asset No.	Calibration Interval	Cal Due
Bi-Log Antenna	Teseq	CBL 6111D	ITS 01058	12	09/20/19
Pre-Amplifier	Sonoma Instrument	310N	ITS 0942	12	01/26/19
EMI Receiver	Rohde and Schwarz	ESU	ITS 00961	12	10/26/19
Active Horn Antenna	ETS-Lindgren	3117-PA	ITS 01636	12	01/11/19
Spectrum Analyzer	Rohde and Schwarz	FSU	ITS 00913	12	01/24/19
Horn Antenna (10-40 GHz)	ETS-Lindgren	3116C	ITS 01376	12	04/25/19
Pre-Amplifier (18-40GHz)	Miteq	TTA1840-35-S-M	ITS 01393	12	01/19/19
BI-Log Antenna	Antenna Research	LPB-2513	ITS 00355	12	02/21/19
Notch Filter	Micro-Tronics	BRM50702	ITS 01166	12	03/10/19
RF Cable	Megaphase	EMC1-K1K1-236	ITS 01538	12	06/25/19
RF Cable	Megaphase	TM40-K1K1-59	ITS 01657	12	06/26/19
RF Cable	TRU Corporation	TRU CORE 300	ITS 01330	12	11/29/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01465	12	08/16/19
RF Cable	TRU Corporation	TRU CORE 300	ITS 01470	12	08/16/19
Attenuator	Mini Circuits	BW-S10W5+	ITS 01582	12	10/07/19

No Calibration required

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile
Tile	Quantum Change	3.4.K.22	Conducted Spurious_30M-26GHz
BAT-EMC	Nexio	3.16.0.64	103479767_Grundfos.bpp
RS Commander	Rohde Schwarz	1.6.4	Not Applicable (Screen grabber)

6.0 Document History

Revision/ Job Number	Writer Initials	Reviewers Initials	Date	Change
1.0 / G103479767	AS	KV	December 05, 2018	Original document

END OF REPORT