

RF Exposure Exhibit							
PUSH BUTTON HWR-D	PUSH BUTTON HWR-D						
OG3-HWRPUSH							
10447A-HWRPUSH							
CFR 47 Part 15.247							
January 4, 2019							
d For:	Prepared by:						
olding A/S	Intertek Testing Service NA, Inc.						
•	1365 Adams Court						
-	Menlo Park, CA 94025						
-	USA Tel: (650) 463-2900						
	PUSH BUTTON HWR-D OG3-HWRPUSH 10447A-HWRPUSH CFR 47 Part 15.247 January 4, 2019						

intertek Total Quality. Assured.

1 Test Methodology

In this document, we evaluate the RF Exposure to human body due the intentional transmission from the transmitter (EUT). The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. Through the Friis transmission formula and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis transmission formula is a far field assumption, the calculated result of that is an overprediction for near field power density. We will take that as the worst case to specify the safety range.

1.1 RF Exposure Limit

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)				
(A) Limits For Occupational / Control Exposures								
300 - 1500			F/300	6				
1500 - 100,000			5	6				
(B) Limits For General Population / Uncontrolled Exposure								
300 - 1500			F/1500	6				
1500 - 100,000			1.0	30				

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

F = Frequency in MHz

intertek Total Quality. Assured.

1.2 EUT Operating Condition

As instructed by the manufacturer, the EUT's power setting was set to 0 dBm on the low, middle and high frequencies/channels.

1.2.1 Classification

EUT is a mobile device. The antenna of the product, under normal use condition, is at least 20cm away from the body of the user and accessible to the end user. Warning statement to the user for keeping at least 20cm or more separation distance with the antenna should be included in user's manual.

1.3 Test Results

1.3.1 Technical Product Description

Information presented below from Test Report 103479767MPK-014B; Page 6:

Applicant	Grundfos Holding A/S		
Marketing Name	Push Button HWR-D		
FCC Identifier	OG3-HWRPUSH		
IC Identifier	10447A-HWRPUSH		
Type of transmission	Digital Transmission System (DTS)		
Rated RF Output	14.84 dBm		
Antenna(s) & Gain	Internal Antenna, Peak Gain: 2 dBi		
Frequency Range	2402 – 2480 MHz		
Type of modulation/data rate	GFSK / 1Mbit/s		
Number of Channel(s)	39		
Applicant Name &	Grundfos Holding A/S		
Address	Poul Due Jensens Vej 7		
	8850 Bjerringbro		
	Denmark		

1.3.2 Calculating the Power Density at 20cm

EUT Frequency		Max Power Output		Peak Antenna Gain		EIRP	
Range	Mode	dBm	mW	dBi	Numerical	dBi	mW
2402 2400 MUL		14.04	20.40	2.00	1 5 0	10.04	40.21
2402-2480 MHz	BLE	14.84	30.48	2.00	1.58	16.84	48.31

Calculating the Power Density (Pd) at 20cm

Using the Friss transmission formula to solve for Power Density (Pd):

Pd = (Pout*G) / (4* π *R²) Pout = 30.48 mW G = 1.58 Numerical Value $\pi \approx 3.1416$ R = 20 cm The highest EIRP (Pout*G) power measured power is 16.84 dBi or 48.31 mW. Pd = 48.31 / 5024 Pd = 0.0096 mW/cm² or 0.096 W/m²

The device $\underline{COMPLIES}$ with mobile device requirements of Power density limit of 1.0mW/ cm² at 20cm.

1.3.3 Sample Calculation

The Friss transmission formula: $Pd = (Pout^*G) / (4^*\pi^*R^2)$

Where;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{Power} \ \mathsf{density} \ \mathsf{in} \ \mathsf{mW/cm^2} \\ \mathsf{Pout} = \mathsf{Output} \ \mathsf{power} \ \mathsf{to} \ \mathsf{antenna} \ \mathsf{in} \ \mathsf{mW} \\ \mathsf{G} = \mathsf{Gain} \ \mathsf{of} \ \mathsf{antenna} \ \mathsf{in} \ \mathsf{linear} \ \mathsf{scale} \\ \pi \approx 3.1416 \\ \mathsf{R} = \mathsf{Distance} \ \mathsf{between} \ \mathsf{observation} \ \mathsf{point} \ \mathsf{and} \ \mathsf{center} \ \mathsf{of} \ \mathsf{the} \ \mathsf{radiator} \ \mathsf{in} \ \mathsf{cm} \end{array}$

Ref.: David K. Cheng, Field and Wave Electromagnetics, Second Edition, Page 640, Eq. (11-133).