

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-6631_23-01-03-C

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://cetecomadvanced.com
e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Grundfos Holding A/S

Poul Due Jensens Vej 7 8850 Bjerringbro / DENMARK Phone: (86)-13810702446 Contact: Jianyang Liu e-mail: <u>frliu@grundfos.com</u>

Manufacturer

Grundfos Holding A/S

Poul Due Jensens Vej 7 8850 Bjerringbro / DENMARK

Test standard/s

FCC - Title 47 CFR Part 22 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public

mobile services

FCC - Title 47 CFR Part 24 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal

communications services

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Cellular module

Model name: CIM 290-MA LPWAN GIC FCC ID: OG3-CIM290LPWAN ISED certification number: 10447A-CIM290LPWAN

Frequency: 824.2 MHz to 848.8 MHz; 1850.2 MHz to 1909.8 MHz

Technology tested: GSM

Antenna: External Dipole antenna (AWC-0071-LTE)

Power supply: 110 V AC by mains adapter

Temperature range: -20°C to +70°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

l est report authorized:	l est performed:
	p.o.
Marco Bertolino Supervisor Radio Services Radio Labs	René Oelmann Lab Manager Radio Labs

Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	standard/s, references and accreditations	4
4	Repor	ting statements of conformity – decision rule	5
5	Test e	environment	6
6	Test if	tem	6
	6.1 6.2	General description	
7	Descr	iption of the test setup	7
	7.1 7.2 7.3	Shielded semi anechoic chamber	9
8	Seque	ence of testing1	1
	8.1 8.2 8.3 8.4	Sequence of testing radiated spurious 9 kHz to 30 MHz	2 3
9	Meas	urement uncertainty1	5
10	Sun	nmary of measurement results1	6
	10.1 10.2	GSM 850	
11	Res	ults GSM 8501	7
	11.1 11.2	RF output power	
12	Res	ults PCS 19002	5
	12.1 12.2	RF output power	7
13	Obs	ervations3	2
14	Glo	ssary3	3
15	Doo	ument history 3	4

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-6631_23-01-03-B and dated 2024-05-10.

2.2 Application details

Date of receipt of order: 2023-08-30
Date of receipt of test item: 2023-09-04
Start of test:* 2023-09-05
End of test:* 2024-04-18

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

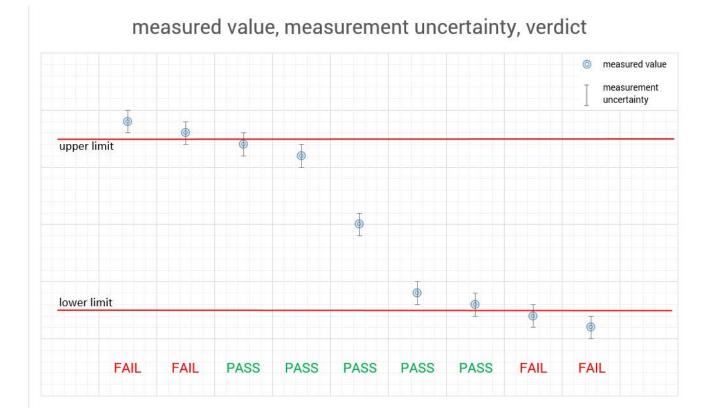
None

© cetecom advanced GmbH Page 3 of 34

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 22	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
FCC - Title 47 CFR Part 24	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services
RSS - 132 Issue 4	January 2023	Spectrum Management and Telecommunications Radio Standards Specification - Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 6, Amendment 1	January 2018	Spectrum Management and Telecommunications Policy - Radio Standards Specifications, 2 GHz Personal Communication Services
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
ANSI C63.26-2015 Power Meas License Systems: KDB 971168 D01	-/- v03r01	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services Measurement Guidance for Certification of Licensed Digital Transmitters


© cetecom advanced GmbH Page 4 of 34

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© cetecom advanced GmbH Page 5 of 34

5 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	:		42 %
Barometric pressure	:		1016 hpa
Power supply	:	V_{nom} V_{max} V_{min}	110 V AC by mains adapter No tests under extreme conditions required. No tests under extreme conditions required.

6 Test item

6.1 General description

Kind of test item :	Cellular module
Model name :	CIM 290-MA LPWAN GIC
HMN :	-/-
PMN :	CIM 290-MA LPWAN GIC
HVIN :	92875973
FVIN :	-/-
S/N serial number :	92875973-03-327-00069
Hardware status :	R03
Software status :	MCU: 92875953V00.00.000018_CIM290_R_Merged BLE FW: V06.00.03.00001 Cellular FW: M0C.400004
Firmware status :	-/-
Frequency band :	824.2 MHz to 848.8 MHz; 1850.2 MHz to 1909.8 MHz
Type of radio transmission: Use of frequency spectrum:	modulated carrier
Type of modulation :	GMSK / 8PSK
Antenna :	External Dipole antenna (AWC-0071-LTE) Antenna is not marketed with the product, and just a representative for test!
Power supply :	110 V AC by mains adapter
Temperature range :	-20°C to +70°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-6631/23-01-01_TR1-A101

1-6631/23-01-01_TR1-A103

© cetecom advanced GmbH Page 6 of 34

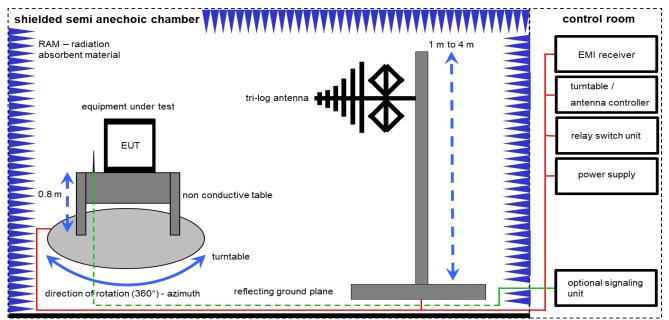
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 7 of 34

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

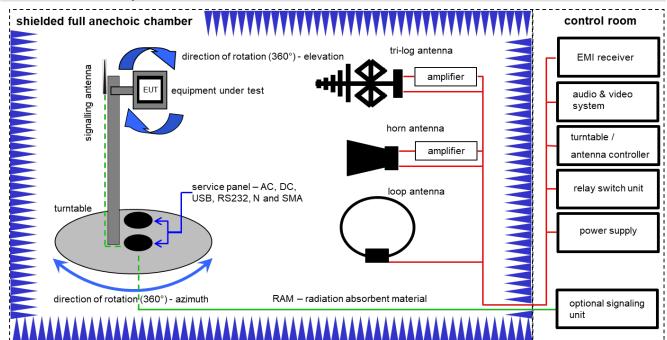
Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	Α	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface-Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	Α	TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2021 31.01.2024	29.09.2023 30.01.2026
8	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
9	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
10	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023
10	А	Eivii Test Receiver	ESRS	Rollue & Schwarz	102587	300003771	K	06.12.2023	31.12.2024
11	Α	Universal Radio Communication Tester	CMU200	R&S	106826	300003346	NK!	-/-	-/-

© cetecom advanced GmbH Page 8 of 34

7.2 Shielded fully anechoic chamber

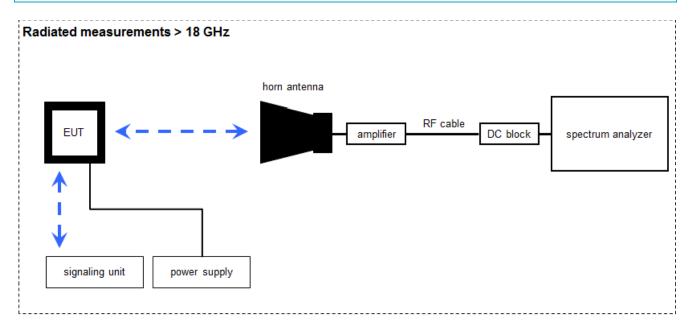
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μ W)


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812- 3088	300001032	vlKI!	02.08.2021 20.03.2023	31.08.2023 19.03.2025
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	02.08.2023	31.08.2025
3	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	А	Band Reject Filter	WRCG1850/1910- 1835/1925-40/8SS	Wainwright	23	400000149	ne	-/-	-/-
5	Α	Highpass Filter	WHKX7.0/18G-8SS Wainwright 18 300003789 ne		ne	-/-	-/-		
6	А	Band Reject Filter	WRCG824/849- 810/863-60/9SS	Wainwright	6	300003791	ne	-/-	-/-
7	А	TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	23.05.2023	31.05.2025
8	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
9	Α	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000 032	300004510	ne	-/-	-/-
10	А	NEXIO EMV-Software	BAT EMC V2022.0.22.0	Nexio	-/-	300004682	ne	-/-	-/-
11	Α	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
12	А	EMI Test Receiver 9kHz- 26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	13.12.2022 15.01.2024	31.12.2023 31.01.2025
13	А	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-
14	А	Universal Radio Communication Tester	CMU200	R&S	832221/0 55	300002862	NK!	-/-	-/-

7.3 Radiated measurements > 18 GHz

© cetecom advanced GmbH Page 9 of 34

Measurement distance: horn antenna 50 cm

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μ W)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	Α	Std. Gain Horn Antenna 18.0-26.5	638	Narda	01096	300000486	vlKI!	17.01.2022	31.01.2024
		GHz						24.01.2024	23.012026
3	Α	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
4	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	12.12.2022	31.12.2023
4	A	Signal analyzei	13740	RondedScriwarz	101042	300004317	K	06.12.2023	31.12.2024
5	А	Synchron Power Meter	SPM-4	СТС	1	300005580	ev	-/-	-/-
6	А	DC-Blocker	WA7046	Weinschel Associates	-/-	400001310	ev	-/-	-/-

© cetecom advanced GmbH Page 10 of 34

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 11 of 34

^{*)} Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 12 of 34

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 13 of 34

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 14 of 34

9 Measurement uncertainty

Measurement uncertainty							
Test case Uncertainty							
RF output power conducted	±1 dB						
RF output power radiated	± 3 dB						
Frequency stability	± 20 Hz						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted	± 3 dB						
Block edge compliance	± 3 dB						
Occupied bandwidth	± RBW						

© cetecom advanced GmbH Page 15 of 34

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
×	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 22, 24	See table!	2024-05-13	Tests according
	RSS 132, 133			customer demand!

10.1 GSM 850

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				Radiated
Frequency Stability	Nominal and Extreme	Nominal and Extreme				\boxtimes	-/-
Spurious Emissions Radiated	Nominal	Nominal	×				-/-
Spurious Emissions Conducted	Nominal	Nominal				×	-/-
Block Edge Compliance	Nominal	Nominal				\boxtimes	-/-
Occupied Bandwidth	Nominal	Nominal				×	-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10.2 PCS 1900

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				Radiated
Frequency Stability	Nominal and Extreme	Nominal and Extreme				×	-/-
Spurious Emissions Radiated	Nominal	Nominal	×				-/-
Spurious Emissions Conducted	Nominal	Nominal				\boxtimes	-/-
Block Edge Compliance	Nominal	Nominal				X	-/-
Occupied Bandwidth	Nominal	Nominal				\boxtimes	-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© cetecom advanced GmbH Page 16 of 34

11 Results GSM 850

All GSM-band measurements are done in GSM mode only (circuit switched). All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

11.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and ERP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters		
Detector:	Sample / Peak	
Resolution bandwidth:	1 MHz	
Used equipment:	See chapter 7.4 – A	
Measurement uncertainty:	see chapter 9	

Limits:

FCC	ISED
	5 dBm e power technique, the peak-to-average ratio (PAR) of the not exceed 13 dB.

© cetecom advanced GmbH Page 17 of 34

Results:

Output Power (radiated) GMSK mode			
Frequency (MHz)	Average Output Power (dBm) - ERP		
824.2	25.7		
836.4	25.0		
848.8	27.3		

Results:

Output Power (radiated) 8-PSK mode				
Frequency (MHz)	Average Output Power (dBm) - ERP			
824.2	20.0			
836.4	19.2			
848.8	21.6			

© cetecom advanced GmbH Page 18 of 34

11.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. Measurements made up to 12.75 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the GSM-850 band.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	2 s			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span:	100 MHz Steps			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.1 – A and 7.2 – A			
Measurement uncertainty:	See chapter 9			

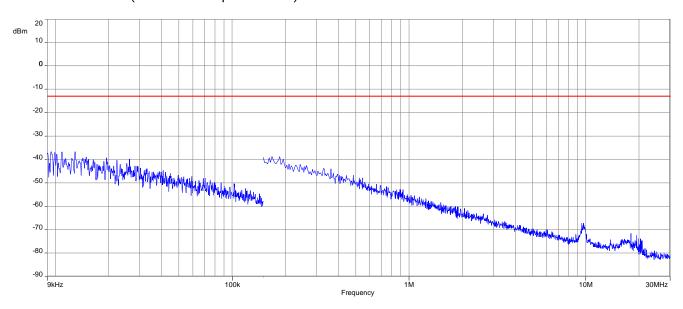
Limits:

FCC	ISED		
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)			
-13 dBm			

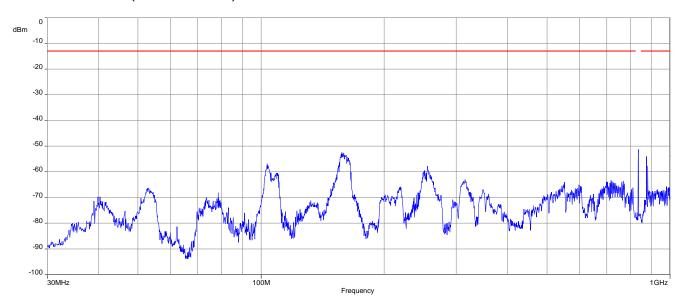
© cetecom advanced GmbH Page 19 of 34

Results GPRS & EGPRS:

Radiated emissions measurements were made only at the center carrier frequency of the GSM-850 band (836.4 MHz). The measurements shows the cabinet radiation in transmit mode. The antenna port can be terminated with $50~\Omega$.

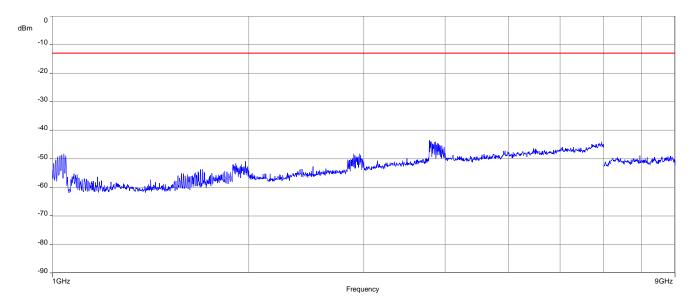

	Spurious emission level (dBm)							
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-	2	1672.8	-	2	1697.6	-
3	2472.6	-	3	2509.2	-	3	2546.4	-
4	3296.8	-	4	3345.6	-	4	3395.2	-
5	4121.0	-	5	4182.0	-	5	4244.0	-
6	4945.2	-	6	5018.4	-	6	5092.8	-
7	5769.4	-	7	5854.8	-	7	5941.6	-
8	6593.6	-	8	6691.2	-	8	6790.4	-
9	7417.8	-	9	7527.6	-	9	7639.2	-
10	8242.0	-	10	8364.0	-	10	8488.0	-

© cetecom advanced GmbH Page 20 of 34



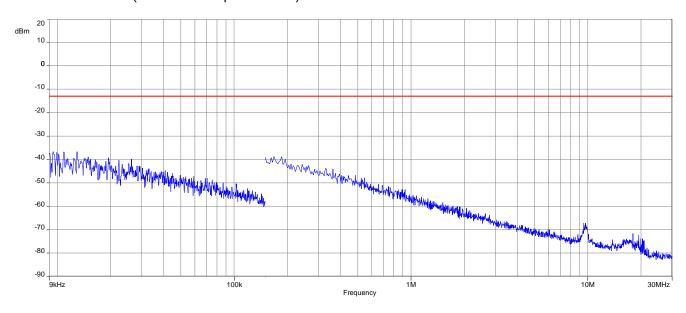
Plots: GMSK

Plot 1: Channel 189 (Traffic mode up to 30 MHz)

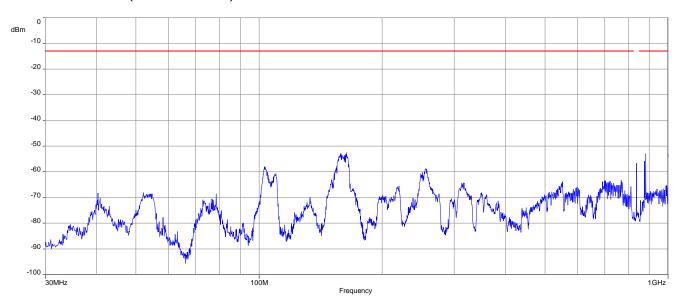

Plot 2: Channel 189 (30 MHz - 1 GHz)

© cetecom advanced GmbH Page 21 of 34

Plot 3: Channel 189 (1 MHz - 9 GHz)

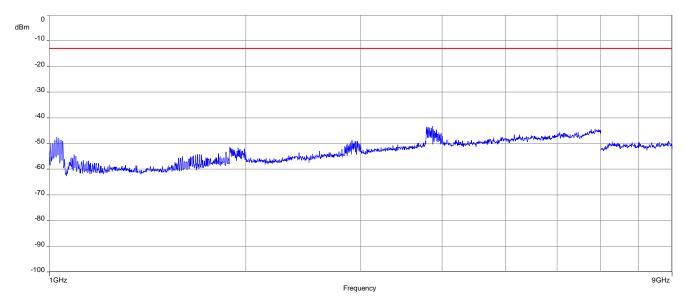


© cetecom advanced GmbH Page 22 of 34



Plots: 8 PSK

Plot 1: Channel 189 (Traffic mode up to 30 MHz)


Plot 2: Channel 189 (30 MHz - 1 GHz)

© cetecom advanced GmbH Page 23 of 34

Plot 3: Channel 189 (1 MHz – 9 GHz)

© cetecom advanced GmbH Page 24 of 34

12 Results PCS 1900

All GSM-band measurements are done in GSM mode only (circuit switched). All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

12.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and EIRP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters		
Detector:	Sample / Peak	
Resolution bandwidth:	1 MHz	
Used equipment:	See chapter 7.4 – A	
Measurement uncertainty:	See chapter 9	

Limits:

FCC	ISED	
In measuring transmissions in this band using an averag	0 dBm e power technique, the peak-to-average ratio (PAR) of the not exceed 13 dB.	

© cetecom advanced GmbH Page 25 of 34

Results:

Output Power (radiated) GMSK mode				
Frequency (MHz)	Average Output Power (dBm) - EIRP			
1850.2	26.1			
1880.0	27.1			
1909.8	26.3			

Results:

Output Power (radiated) 8-PSK mode			
Frequency (MHz) Average Output Power (dBm) - EIRP			
1850.2	22.3		
1880.0	23.2		
1909.8	22.7		

© cetecom advanced GmbH Page 26 of 34

12.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. Measurement made up to 25 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the PCS1900 band.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	2 sec.			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	100 MHz Steps			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.1 - A; 7.2 - A & 7.3 - A			
Measurement uncertainty:	See chapter 9			

Limits:

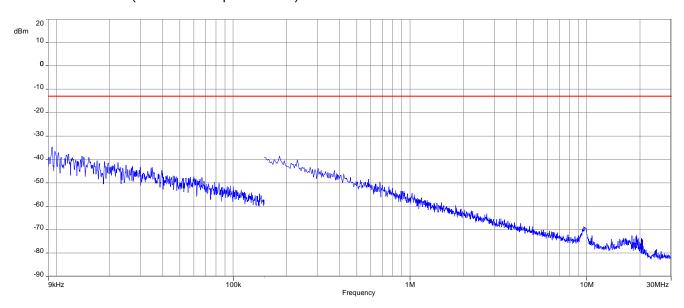
FCC	ISED			
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

Results GPRS & EGPRS:

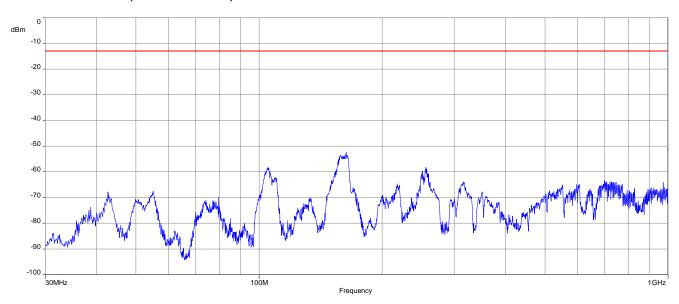
Radiated emissions measurements were made only at the center carrier frequencies of the PCS1900 band (1880.0 MHz) to show the compliance with cabinet radiation limits.

© cetecom advanced GmbH Page 27 of 34

Results:

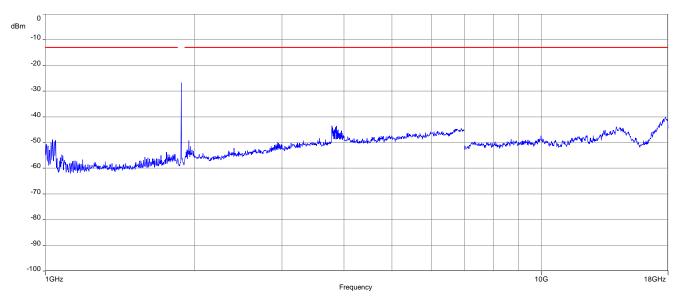

Spurious emission level (dBm)								
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]
2	3700.4	-	2	3760.0	-	2	3819.6	-
3	5550.6	-	3	5640.0	-	3	5729.4	-
4	7400.8	-	4	7520.0	-	4	7639.2	-
5	9251.0	-	5	9400.0	-	5	9549.0	-
6	11101.2	-	6	11280.0	-	6	11458.8	-
7	12951.4	-	7	13160.0	-	7	13368.6	-
8	14801.6	-	8	15040.0	-	8	15278.4	-
9	16651.8	-	9	16920.0	-	9	17188.2	-
10	18502.0	-	10	18800.0	-	10	19098.0	-

© cetecom advanced GmbH Page 28 of 34

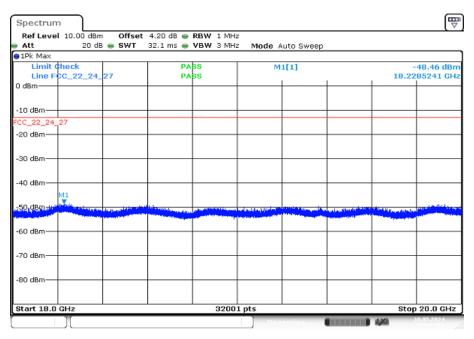


Plots: GMSK

Plot 1: Channel 661 (Traffic mode up to 30 MHz)


Plot 2: Channel 661 (30 MHz - 1 GHz)

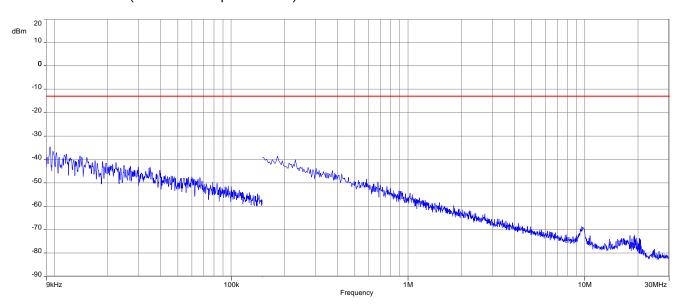
© cetecom advanced GmbH Page 29 of 34



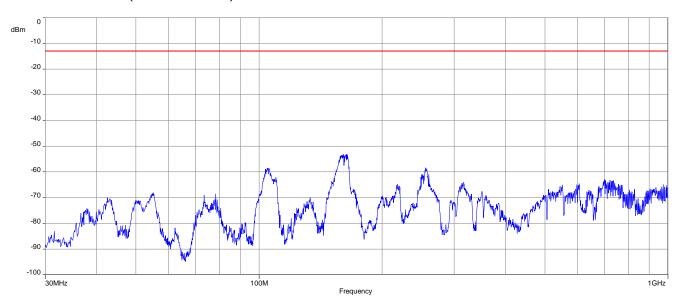
Plot 3: Channel 661 (1 GHz - 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 4: Channel 661 (18 GHz - 20 GHz)

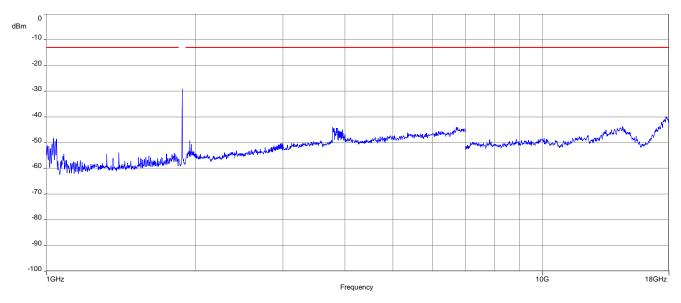

Date: 10.MAY.2024 07:23:31

© cetecom advanced GmbH Page 30 of 34

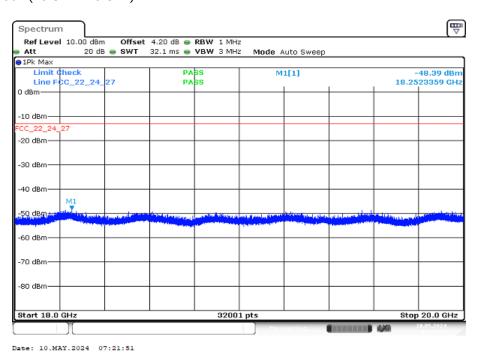


Plots: 8 PSK

Plot 1: Channel 661 (Traffic mode up to 30 MHz)


Plot 2: Channel 661 (30 MHz - 1 GHz)

© cetecom advanced GmbH Page 31 of 34



Plot 3: Channel 661 (1 GHz - 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 4: Channel 661 (18 GHz - 20 GHz)

13 Observations

No observations except those reported with the single test cases have been made.

© cetecom advanced GmbH Page 32 of 34

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© cetecom advanced GmbH Page 33 of 34

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-12-12
Α	Editorial changes (antenna type)	2024-02-08
В	Retest with new hardware	2024-05-10
С	Editorial changes	2024-05-13

© cetecom advanced GmbH Page 34 of 34