ADC Telecommunications Inc. 1930-1990 MHz GSM Base Station

FCC ID: OEWMBSS19 Model No.: MBSS-1900 FCC Rule Parts: 2, 24

General Overview

The MBSS-1900 is a FCC Part 24 PCS base station radio. The MBSS-1900 includes up to 4 identical radio boards in an Ultrawave Micro BTS cabinet, and E1 digital communications card, with an AC-DC rectifier module to provide -48VDC normal operating voltage. A description of the theory of operation and product configuration is found in an attachment to this application and report.

SPECIFICATIONS

<u>Transmitter</u>	
TX operating frequency:	1930.2 – 1989.8 MHz
TX output power:	40 watts, 44.98 watts (46.53 dBm) measured
Modulation:	GSM (GMSK)
	Modulation is internally generated and limited
Power requirements:	110VAC, 30 A/220VAC,15A/-48-60VDC, 40A
Frequency Tolerance	0.0024 ppm
	-30 to +50 C
	85%-115% supply voltage at 25C
Test Dates:	10, 11,23, and 26 September 2008

Test Site

Antenna port conducted tests and frequency stability tests were performed at the ADC test lab location in Mountain View, CA. Radiated spurious emissions, unintentional radiator emission, and AC line conducted tests were performed at Compliance Certification Services in Fremont, CA.

M. M. Cohen____

THOMAS N. COKENIAS Consultant, EMC&Radio Type Approvals Agent for ADC Telecommunications Inc.

14 October 2008

Report Revision Information

Revision No.	Date	Description	Revised by
-	10/02/2008	Original Issue	T. Cokenias
1	10/14/2008	Correct typo in freq. stability data	T. Cokenias
		Add freq. drift calculation	
		Include TIA/603 Reference	

FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part 2.

Test Procedure:	TIA/EIA 603-B Land Mobile FM or PM Communication
	Equipment, Measurement and Performance Standards

- 2.1033(c)1 Applicant: ADC Telecommunications Inc. 2495 Leghorn St., Mountain View, CA 94043
- **2.1033(c)2** FCC ID: OEWMBSS19

2.1033(c)4,5 Emission type and Frequency range

Modulation: GMSK from internal source Emission designator: **323KG1D**

2.1033(c) 6 Range of Operating Power

40 watts peak (46.0 dBm) in single configuration 15 watts peak (41.76 dBm) in 2 transmitter combined configuration

2.1033(c) 7 Maximum Power Rating

46.53 dBm measured = 44.98 watts

2.1033(c) 13 Description of Modulation System

GMSK per the GMS standard

2.1033(c) 14 Test Data per 2.1046 – 2.1057, 15.107, 15.109

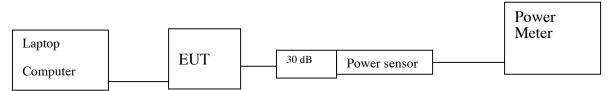
CCS Test Equipment

	TEST EQU	IPMENT LIST			
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	09/28/07	09/28/08
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/08	03/31/09
Spectrum Analyzer	Agilent / HP	E4446A	C01069	04/08/08	10/08/09
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	09/27/07	09/27/08
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/08	04/22/09
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/25/07	10/25/08
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	10/25/07	10/25/08
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	02/06/08	08/06/09

ADC Test Equipment

Description	Manufacturer	Model No.	Serial No.	Cal Date
Spectrum analyzer	Rohde & Schwartz	FSEM	849016/022	01/30/08
Power meter	Gigatronics	8652A	8650697	03/27/08
Power Sensor	Gigatronics	80701A	1834070	03/27/08
Frequency counter	HP	53132A	KR91201283	03/27/08
Frequency source	Quartzlock	A8-Rb	048	NCR
Attenuator	Bird	100-SA-MFN-30	n/a	NCR

2.1046 RF Output Power Measurements Requirement/Limit: 24.232


a) Base stations are limited to 1640 watts peak equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below. *See* §24.53 for HAAT calculation method. Base station antenna heights may exceed 300 meters with a corresponding reduction in power; *see* Table 1 of this section. The service area boundary limit and microwave protection criteria specified in §§24.236 and 24.237 apply. Table 1_Reduced Power for Base Station Antenna Heights Over 300 Meters

HAAT in meters	Maximum EIRP watts
[le] 300	1640
[le] 500	1070
[le] 1000	490
[le] 1500	270
[le] 2000	160

Test set-up:

Figure 1

Test Procedures

1. Set the transmitter to produce maximum modulated power at the desired frequency

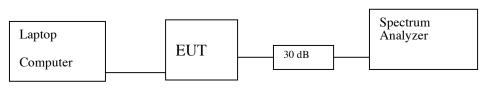
2. Read PEAK output power.

Note: For GMSK modulation, a constant carrier modulation, Pave = Ppk, supported by data as Ppk - Pav < 0.5 dB, within measurement tolerance between power meter and analyzer.

Test Results

Channel Number	Frequency, MHz	Pout, dBm(PM)	Pout, dBm(Pk)	Pout, dBm(Av)
512 (low channel)	1930.2	38.78	39.32	39.10
513 (low chmax P)	1930.4	45.31	45.83	45.54
661 (mid channel)	1960.0	45.86	46.53	46.10
809 (high ch max P)	1989.6	45.64	46.19	45.89
810 (high channel)	1989.8	38.98	39.32	39.10

EUT software automatically limits output power to 39 dBm at Low and High channel to meet out of band emissions limits at band edge.


Section 2.1047 Modulation Characteristics Section 2.1049 Occupied Bandwidth

Requirement/Limit: 24.238 Emission limitations for Broadband PCS equipment

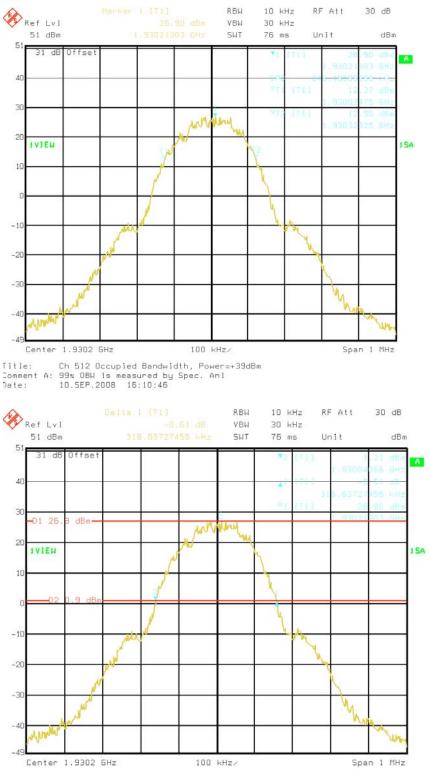
(a) *Out of band emissions*. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

(b) *Measurement procedure*. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

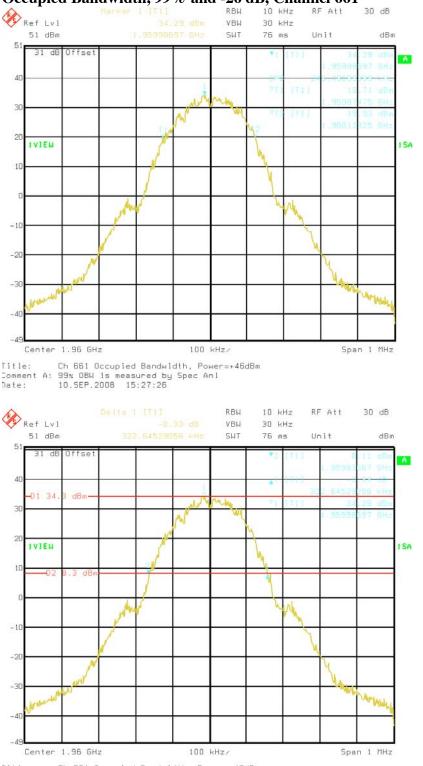
Test set-up: Figure 2

Ref level offset = cable loss + 30 dB = 31 dB

Test Procedures and Results:


99% BW and -26 dBc occupied bandwidth was measured using spectrum analyzer display line and delta marker functions.

Test Results


Maximum 26 dB BW: 322.65 kHz.

Refer to spectrum analyzer plots below.

Occupied Bandwidth, 99% and -26 dB, Channel 512

Title: Ch 512 Occupied Bandwidth, Power=+39dBm Comment A: 25 dB method, D-line1=pieak, D2=-26 dB, Marker Delta1=BW Date: 10.5EP.2008 15:53:40

Occupied Bandwidth, 99% and -26 dB, Channel 661

Title: Ch 661 Occupied Bandwidth, Power=+46dBm Comment A: 26 dB method, D-line1=pieak, D2=-26 dB, Marker Delta1=BW Date: 10.SEP.2008 15:47:35

Occupied Bandwidth, 99% and -26 dB, Channel 810

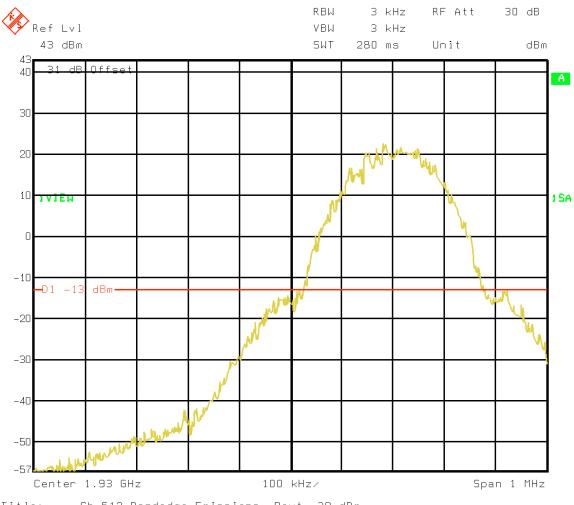
Title: Ch 810 Occupied Bandwidth, Power=+39dBm Comment A: 26 dB method, D-line1=Peak, D2=-26 dB, Marker Delta1=BW Date: 10.SEP.2008 16:18:13

Section 2.1051 Spurious and Harmonic Emissions at Antenna Terminals Requirement/Limit: 24.238 Emission limitations for Broadband PCS equipment

(a) *Out of band emissions*. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

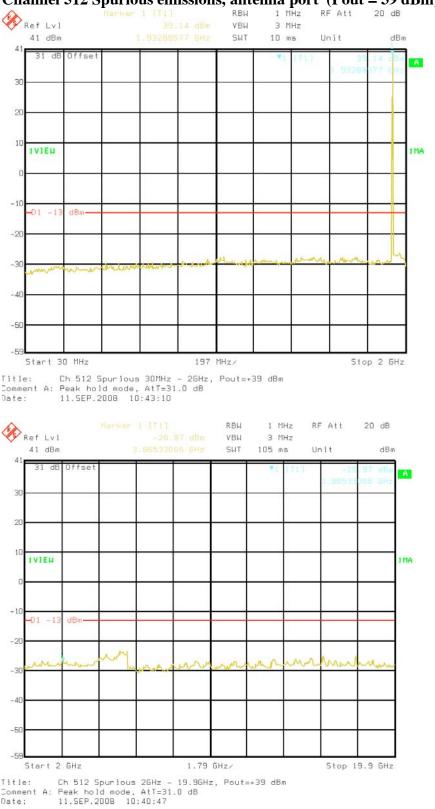
(b) *Measurement procedure*. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Test set-up:

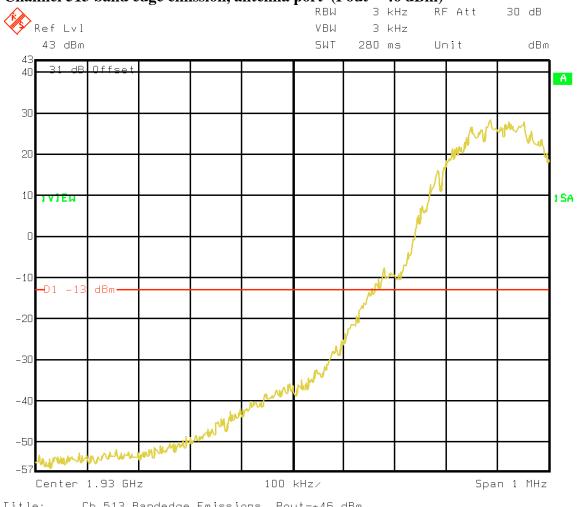

Refer to Figure 2 above

Test Procedures

- 1. Record band edge emissions using 3 kHz resolution band width (1% emission BW).
- 2. Record transmitter output spectrum from 1 MHz to 10th harmonic of TX output frequency using 1MHz resolution bandwidth

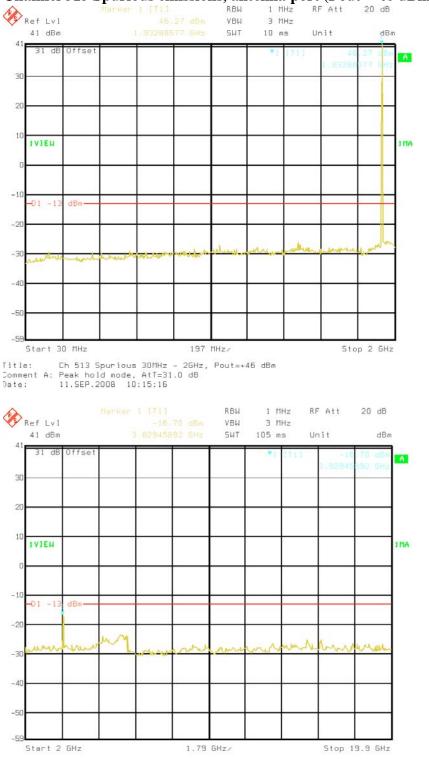

Test Results

PASS. Refer to data plots below.



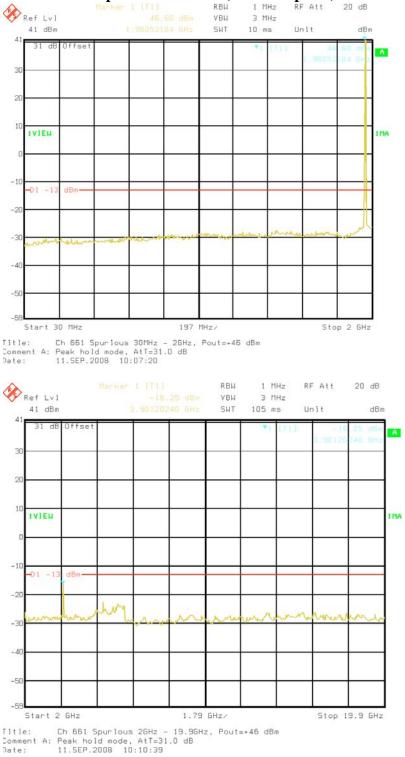
Channel 512 Band edge emissions, antenna port (Pout = 39 dBm)

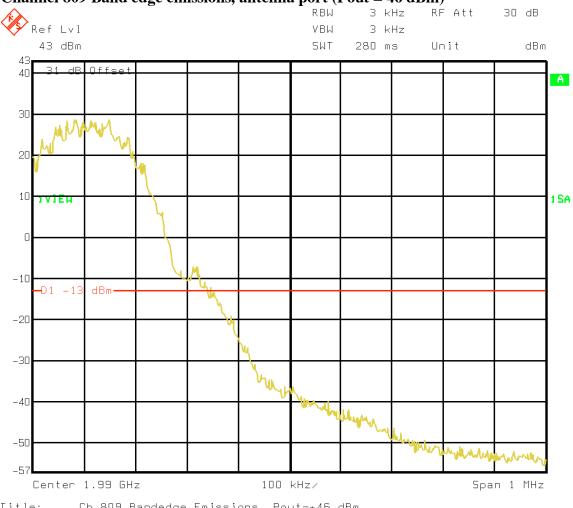
Title: Ch 512 Bandedge Emissions, Pout=+39 dBm Date: 10.SEP.2008 16:32:03



Channel 512 Spurious emissions, antenna port (Pout = 39 dBm)

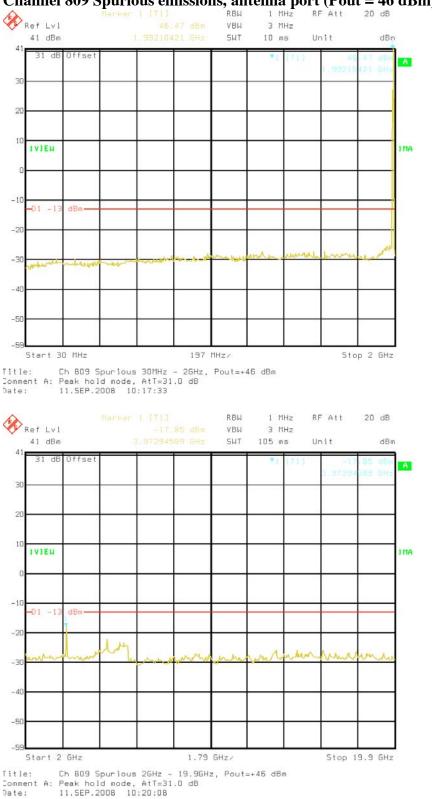
Channel 513 band edge emission, antenna port (Pout = 46 dBm)

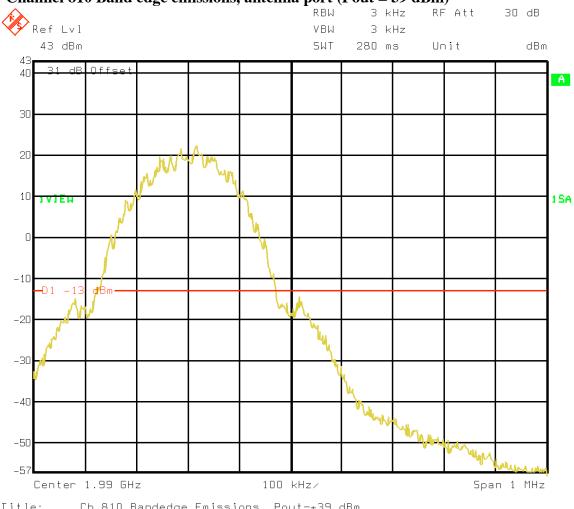




Channel 513 Spurious emissions, antenna port (Pout = 46 dBm)

Title: Ch 513 Spurious 2GHz - 19.9GHz, Pout≃+46 dBm Comment A: Peak hold mode, AtT=31.0 dB Date: 11.SEP.2008 10:12:48


Channel 661 Spurious emissions, antenna port (Pout = 46 dBm)

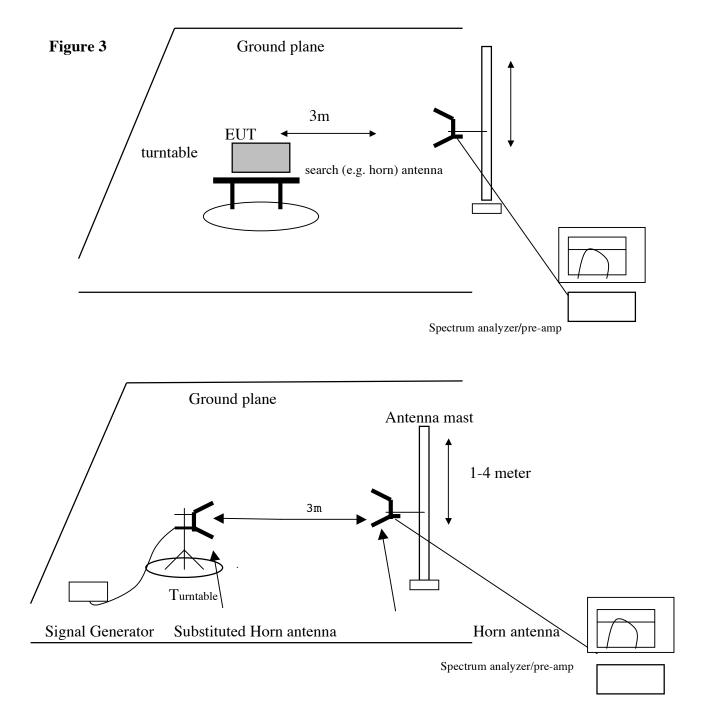


Channel 809 Band edge emissions, antenna port (Pout = 46 dBm)

Channel 809 Spurious emissions, antenna port (Pout = 46 dBm)

Channel 810 Band edge emissions, antenna port (Pout = 39 dBm)

20 dB 1 MHz RBW RF Att Ref Lvl VBW 3 MHz 41 dBm SWT 10 ms Unit dBm 41 31 dB Offset A 30 20 10 IMAX IMA 0 -10 01 -1 dBm--20 -30 -40 -50 -59 197 MHz/ Stop 2 GHz Start 30 MHz Title: Ch 810 Spurious 30MHz - 26Hz, Pout=+39 dBm Comment A: Peak hold mode, AtT=31.0 dB Date: 11.SEP.2008 10:33:23 RBW RF Att Ref Lvl 1 MHz 20 dB VBW 3 MHz 41 dBm SWT 105 ms Unit dBm 41 31 dE Offse A 30 20 10 **IVIEN** IMA 0 01 -1 -20 -30 -40 -50 -59 Start 2 GHz Stop 19.9 GHz 1.79 GHz/


Channel 810 Spurious emissions, antenna port (Pout = 39 dBm)

Title: Ch 810 Spurious 26Hz - 19.96Hz, Pout=+39 dBm Comment A: Peak hold mode, AtT=31.0 dB Date: 11.5EP.2008 10:36:23

Section 2.1053 Field Strength of Spurious and Harmonic Radiation Requirement/Limit: 24.238 Emission limitations for Broadband PCS equipment

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

Test Set-Up

Minimum Requirement

-13 dBm ERP

Test Method

The antenna output port of the EUT was terminated with a 50-ohm load. With the transmitter operating at full power, the EUT was rotated 360° and the search antenna was raised and lowered in both polarities, all in an attempt to maximize the levels of the received emission for each harmonic and spurious emission up to 10 fo.

The EUT was removed and was replaced by a substitution antenna connected via coax to a signal generator. The generator output was set to each emission frequency detected, the search antenna was raised and lowered, the turntable was rotated, and until the maximum emission level was obtained. The signal generator output level was adjusted to match the radiated emission level from the EUT. After correcting for substitution antenna factor and generator cable loss, output power level is compared to the limit.

Test Results

Pass. All emissions detected were at least 28.9 dB below limits. Refer to worst-case data below.

Radiated Emissions Below 1 GHz

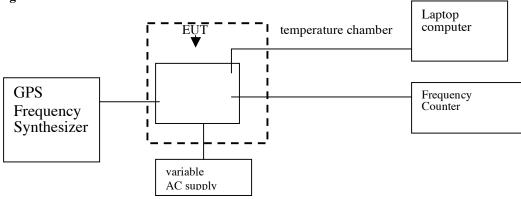
			Measurement								
Complianc	e Certification S	Services, Frem	iont 5m B-Chan	nber							
Company:		ADC									
Project #:		08U12124									
Date:		9/26/08									
Fest Engine		Thanh Nguyen									
Configuratio		EUT StandAlone									
Johngur aut Mode:		Transmit									
loue.		Transmit									
Fest Equipn	nent:										
cot Equipsi											
				able		Pre-amplifer 8	447D		Limit		
	Bilog Anten	na		able		rre-ampirer o	4470		Lamit		
5m	Chamber Sund	Bilos -	5m Chan	ıber Cable 🖕		F5 8447D	-		EIRP	-	
	- Changer Dane		1					I.			
				<u> </u>			TIDE				
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	EIRP	Limit	Margin	N	otes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)		
	l 513, 1930.4MHz										
62.01	50.5	V	-65.2	1.1	-2.1	-4.3	-68.4	-13.0	-55.4		
102.75	52.3	V	-57.5	1.3	-1.2	-3.3	-60.0	-13.0	-47.0		
195.87 351.07	45.2 40.3	v v	-64.3 -65.8	1.7 2.2	4.1	1.9	-62.0 -62.0	-13.0 -13.0	-49.0		
380.17	40.5	v	-64.5	2.2	6.0	3.9	-62.0	-13.0	-49.0		
300.17	41.0	•	-04.5	2.3	0.0	3.9	-00.0	-13.0	-4/.0		
195.87	47.2	н	-62.4	1.7	4.1	1.9	-60.1	-13.0	-47.1		
208.48	47.8	н	-59.8	1.8	5.5	3.4	-56.1	-13.0	-43.1		
248.25	53.0	н	-56.2	1.9	6.1	3.9	-52.1	-13.0	-39.1		
676.02	37.3	Н	-64.1	3.1	6.8	4.6	-60.4	-13.0	-47.4		
	el 661, 1960MHz										
107.60	46.7	Н	-62.3	1.4	-1.6	-3.8	-65.3	-13.0	-52.3		
194.90	45.7	Н	-63.9	1.7	4.0	1.9	-61.7	-13.0	-48.7		
247.28	51.9	Н	-57.4	1.9	6.0	3.9	-53.2	-13.0	-40.2		
519.85	37.5	H H	-65.8	2.7	6.3	4.2	-62.2	-13.0	-49.2		
676.02 69.77	36.2 50.2	H V	-65.3 -64.7	3.1	6.8 -1.8	4.6	-61.6 -67.6	-13.0 -13.0	-48.6		
107.60	50.2	v	-64.7	1.2	-1.8	-3.9	-67.6	-13.0	-54.6		
195.87	41.8	v	-67.7	1.4	4.1	1.9	-65.3	-13.0	-52.3		
248.25	42.7	v	-66.5	1.9	6.1	3.9	-62.4	-13.0	-49.4		
380.17	40.8	v	-64.7	2.3	6.0	3.9	-61.0	-13.0	-48.0		
	el 809, 1989.6MHz										
62.01	49.8	v	-65.8	1.1	-2.1	-4.3	-69.1	-13.0	-56.1		
102.75	52.2	v	-57.6	1.3	-1.2	-3.3	-60.1	-13.0	-47.1		
195.87	44.7	V	-64.8	1.7	4.1	1.9	-62.5	-13.0	-49.5		
351.07	40.3	V	-65.8	2.2	6.0	3.9	-62.0	-13.0	-49.0		
380.17 102.75	39.7 47.5	<u>V</u> Н	-65.8 -62.3	2.3	6.0	-3.3	-62.1	-13.0	-49.1 -51.8		
102.75	47.5	<u>н</u> Н	-62.3	1.3	-1.2	-3.3	-64.8 -61.8	-13.0	-51.8		
172.07	45.5	<u>н</u> Н	-60.0	1.7	5.5	3.4	-61.8	-13.0	-48.8		
		<u>н</u> Н	-57.4	1.0	6.0	3.9	-53.2	-13.0	-40.2		
208.48	51.9										
	51.9 39.2	н	-62.3	3.1	6.8	4.6	-58.6	-13.0	-45.6		

Radiated Emissions Above 1 GHz

8	Frequency Substitution Measurement ification Services, Fremont 5m B-Chamber
Company:	ADC
Company: Project #:	08U12124

Company:	ADC
Project #:	08U12124
Date:	9/23/08
Test Engineer:	Thanh Nguyen
Configuration:	EUT StandAlone
Mode:	GSM_GPRS

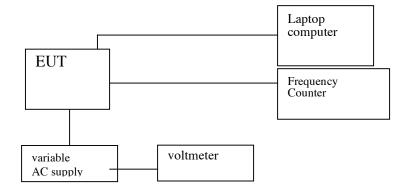
Test Equipment:


1	EMCO Horn 1-	18GHz		Horn >18GHz				Limit	nit	
T	73; S/N: 6717 @	93m -		-	EIRP	•	•			
Hi F	requency Cables									
	(2 ft)	(2 ~ 3 ft)	$(4 \sim 6 \text{ ft})$ (4	12 ft)		Pre-amplifer 1-2 T145 Agilent 30		[Pre-amplife	
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	EIRP	Limit	Margin	
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
ow Chann	el 1930.4MHz (Ch	1 513)								
.8608	41.3	V	-54.0	6.6	9.7	7.5	-50.8	-13.0	-37.8	
.791	42.2	V	-49.4	8.2	11.8	9.6	-45.8	-13.0	-32.8	
861	40.4	Н	-54.8	6.6	9.7	7.5	-51.6	-13.0	-38.6	
.791	45.1	Н	-45.5	8.2	11.8	9.6	-41.9	-13.0	-28.9	
Aid Chann	el 1960MHz (Ch	661)								
.920	39.8	Н	-55.1	6.6	9.7	7.5	-52.0	-13.0	-39.0	
.880	43.5	Н	-47.2	8.3	12.0	9.8	-43.5	-13.0	-30.5	
.840	39.2	Н	-48.4	9.2	12.8	10.7	-44.7	-13.0	-31.7	
.920	41.5	V	-53.5	6.6	9.7	7.5	-50.4	-13.0	-37.4	
.880	42.3	V	-49.4	8.3	12.0	9.8	-45.7	-13.0	-32.7	
.840	39.0	V	-49.4	9.2	12.8	10.7	-45.7	-13.0	-32.7	
0	el 1989.6MHz									
.980	41.0	V	-53.7	6.7	9.7	7.5	-50.7	-13.0	-37.7	
.969	41.6	V	-50.0	8.3	12.2	10.0	-46.2	-13.0	-33.2	
.959	38.4	V	-49.9	9.2	12.9	10.7	-46.2	-13.0	-33.2	
.980	42.0	Н	-52.6	6.7	9.7	7.5	-49.6	-13.0	-36.6	
<u>.969</u> .959	41.6	Н	-49.0	8.3	12.2	10.0	-45.2	-13.0	-32.2	
	38.1	Н	-49.4	9.2	12.9	10.7	-45.8	-13.0	-32.8	

2.1055 Frequency Stability Requirement/Limit: 24.235 Frequency stability

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Temperature Range:	-30C to +50 C
Supply Voltage Range:	85% - 115% nominal 13.6 VDC (11.6 - 15.6 VDC)


Test Setup Figure 4

Operating Voltage v Frequency

Test Setup

Figure 5

Test Results

Pass. All emissions remained within the authorized operating frequency band. Actual performance better than 4.8 Hz drift, or 0.0024 ppm.

A. Frequency v Supply Voltage Variation

Temperature: 25°C

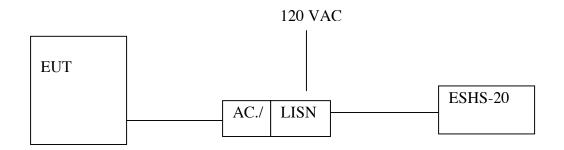
AC voltage	Low (Ch 512), MHz	Mid (Ch 661), MHz	High (Ch 810), MHz
102V (-15%)	1930.1999868	1959.9999866	1979.7999864
120V (0%)	1930.1999868	1959.9999866	1979.7999864
138V (+15%)	1930.1999868	1959.9999866	1979.7999864

B. Frequency v Temperature

At 120V AC input voltage

Temperature (°C)	Low (Ch 512), MHz	Mid (Ch 661), MHz	High (Ch 810), MHz
-30	1930.1999882	1959.9999880	1979.7999877
-20	1930.1999876	1959.9999874	1979.7999872
-10	1930.1999874	1959.9999872	1979.7999870
0	1930.1999873	1959.9999871	1979.7999869
+10	1930.1999875	1959.9999873	1979.7999871
+20	1930.1999871	1959.9999869	1979.7999867
+25	1930.1999868	1959.9999866	1979.7999864
+30	1930.1999866	1959.9999863	1979.7999861
+40	1930.1999846	1959.9999844	1979.7999841
+50	1930.1999824	1959.9999822	1979.7999819

Frequency Drift v Temperature


Low Channel	1930.199987 MHz	
Mid Ch.	1959.999987 MHz	ADC Telecom
High Ch.	1979.799986 MHz	FCC ID: OEW

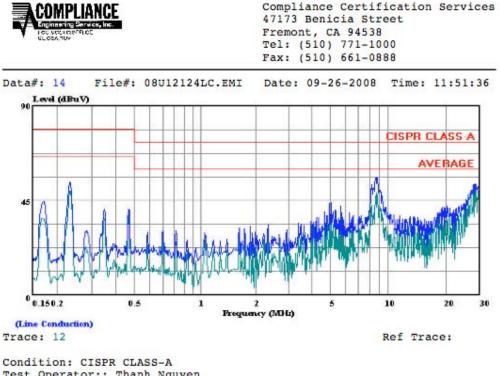
ADC Telecommunications FCC ID: OEWMDSS19

Temp, C	LOW Ch.	Drift, Hz	MID Ch.	Drift, Hz	HIGH Ch.	Drift, Hz
	1930.199988	-0.6	1959.999987	-0.4	1979.799987	-1.2
	1930.199987	-0.4	1959.999987	-0.2	1979.799987	-1.0
	1930.199987	-0.3	1959.999987	-0.1	1979.799987	-0.9
	1930.199988	-0.5	1959.999987	-0.3	1979.799987	-1.1
	1930.199987	-0.1	1959.999987	0.1	1979.799987	-0.7
	1930.199987	0.2	1959.999987	0.4	1979.799986	-0.4
	1930.199987	0.4	1959.999986	0.7	1979.799986	-0.1
	1930.199985	2.4	1959.999984	2.6	1979.799984	1.9
	1930.199982	4.6	1959.999982	4.8	1979.799982	4.1
	Max. Drift ppm	0.0024		0.0024		0.0021

AC Line Conducted Emissions from digital network interface Test Requirement: 15.107

AC Conducted Set-up

Test Procedure


1. The EUT was placed on a floor with a metal ground plane, 40 cm from a vertical ground plane.

2. The EUT was set to transmit in normally.


3. Line conducted data was recorded for both NEUTRAL and HOT lines.

Test Results

Pass. Meets class A EN55022 limits.

Test Operator:: Thanh Nguyen Project #: : 08U12124 Company: : ADC Configuration:: EUT StandAlone Mode: : Tx Worst case Target: : FCC CLASS A Voltage: : Line 1, 115VAC 60Hz

Condition: CIS	PI	R CLASS-A
Test Operator:	:	Thanh Nguyen
Project #:	:	08U12124
Company:	:	ADC
Configuration:	:	EUT StandAlone
Mode:	:	Tx Worst case
Target:	:	FCC CLASS A
Voltage:	:	Line 2, 115VAC 60Hz

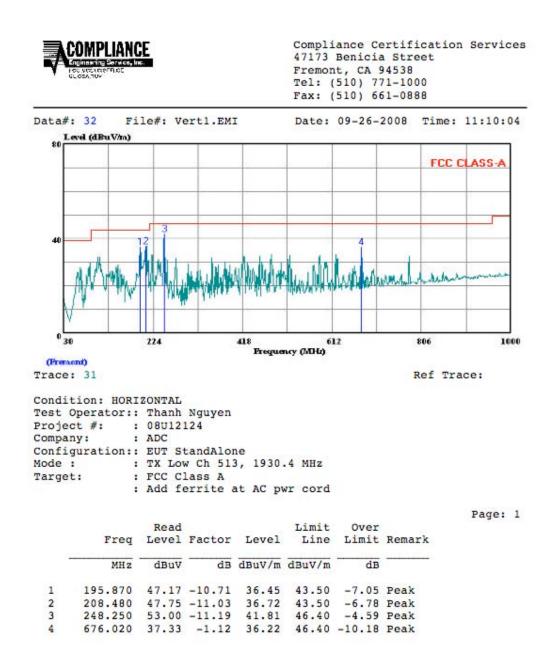
Radiated emissions from digital network interface Rule Section: 15.109

Emissions from the digital portion of the EUT were tested to class A limits as the EUT is not sold or used in residences.

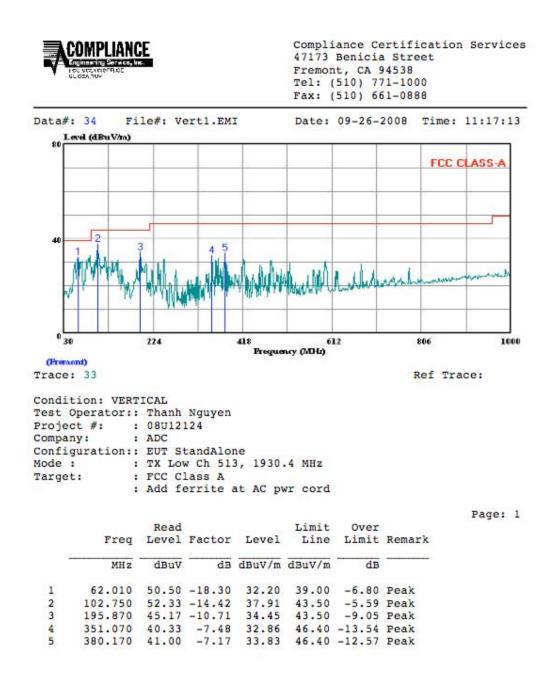
Test Set-up

Figure 3 above.

Test Procedures


The EUT was placed on a turntable located in a 5m anechoic chamber. The EUT was tested twice, once with the transmitter ON, the second time with the transmitter off but with the rest of the circuitry active (digital board, GPS receiver, and Bluetooth module).

EUT emissions were maximized by raising the search antenna 1-4 m in both horizontal and vertical polarities, and by rotating the turntable through a full 360 degrees.

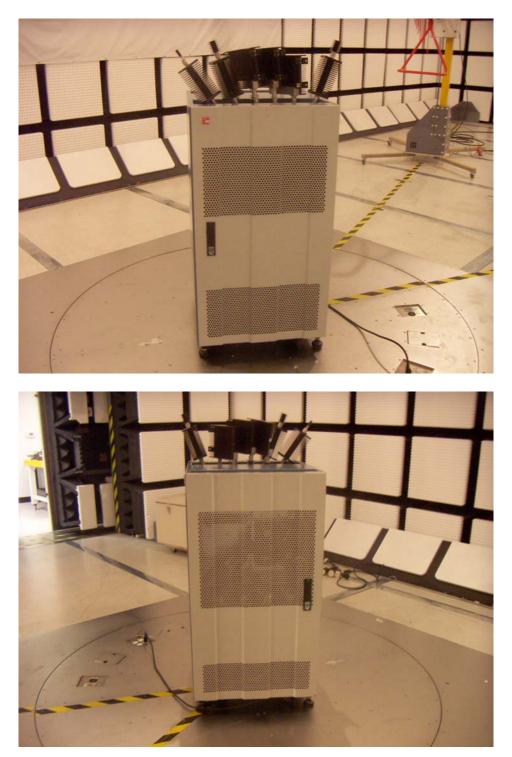

Test Results

PASS. With addition of ferrite core to AC cable, radiated emissions meet class A limit. Details of ferrite installation are located in a separate attachment submitted with the certification application.

Standard Network Configuration, Horizontal

Standard Network Configuration, Vertical

RF hazards.


Per the requirements of FCC Rule Sections 1.1307 and 1.1310, RF exposure issues will be addressed at time of licensing.

Test Set-up Photographs

Antenna port conducted emissions

Radiated emissions

AC Line Conducted Emissions

