

FCC CFR47 CERTIFICATION

PART 22H

TEST REPORT

FOR

PICO 850 BASESTATION

MODEL: WAVE 2000 PICO BS PLUS

FCC ID: OEW-AGBBP0

REPORT NUMBER: 03U2223-1

ISSUE DATE: SEPTEMBER 30, 2003

Prepared for

INTERWAVE COMMUNICATIONS 2495 LEGHORN STREET MOUNTAINT VIEW, CA 94043 USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, ROUTE 2 MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENT

1.	TEST RESULT CERTIFICATION	3
2.	EUT DESCRIPTION	4
3.	ENGINEERING JUSTIFICATION	
4.	TEST METHODOLOGY	
5.	TEST FACILITY	
6.	ACCREDITATION AND LISTING	
7 .	MEASURING INSTRUMENT CALIBRATION	
8.	TEST SETUP, PROCEDURE AND RESULT	
8.1.	,	
8.2.		
8.3.	SECTION 2.1049: EMISSION MASK & OCCUPIED BANDWIDTH	14
8.4.		
8.5.		
8.6.	SECTION 2.1055: FREQUENCY STABILITY	29
8.7.		
8.8.		
9.	APENDIX	45
9.1.		
9.2.		
9.3.		
9.4	USER MANUAI	

1. TEST RESULT CERTIFICATION

COMPANY NAME: INTERWAVE COMMUNICATIONS

2495 LEGHORN STREET

MOUNTAINT VIEW, CA 94043, USA

EUT DESCRIPTION: PICO 850 BASESTATION

MODEM NAME: WAVE 2000 PICO BS PLUS

DATE TESTED: SEPTEMBER 30, 2003

TYPE OF EQUIPMENT	INTENTIONAL RADIATOR
EQUIPMENT TYPE	LICENSED TX MODULE IN MOBILE APPLICATION
MEASUREMENT PROCEDURE	ANSI 63.4 / 2001, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 22 SUBPART H

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 22 Subpart H-Cellular Radiotelephone Service. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Tested By:

VIEN TRAN

EMC TECHNICIAN

COMPLIANCE CERTIFICATION SERVICES

Released For CCS By:

THU CHAN

EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

The 800MHz CDMA Cellular Base Station has:

- an output power 26.1dBm (ERP)
- a dual omni direction, which is helical pattern type antenna, with 0dBi gain
- the transmitting of frequency range 869-894MHz

3. ENGINEERING JUSTIFICATION

A 2-turn ferrite was added to the power supply cable, at EUT side. (Manufacturing by Steward, P/N 28A2024-0A0).

4. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

5. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

6. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

7. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

8. TEST SETUP, PROCEDURE AND RESULT

8.1. SECTION 2.1046: RF POWER OUTPUT

INSTRUMENTS LIST

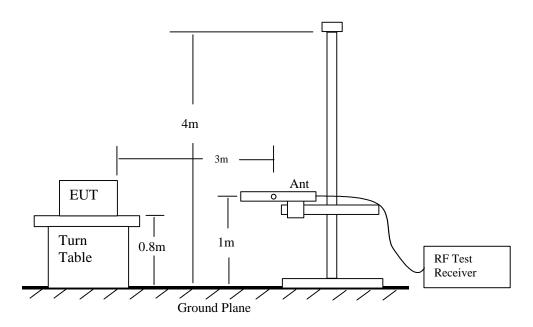
TEST EQUIPMENT LIST						
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date		
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	9/6/2004		
Line Filter	Lindgren	LMF-3489	497	CNR		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	837990	9/6/2004		
EMI Test Receiver	R & S	ESHS 20	827129/006	4/17/2004		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2004		
Quasi-Peak Adaptor	HP	85650A	2811A01155	5/16/2004		
SA RF Section, 1.5 GHz	HP	85680B	2732A03661	5/16/2004		
Preamplifier, 1300 MHz	HP	8447D	2944A06589	8/22/2004		
Antenna, Bilog	Chase	CBL6112B	2586	3/6/2004		
SA Display Section 2	HP	85662A	2816A16696	5/16/2004		
Spectrum Analyzer	HP	E4446A	US42070220	1/13/2004		
Dipole Antenna	ETS	DB-4	1629	5/15/2004		
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/20/2004		
RF Filter Section	HP	85420E	3705A00256	11/21/2004		
Bilog Antenna	A.R.A	LPB-2520/A	1185	6/24/2004		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	9001-3245	2/4/2004		
Signal Generator, 2 ~ 40 GHz	R & S	SMP04	DE 34210	05/25/04		

MEASUREMENT PROCEDURE

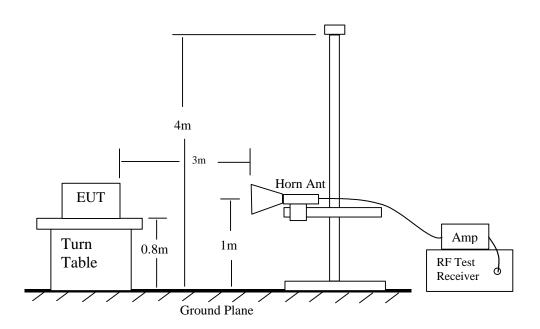
1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

- 2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.
- 3). The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8). The maximum signal level detected by the measuring receiver shall be noted.
- 9). The transmitter shall be replaced by a tuned dipole (substitution antenna).
- 10). The substitution antenna shall be oriented for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11). The substitution antenna shall be connected to a calibrated signal generator.
- 12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

REPORT NO: 03U2223-1

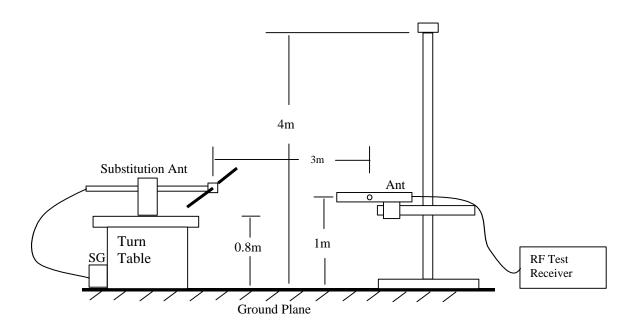

EUT: Pico 850 Basestation

DATE: SEPTEMBER 30,2003


FCC ID: OEW-AGBBP0

14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

- 15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.



Radiated Emission Measurement 30 to 1000 MHz

Radiated Emission Above 1000 MHz

Page 8 of 45

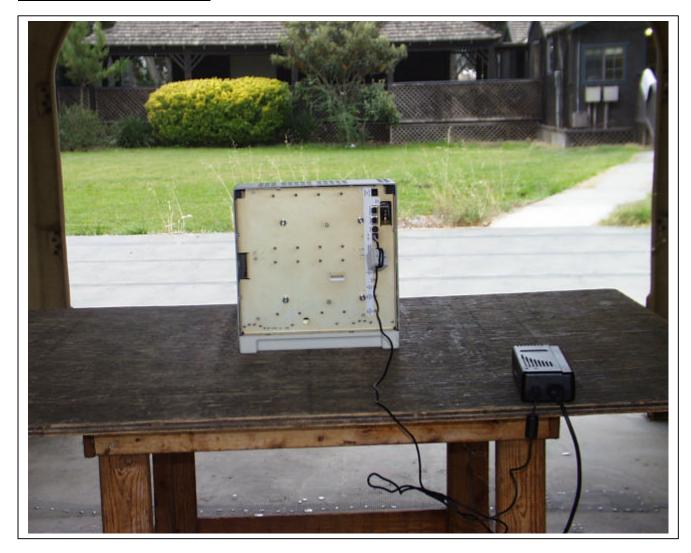
Radiated Emission – Substitution Method Set-up

MEASUREMENT RESULT:

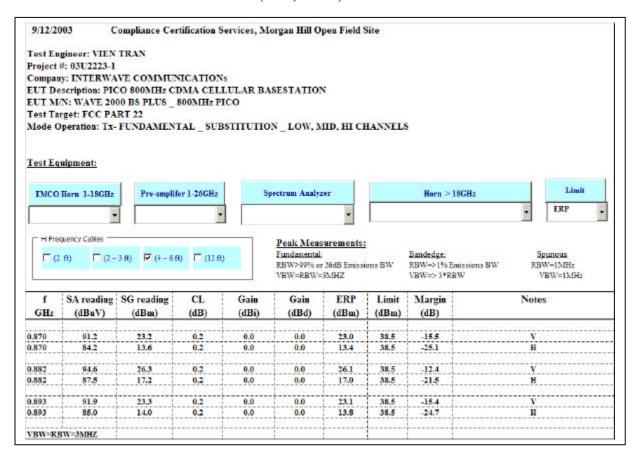
Output Power Measurement:

		RF CONDUCTED	ERP
	FREQUENCY	AVERAGE	PEAK
CHANNELS	(MHz)	(dBm)	(dBm)
LOW	896.70	17.05	23.00
MID	881.50	17.23	26.10
HI	893.31	17.04	23.10

THE ANTENNA GAIN IS 0dBi


Radiated Emissions

Configuration 1, front view:


Page 11 of 45

Configuration 2, Back view:

BACK

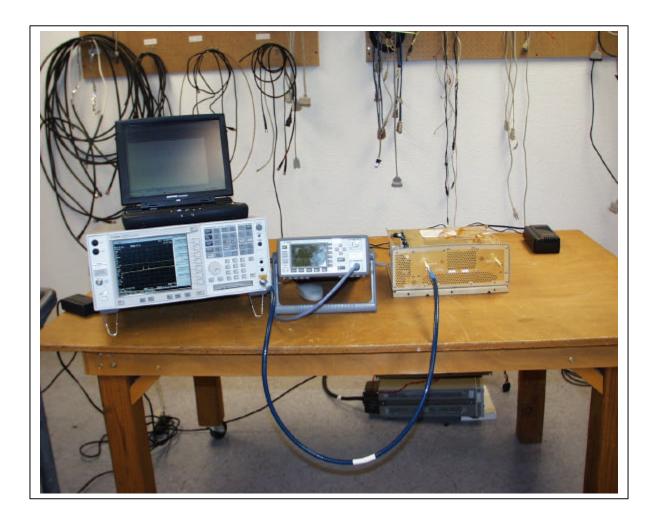
FUNDAMENTAL OUTPUT POWER (ERP) LOW, MID AND HIGH CHANNELS

8.2. SECTION 2.1047: MODULATION CHARACTERISTICS

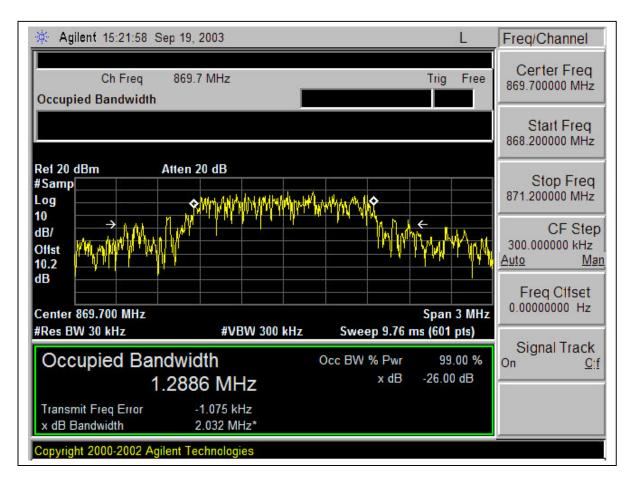
Not Applicable.

8.3. SECTION 2.1049: EMISSION MASK & OCCUPIED BANDWIDTH

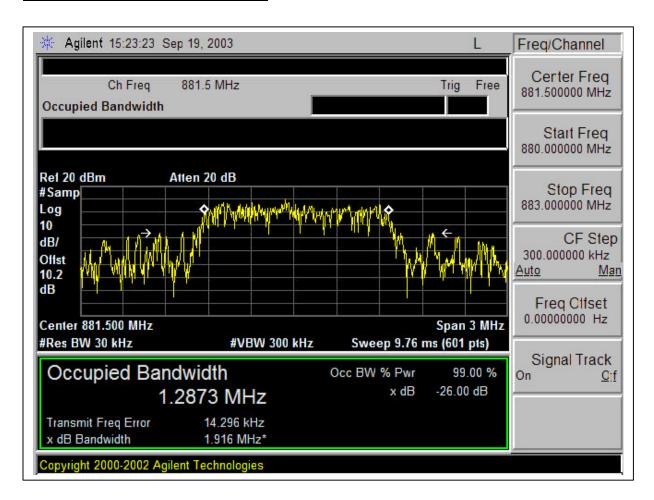
PROVISIONS APPLICABLE According to CFR 47 section 22.917.


TEST SETUP

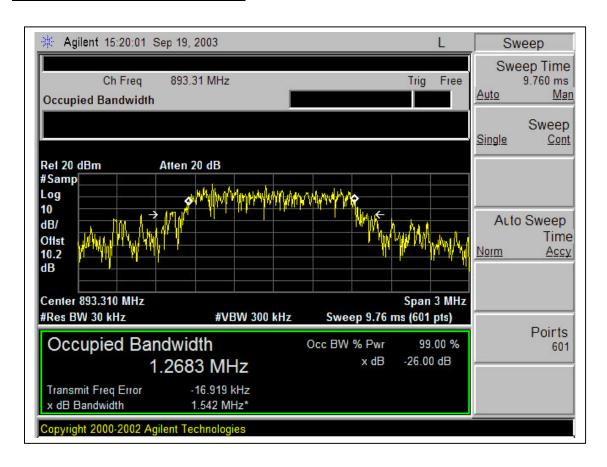
MEASUREMENT RESULT:


	FREQUENCY	99% BW	-26dBc BW
CHANNEL	(MHz)	(KHz)	(KHz)
LOW	869.7	1288.6	2032
MID	881.5	1287.3	1916
HI	893.31	1268.3	1542

Set-up Configuration



Page 15 of 45


Low Channel Occupied Bandwidth:

Mid Channel Occupied Bandwidth:

Hi Channel Occupied Bandwidth:

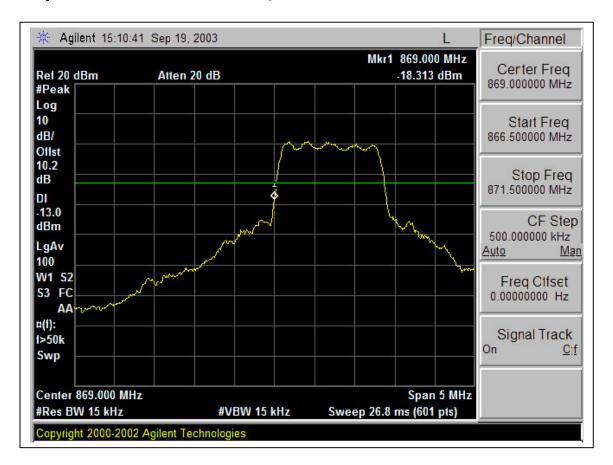
8.4. SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL

INSTRUMENTS LIST

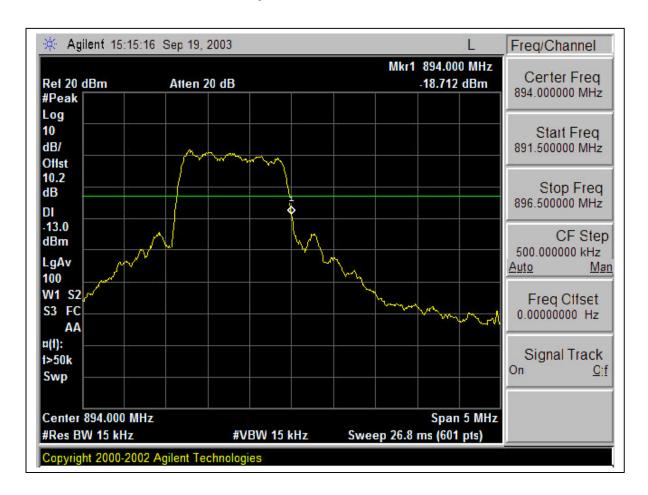
EQUIPMENT	MANUFACTURE	MODEL NO.	SERIAL NO.	CAL. DUE DATE
PSA Analyzer	Agilent	E446A	US42070220	1/13/04
10dB Attenuator	Agilent	8493C	59028	N/A

TEST SETUP

Set-up Configuration

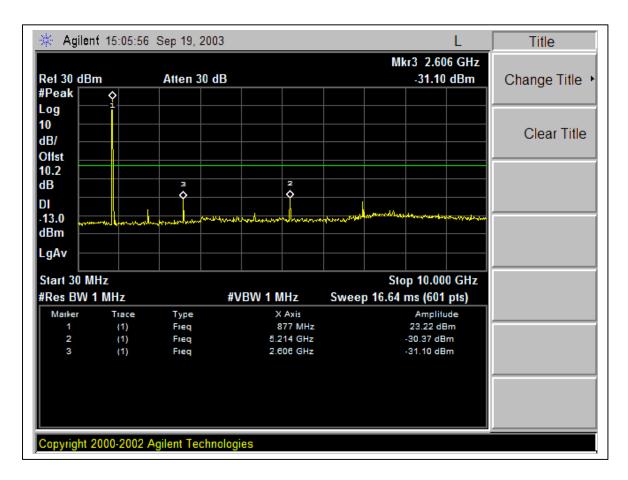

TEST PROCEDURE

- 1) EUT's RF output connector (made solely for the purpose of the test) is connected to the spectrum analyzer, and set as close as possible to the bottom of the block edge and one set as close as possible to the top of the block edge. Set the RES BW to 1% of the emission bandwidth to show compliance with the –13dBm limit, in the 1 MHz bands immediately outside and adjacent to the top and bottom edges of the frequency block.
- 2) For the Out-of-Band measurements a 1 MHz RES BW was used to scan from 15 MHz to 10xfo of the fundamental carrier for all frequency block. A display line was placed at -13dBm to show compliance for spurious, and harmonics.
- 3) 22.917(f): Mobile emissions in base frequency range. The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitter operated must be attenuated to a level not to exceed –80dBm at the transmit antenna connector.

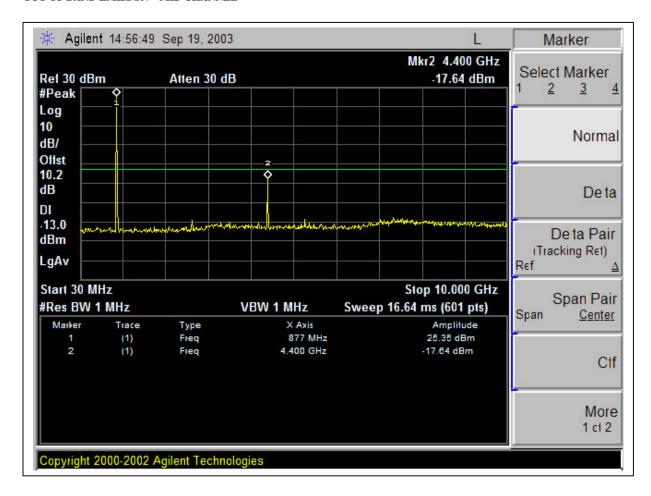

MEASUREMENT RESULT:

BAND EDGE

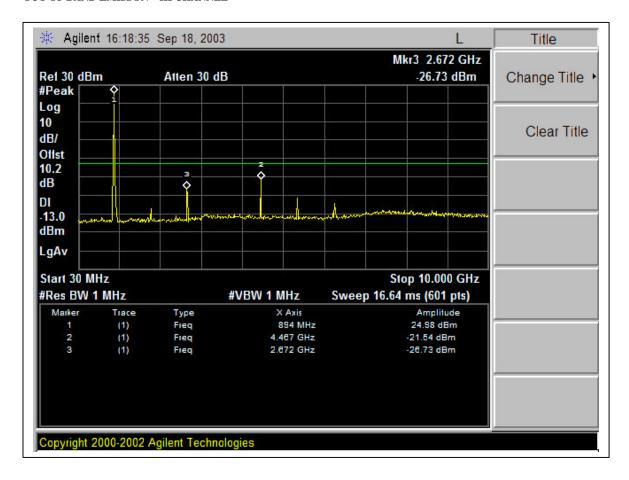
LOW BAND EDGE LOW CH 1013 - CENTER FREQUENCY: 869MHz



HI BAND EDGE LOW CH 777 - CENTER FREQUENCY: 894MHz

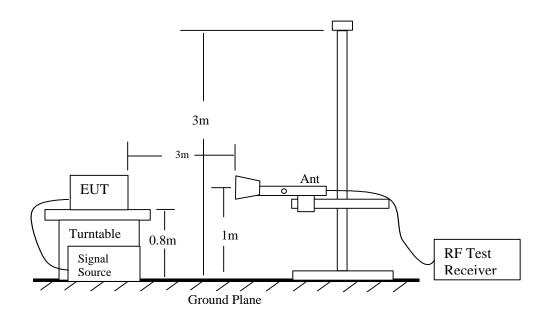


SPURIOUS

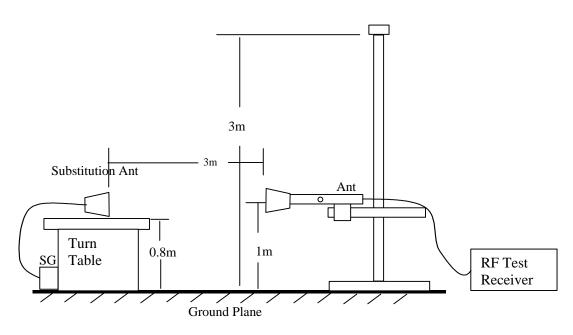

OUT OF BAND EMISSON - LOW CHANNEL

OUT OF BAND EMISSON - MID CHANNEL

OUT OF BAND EMISSON - HI CHANNEL


8.5. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION

INSTRUMENTS LIST


	TEST EQUIPMENT LIST						
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date			
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	9/6/2004			
Line Filter	Lindgren	LMF-3489	497	CNR			
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	837990	9/6/2004			
EMI Test Receiver	R & S	ESHS 20	827129/006	4/17/2004			
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2004			
Quasi-Peak Adaptor	HP	85650A	2811A01155	5/16/2004			
SA RF Section, 1.5 GHz	HP	85680B	2732A03661	5/16/2004			
Preamplifier, 1300 MHz	HP	8447D	2944A06589	8/22/2004			
Antenna, Bilog	Chase	CBL6112B	2586	3/6/2004			
SA Display Section 2	HP	85662A	2816A16696	5/16/2004			
Spectrum Analyzer	HP	E4446A	US42070220	1/13/2004			
Dipole Antenna	ETS	DB-4	1629	5/15/2004			
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/20/2004			
RF Filter Section	HP	85420E	3705A00256	11/21/2004			
Bilog Antenna	A.R.A	LPB-2520/A	1185	6/24/2004			
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	9001-3245	2/4/2004			
Signal Generator, 2 ~ 40 GHz	R & S	SMP04	DE 34210	05/25/04			

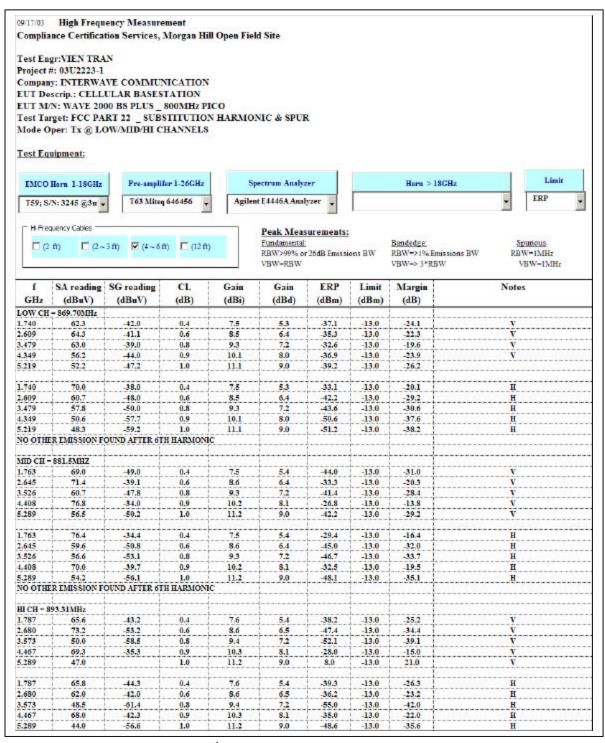
Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak Average	1 MHz 1 MHz	∑ 1 MHz □ 10 Hz

Radiated Emission Measurement

Radiated Emission – Substitution Method set-up

Page 26 of 45


TEST PROCEDURE

- 1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical polarization located 1m from the EUT to correspond to the frequency of the transmitter.
- 3). The output of the test antenna shall be connected to the measuring receiver and either a peak or average detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8). The maximum signal level detected by the measuring receiver shall be noted.
- 9). The transmitter shall be replaced by a substitution antenna.
- 10). The substitution antenna shall be oriented for vertical polarization.
- 11). The substitution antenna shall be connected to a calibrated signal generator.
- 12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

MEASUREMENT RESULT

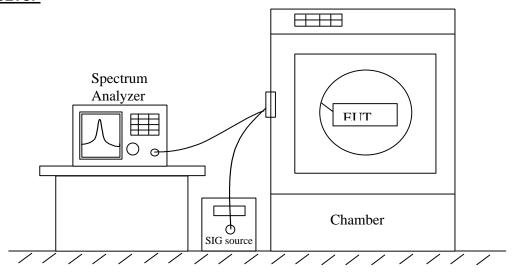
No non-compliance noted, as shown below

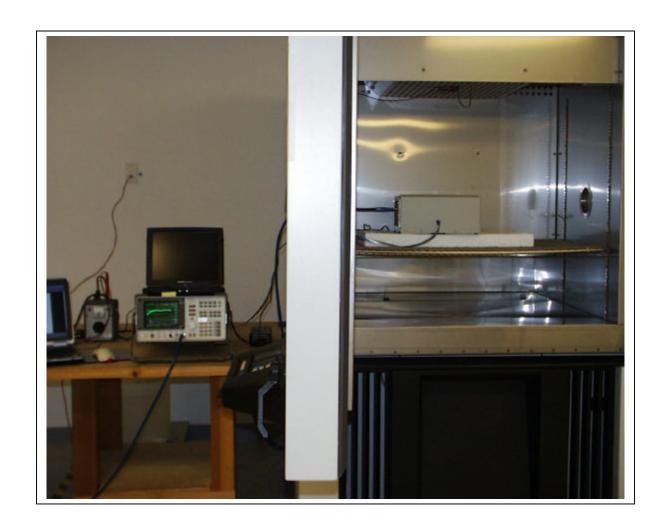
Harmonics / Spurious and Substitution Emissions (EIRP), Low / Mid / High Channels:

Completed scan from 30MHz to 10th harmonic.

Page 28 of 45

8.6. SECTION 2.1055: FREQUENCY STABILITY


INSTRUMENTS LIST


EQUIPMENT	MANUFACTURE	MODEL NO.	SERIAL NO.	CAL. DUE DATE
PSA Analyzer	Agilent	E446A	US42070220	1/13/04
Environmental Chamber	Thermotron	SE 600-10-10	2980	4/23/04
10dB Attenuator	Agilent	8493C	59028	N/A
DC Power Supply	Kenwood	PA36-3A	7060074	N/A

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak	300 Hz	300 Hz

TEST SETUP

Page 30 of 45

TEST PROCEDURE

Frequency stability versus environmental temperature

- 1). Setup the configuration per figure 6 for frequencies measurement inside the environmental chamber. Set the temperature of the chamber to 25°C. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
- 2). Turn EUT off and set Chamber temperature to -30°C.
- 3). Allow sufficient time (approximately 20 to 30 minus after chamber reach the assigned temperature) for EUT to stabilize. Turn on EUT and measure the EUT operating frequency. Turn off EUT after the measurement.
- 4). Repeat step 3 with a 10°C increased per stage until the highest temperature of +50°C reached, record all measured frequencies on each temperature step.

• Frequency stability versus AC input voltage

- 1). Setup the configuration per figure 6 and set chamber temperature to 25°C. Use a variable AC power supply to power the EUT and set AC output voltage to EUT nominal input AC voltage. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
- 2). Slowly reduce the EUT input voltage to specified extreme voltage variation ($\pm 15\%$) and record the maximum frequency change.

MEASUREMENT RESULT

No non-compliance noted, as shown below.

FREQUENCY STABILITY

Limit: to stay ± 2.5 ppm = 2202.048 Hz Power Supply Environment Frequency Deviation Measureed with Time Elaps						
(AC/DC ADAPTER)	Temperature ('C)	(MHz)	Delta (ppm)	Limit (ppm)		
48.00	50	880.819875	-0.630	± 2.5		
48.00	40	880.819787	-0.530	± 2.5		
48.00	30	880.819630	-0.352	± 2.5		
48.00	25	880.819320	0	± 2.5		
48.00	20	880.819149	0.194	± 2.5		
48.00	10	880.819292	0.032	± 2.5		
48.00	0	880.819185	0.153	± 2.5		

Refe	rence Frequency: C	DMA Mid Channe	I 880.818320MHz (25°C	
Limit: to stay ± 2.5 ppm = 2202.046				Hz	
Power Supply	Environment Frequency Deviation Measureed with Time Ela				
(Vac)	Temperature ('C)	(MHz)	Delta (ppm)	Limit (ppm)	
120.00	25	880.818320	0	± 2.5	
102	25	880.818466	-0.166	± 2.5	
138	25	880.818326	-0.007	± 2.5	

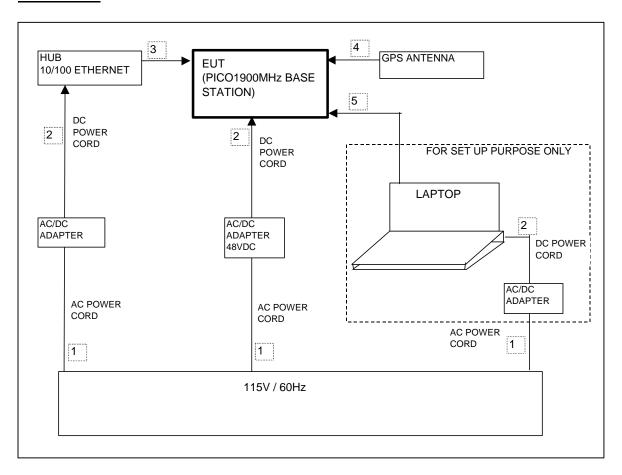
NOTE: Per manufacturer specification, the environmental temperature should be from 0 degree C to 50 degree C.

8.7. RADIATED EMISSION

Name of Equipment	Manufacturer	Model No.	Serial No.	Due Dat
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	9/6/2004
Line Filter	Lindgren	LMF-3489	497	CNR
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	837990	9/6/2004
EMI Test Receiver	R & S	ESHS 20	827129/006	4/17/200
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2004
Quasi-Peak Adaptor	HP	85650A	2811A01155	5/16/200
SA RF Section, 1.5 GHz	HP	85680B	2732A03661	5/16/200
Preamplifier, 1300 MHz	HP	8447D	2944A06589	8/22/200
Antenna, Bilog	Chase	CBL6112B	2586	3/6/2004
SA Display Section 2	HP	85662A	2816A16696	5/16/2004
Spectrum Analyzer	HP	E4446A	US42070220	1/13/2004
Dipole Antenna	ETS	DB-4	1629	5/15/2004
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/20/200
RF Filter Section	HP	85420E	3705A00256	11/21/200
Bilog Antenna	A.R.A	LPB-2520/A	1185	6/24/200
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	9001-3245	2/4/2004
Signal Generator, 2 ~ 40 GHz	R & S	SMP04	DE 34210	05/25/04

TEST PERIPHERALS						
Device Type	Manufacturer	Model Number	Serial Number	FCC ID		
AC/DC ADAPTER	UNKNOWN	AW10-3R3-4	2513721	DOC		
AC/DC ADAPTER	COMPAQ	LE9702A	N/A	DOC		
AC/DC ADAPTER	APX	N/A	SP130948R	DOC		
LAPTOP	COMPAQ	1456VQL1N	N/A	DOC		
HUB(Ethernet 10/100)	LINKSYS	EZX88W	N/A	DOC		
GPS ANTENNA	CUSTOME MADE	N/A	N/A	N/A		

	TEST I / O CABLES								
Cable No	I/O Port	# of I/O Port	Connector Type	Type of Cable	Cable	Data Traffic	Bundled	Remark	
1	AC	3	US115V	SHIELDED	2m	NO	NO	N/A	
2	DC AC	3	DC	SHIELDED	2m	NO NO		Ferrites were added on both sides of EUT cable	
3	ETHERNET CABLE	1	RJ45	SHIELDED	30m	YES	NO NO	N/A	
4	COAX CABLE	1	N - TYPE	SHIELDED	30m	NO	YES	N/A	
5	ETHERNET CABLE	1	RS232	UN-SHIELED		YES	NO	N/A	
	ZIIIZII (ZI CHDZZ	_	1.0202	CI, SIIIEEE		110	1,0	N/A	


 \underline{NOTE} : A 2-turn ferrite was added to the power supply, at EUT side. (Manufacturing by Steward, P/N 28A2024-0A0).

Page 33 of 45

Detector Setting of Spectrum Analyzer

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
30 to 1000	✓ Peak✓ Quasi Peak	∑ 100 KHz ∑ 1 MHz	⊠ 100 KHz ⊠ 1 MHz

TEST SETUP

Page 34 of 45

TEST PROCEDURE

- 1. The EUT was placed on the turn table 0.8 meter above ground inside 3 meter Anechoic Chamber.
- 2. Set the resolution bandwidth to 120KHz in the test receiver and select Peak function to scan the frequency below 1 GHz.
- 3. Shift the interference-receiving antenna located in antenna tower upwards and downwards between 1 and 4 meters above ground and find out the local peak emission on frequency domain.
- 4. Locate the interference-receiving antenna at the position where the local peak reach the maximum emission.
- 5. Rotate the turn table and stop at the angle where the measurement device has maximum reading
- 6. Shift the interference-receiving antenna again to detect the maximum emission of the local peak
- 7. If the reading of the local peak under Peak function is lower than limit by 6dB, then Quasi Peak detection is not needed and this reading should be recorded. And if it is higher than Peak limit, then the test is fail. Others, switch the receiver to Quasi Peak function, set the resolution bandwidth to 100kHz and repeat the procedures (3)~(6). If the reading is lower than limit, this reading should be recorded, otherwise, the test is fail.

MEASUREMENT RESULT

No non-compliance noted, as shown below.

DIGITAL TEST

FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP

561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888 Report #: 030919B1

Project #:

 Date & Time:
 09/19/03 4:25 PM

 Test Engr:
 Thanh Nguyen

03U2203

Company: INTERWAVE COMMUNICATION

EUT Description: CELLULAR BASESTATION 800MHz PICO

Test Configuration: EUT/ANTENNA/48V POWER SUPPY/ETHERNET

Type of Test: FCC CLASS A (PART 22)

Mode of Operation: DIGITAL TEST_Tx @ WORST CASE

<< Main Sheet

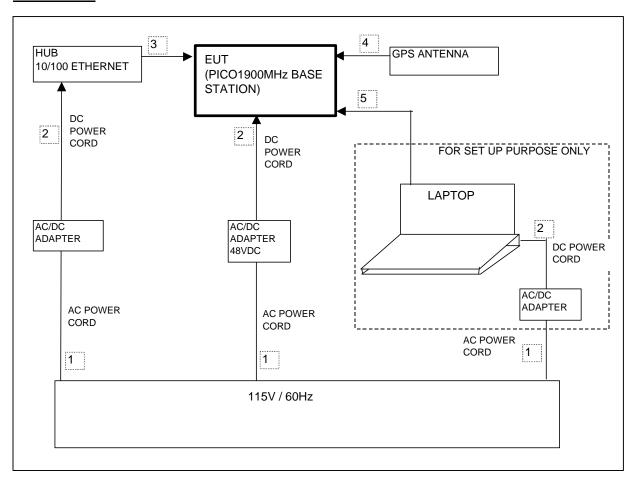
Freq.	Reading	AF	Closs	Pre-amp	Level	Limit	Margin	Pol	Az	Height	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	FCC_A	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
58.98	57.00	6.92	2.01	29.21	36.72	39.10	-2.38	10mV	0.00	1.00	Р
33.00	45.90	16.22	1.60	29.33	35.29	39.10	-4.71	10mV	0.00	1.00	Р
50.00	52.20	8.58	1.87	29.30	33.35	39.10	-5.75	10mV	180.00	1.00	Р
39.34	45.90	13.98	1.69	29.30	32.28	39.10	-6.82	10mV	0.00	1.00	Р
165.00	50.80	10.11	3.13	28.84	35.19	43.50	-8.31	10mV	90.00	1.50	Р
198.00	51.00	8.97	3.48	28.70	34.75	43.50	-8.75	10mV	180.00	1.00	Р
6 Worst	Data										

Radiated Emission photos

, front view:

NOTES: Tested with receiving GPS antenna

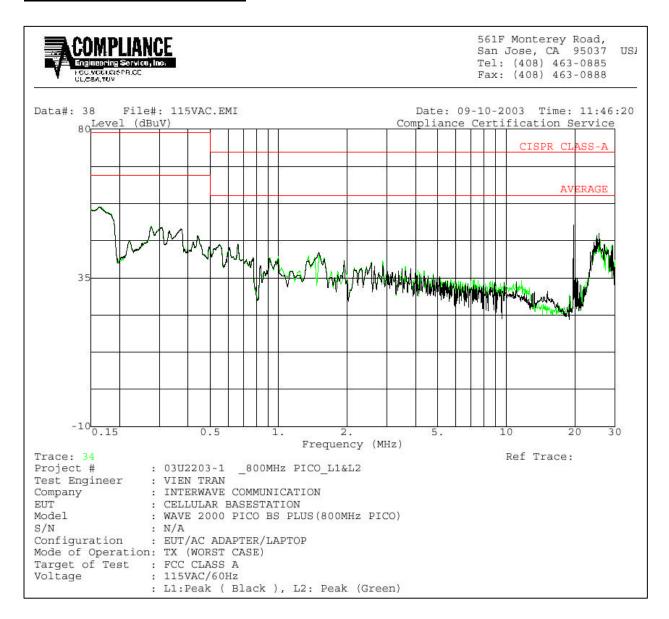
rear view:


NOTES: Tested with receiving GPS antenna

8.8. POWERLINE CONDUCTED EMISSION

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
150 KHz to 30 MHz	Peak CISPR Quasi Peak	⊠ 9 KHz	⊠ 9 KHz


TEST SETUP

TEST PROCEDURE

- 1. The EUT was placed on a wooden table 40 cm from a vertical ground plane and approximately 80 cm above the horizontal ground plane on the floor. The EUT was set to transmit in a continuous mode.
- 2. Line conducted data was recorded for both NEUTRAL and HOT lines.

MEASUREMENT L1 & L2 RESULTS

Page 41 of 45


Freq.		Reading		Closs	Limit	EN_A	Marg	gin	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2
0.16	56.42			0.00	79.00	66.00	-22.58	-9.58	L1
19.84	51.68			0.00	73.00	60.00	-21.32	-8.32	L1
24.60	48.52			0.00	73.00	60.00	-24.48	-11.48	L1
0.16	56.30			0.00	79.00	66.00	-22.70	-9.70	L2
19.84	52.22			0.00	73.00	60.00	-20.78	-7.78	L2
24.60	49.00			0.00	73.00	60.00	-24.00	-11.00	L2
19.84 24.60	52.22			0.00	73.00	60.00	-20.78	-7.78	

LINE CONDUCTION - FRONT

Page 43 of 45

LINE CONDUCTION - BACK

Page 44 of 45

9. APENDIX

- 9.1. EXTERNAL & INTERNAL PHOTOS
- 9.2. SCHEMATICS
- 9.3. BLOCK DIAGRAM
- 9.4. USER MANUAL

END OF REPORT

Page 45 of 45