

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

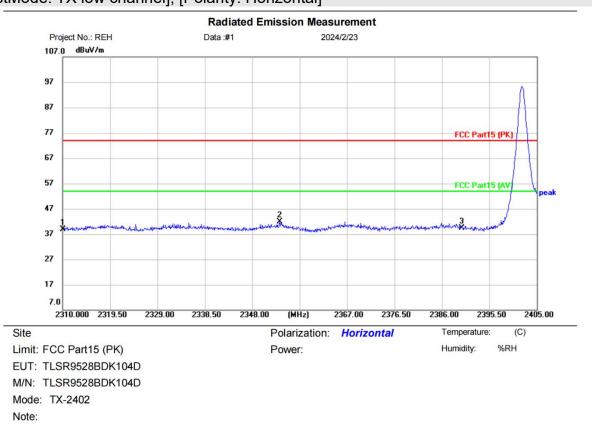
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

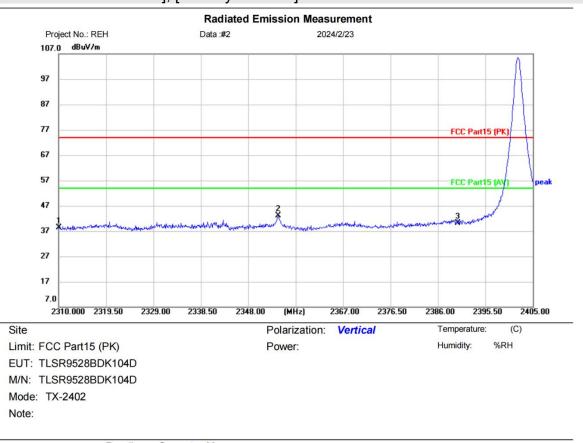
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

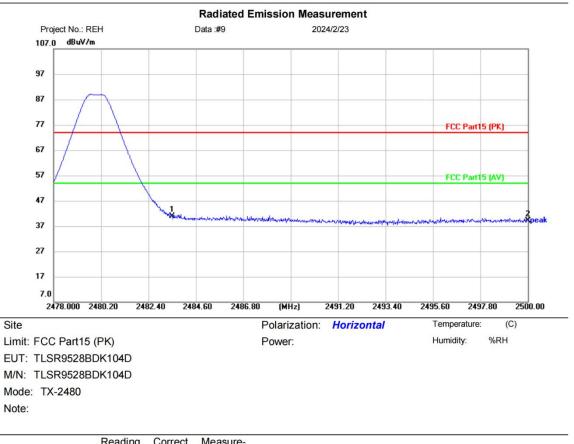
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

14.4 TEST DATA


Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case. [TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	41.82	-2.89	38.93	74.00	-35.07	peak	
2	*	2353.510	44.69	-2.78	41.91	74.00	-32.09	peak	
3		2390.000	41.99	-2.70	39.29	74.00	-34.71	peak	

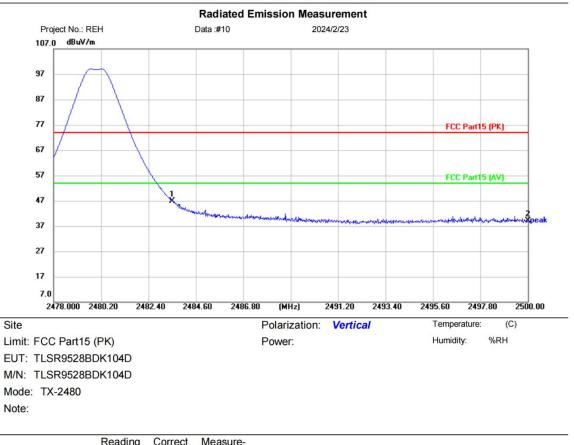
*:Maximum	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				



[TestMode: TX low channel]; [Polarity: Vertical]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	41.24	-2.89	38.35	74.00	-35.65	peak	
2	*	2353.985	45.80	-2.78	43.02	74.00	-30.98	peak	
3		2390.000	42.95	-2.70	40.25	74.00	-33.75	peak	

*:Maximum	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
est Result:	Pas	s				



[TestMode: TX high channel]; [Polarity: Horizontal]

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	43.85	-2.91	40.94	74.00	-33.06	peak	
2		2500.000	42.15	-3.00	39.15	74.00	-34.85	peak	

*:Maximum	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				

[TestMode: TX high channel]; [Polarity: Vertical]

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	49.85	-2.91	46.94	74.00	-27.06	peak	
2		2500.000	42.08	-3.00	39.08	74.00	-34.92	peak	

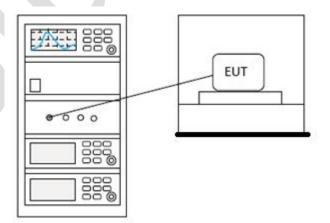
*:Maximum o	lata	x:Over limit	l:over margin			Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				

Report No.: BLA-EMC-202402-A1302 Page 37 of 73

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com


15 CONDUCTED SPURIOUS EMISSIONS

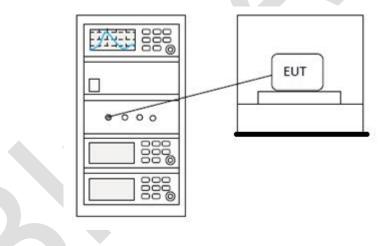
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25°C				
Humidity	60%				

15.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA


16 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

16.1 LIMITS

Limit: ≤ 8 dBm in any 3 kHz band during any time interval of continuous transmission

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

NU


17 CONDUCTED PEAK OUTPUT POWER

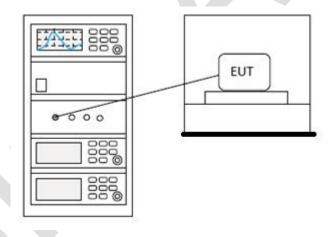
Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.5					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25 ℃					
Humidity	60%					

17.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for \geq 50 hopping channels
902-928	0.25 for $25 \le$ hopping channels < 50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725 5950	1 for frequency hopping systems and digital
5725-5850	modulation

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA


18 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

18.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

19 ANTENNA REQUIREMENT

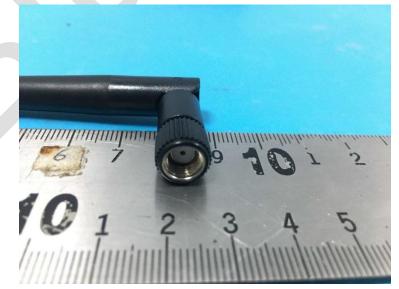
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

19.1 CONCLUSION

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:


(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Evaluation Information:

Product uses uniquely coupled antenna with intentional radiator, detachable non-standard jack antenna, it is reverse polarity, connector is RP-SMA, female screw. full the requirement of this section.

EUT Antenna:

The best case gain of the antenna is 3dBi.

20 APPENDIX1

Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	4.714	30	Pass
NVNT	BLE 1M	2442	Ant1	4.099	30	Pass
NVNT	BLE 1M	2480	Ant1	4.671	30	Pass
NVNT	BLE 2M	2402	Ant1	4.72	30	Pass
NVNT	BLE 2M	2442	Ant1	3.889	30	Pass
NVNT	BLE 2M	2480	Ant1	4.43	30	Pass

Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1



Power NVNT BLE 1M 2480MHz Ant1

Power NVNT BLE 2M 2402MHz Ant1

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1

RT	RF 50 Ω AC	SENSE:INT	ALIGNAUTO	09:15:08 AM Mar 01, 2024
enter F	req 2.480000000 GH		Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M MMMMM DET P N N N N N
dB/div	Ref Offset 2.58 dB Ref 20.00 dBm		N	lkr1 2.480 451 GHz 4.430 dBm
0.0			1	
.00				
i.o				
0.0				
0.0				
0.0				
	480000 GHz 2.0 MHz	#VBW 6.0 MHz	Swee	Span 10.00 MHz p 1.333 ms (10001 pts)
G			STATUS	

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.663	0.5	Pass
NVNT	BLE 1M	2442	Antl	0.663	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.698	0.5	Pass
NVNT	BLE 2M	2402	Antl	1.35	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.378	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.377	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

gilent Spectrum Analyzer - Occupied E	3W			
R T RF 50 Ω AC Center Freq 2.442000000) GHz #IFGain:Low	SENSE:INT Center Freq: 2.4420000 Trig: Free Run #Atten: 30 dB	ALIGN AUTO 000 GHz Avg Hold: 100/100	09:04:03 AM Mar 01, 2024 Radio Std: None Radio Device: BTS
Ref Offset 2.53 d 0 dB/div Ref 22.53 dBr				Mkr3 2.44232 GHz -2.5033 dBm
og				
12.5	$\sim 20^{1}$		▲3	
2.53	Inde		- man -	
.47	- And - Contraction - Contract			mm.
7.5				m
27.5 mmmmmmm	K			margan more and a second secon
7.5				
7.5	0.			2
57.5				
57.5				8
enter 2.442 GHz Res BW 100 kHz		#VBW 300 ki	H7	Span 2 MHz Sweep 1.333 ms
		#10H 000K		0400p 1.000 m3
Occupied Bandwidt	th	Total Power	10.1 dBm	
1.	0279 MHz			
Transmit Freq Error	-12.012 kHz	OBW Power	99.00 %	
x dB Bandwidth	663.0 kHz	x dB	-6.00 dB	
GG			STATUS	

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

R T RF			SENSE:INT	ALIGN AUTO		09:12:39 dio Std: N	AM Mar 01, 2024
enter Freq	2.402000000	GHz #IFGain:Low	Center Freq: 2.40 Trig: Free Run #Atten: 30 dB	2000000 GH2 Avg Hold: 100/10	0	dio Sta: Ni dio Device	
	Ref Offset 2.51 dB Ref 22.51 dBm				Mkr3		666 GHz 352 dBm
og 2.5							
51		\wedge^2			3		
49	normal	man har and har and		and the second state	many		
5	porman					www	A
5 Martin			· · · · · ·				marma
5							nv.
5							
5							
nter 2.402							pan 3 MHz
es BW 100			#VBW 3	00 kHz			1.333 m
Occupied	d Bandwidth	1	Total Power	11.3 dBm			
		0361 MHz					
Transmit F	req Error	-8.278 kHz	OBW Power	99.00 %			
dB Band	lwidth	1.350 MHz	x dB	-6.00 dB			
				STATUS			
				STATUS			

-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

Agilent Spectrum Analyzer - Occupied B	W				
Center Freq 2.480000000	GHz #IFGain:Low	SENSE:INT Center Freq: 2.4800000 Trig: Free Run #Atten: 30 dB	ALIGN AUTO DOO GHz Avg Hold: 100/100		09:15:20 AM Mar 01, 2024 dio Std: None dio Device: BTS
Ref Offset 2.58 df 0 dB/div Ref 22.58 dBn			1	Mkr3	2.480685 GHz -3.1853 dBm
.og 12.6		01			
.58	02	- A Man war war war war war	3		
42	andret		annon	mon	· · · · · · · · · · · · · · · · · · ·
7.4 award and a					month
7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4					Mar Na
7.4	2				2 2
7,4					
7.4	0				0 0
enter 2.48 GHz Res BW 100 kHz	L.	#VBW 300 k	Hz		Span 3 MH: Sweep 1.333 ms
Occupied Bandwidt	h	Total Power	11.1 dBm		
2.	0094 MHz				
Transmit Freq Error	-3.829 kHz	OBW Power	99.00 %		
x dB Bandwidth	1.377 MHz	x dB	-6.00 dB		
SG			STATUS		

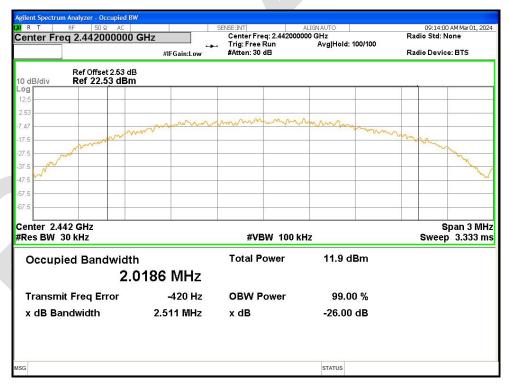
Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0334
NVNT	BLE 1M	2442	Ant1	1.0173
NVNT	BLE 1M	2480	Ant1	1.0223
NVNT	BLE 2M	2402	Ant1	2.0259
NVNT	BLE 2M	2442	Ant1	2.0186
NVNT	BLE 2M	2480	Ant1	2.0200

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1



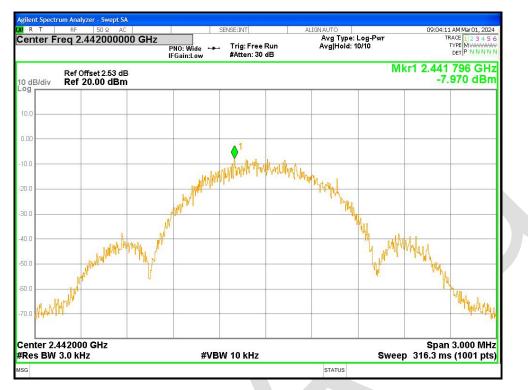
OBW NVNT BLE 2M 2402MHz Ant1

OBW NVNT BLE 2M 2442MHz Ant1

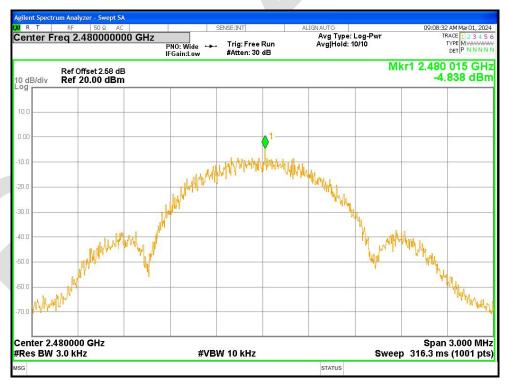
OBW NVNT BLE 2M 2480MHz Ant1


Agilent Spectrum Analyzer - Occupied B	w			
Center Freq 2.480000000	GHz #IFGain:Low	SENSE:INT Center Freq: 2.480000 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100	09:15:14 AM Mar 01, 2024 Radio Std: None Radio Device: BTS
Ref Offset 2.58 dl				
og	-			
58				
42	manna	monum	mannen	
.4 mm				mannen
4	<u> </u>	<u> </u>		www.
.4				M.
.4 📈	0			
4				
enter 2.48 GHz Res BW 30 kHz		#VBW 100 k	Hz	Span 3 MHz Sweep 3.333 ms
Occupied Bandwidt	h	Total Power	12.4 dBm	
2.	0200 MHz			
Transmit Freq Error	-13.627 kHz	OBW Power	99.00 %	
x dB Bandwidth	2.597 MHz	x dB	-26.00 dB	
3			STATUS	

	-	-				
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-7.008	8	Pass
NVNT	BLE 1M	2442	Ant1	-7.97	8	Pass
NVNT	BLE 1M	2480	Ant1	-4.838	8	Pass
NVNT	BLE 2M	2402	Ant1	-9.086	8	Pass
NVNT	BLE 2M	2442	Ant1	-10.195	8	Pass
NVNT	BLE 2M	2480	Ant1	-9.696	8	Pass


Maximum Power Spectral Density Level

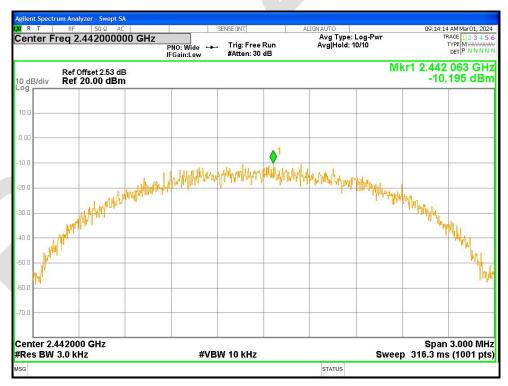
PSD NVNT BLE 1M 2402MHz Ant1



PSD NVNT BLE 1M 2442MHz Ant1



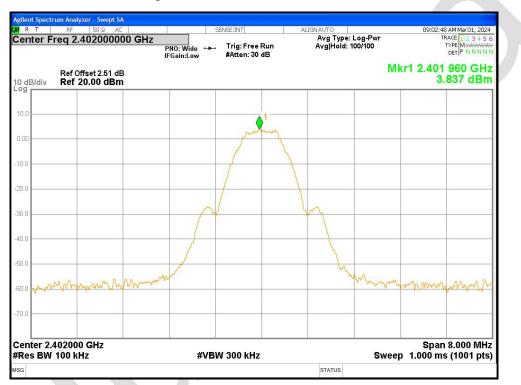
PSD NVNT BLE 1M 2480MHz Ant1



PSD NVNT BLE 2M 2402MHz Ant1

PSD NVNT BLE 2M 2442MHz Ant1

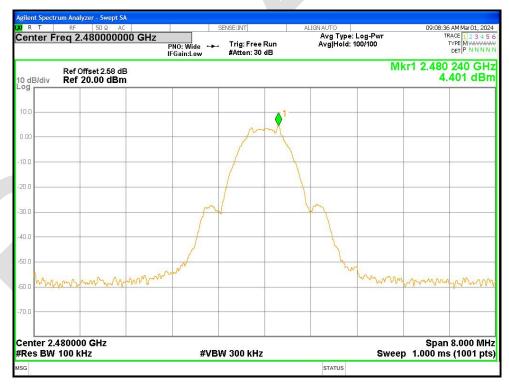
PSD NVNT BLE 2M 2480MHz Ant1


T RF	50 Ω AC	SENS	SE:INT	ALIGN AUTO		09:15:27 AM Mar	r 01, 2024
ter Freq 2.48	30000000 GHz	PNO: Wide ↔→ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: L Avg Hold: 10	og-Pwr /10	TRACE TYPE DET P	23456
	et 2.58 dB .00 dBm				Mkr	1 2.480 162 -9.696	
				. 1			
		المحالية المراجع	when the willer will a	hallen lite a			
	. walker Man Mark	An William Manual	Alma Avel 14. A.L. mA	utura and a share and the	Mund Jon h JA		
	WAY MANY PARTY				ALL AND A READER	Mary Address	
. Maker Mar						white white	h _a
1 Car							W
ter 2.480000 (s BW 3.0 kHz	GHz	#VBW	10 kHz		Sween	Span 3.00 316.3 ms (100	

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-58.96	-20	Pass
NVNT	BLE 1M	2480	Ant1	-60.12	-20	Pass
NVNT	BLE 2M	2402	Ant1	-58.55	-20	Pass
NVNT	BLE 2M	2480	Ant1	-56.13	-20	Pass

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref



Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

		zer - Swept SA		12				
enter F	RF req 2.3	50 Ω AC		T : Free Run	ALIGNAUTO Avg Type: Avg Hold: 1	Log-Pwr 00/100	TF	AM Mar 01, 2024 RACE 1 2 3 4 5 6
		P IFe		en: 30 dB	in ginora. I	001100		DET P NNNN
0 dB/div		fset 2.51 dB 20.00 dBm				ſ		02 3 GHz 134 dBm
.og								.1
10.0								•
).00								1
0.0	~							-16.16 dBm
0.0								
0.0								
10.0								2
0.0				1.1	(⁴			
0.0 2000-1410	Minunan	our Man was have and	an the way to an a series	marshin	www.wandapanahaka	ight way whip was	hour when when when when when when when when	andret lesy
0.0		Q					-	~
		-					0 4 0	10000 011-
tart 2.30 Res BW			#VBW 300) kHz		Sweep		40600 GHz (1001 pts)
KR MODE T		×	Y	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	^
1 N 2 N	f	2.402 3 GHz 2.400 0 GHz	4.134 dBm -54.656 dBm					
3 N 1	f	2.390 0 GHz	-57.920 dBm					
4 N 5	f	2.372 9 GHz	-55.129 dBm					
6								
8								
4 N 1 5 6 7 8 9 0								
1								~
								>
G					STATUS			

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission