SEMICONDUCTOR

Telink TLSR8258DK48 EVK 8258 **Specification**

PS-18122800-E3

Ver 1.2.0

2019/3/1

Keyword:

Features; Pin layout; Mechanical dimensions;

Electrical specifications; Reference design;

Pin connection

Brief:

This document is a specification for Telink 8258 EVK TLSR8258DK48.

Published by Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor All Right Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make improvements without further notice to this document or any products herein. This document may contain technical inaccuracies or typographical errors. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein.

Copyright (c) 2019 Telink Semiconductor (Shanghai) Ltd, Co.

Information:

For further information on the technology, product and business term, please contact Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

PS-18121800-E3 1 Ver1.2.0

Revision History

Version	Major Changes	Date	Author
1.0.0	Initial release	2019/1	HZF, LX, Cynthia
1.1.0	Updated the sections below: 1.1.0 3.3 RF performance, 3.4 Audio performance		HZF, LX, Cynthia
1.2.0	Updated the sections below:		HZF, LX, Cynthia

PS-18121800-E3 2 Ver1.2.0

Table of contents

1	Pro	duct	t Introduction	5
	1.1	Ger	neral description	5
	1.2	Key	features	6
	1.3	Me	chanical and PCB fabrication Specifications	7
	1.4	Pin	layout	9
	1.4	.1	GPIO interface	9
	1.4	.2	Arduino interface	.11
2	Pin	Con	nection Guide	.12
	2.1	Sup	pply power	.12
	2.2	Dov	wnload firmware	.13
	2.3	Tes	t RF signal	.14
	2.4	PW	M output function	.15
	2.5	Auc	dio function	.16
3	Elec	ctric	al Specifications	.17
	3.1	Rec	commended operating condition	.17
	3.2	DC	characteristics	.17
	3.2	.1	Power consumption	.17
	3.2	.2	Tx current vs. Power	.18
	3.2	.3	Tx Current/Power vs. VDD	.20
	3.3	RF _I	performance	.21
	3.3	.1	Receiver sensitivity	.21
	3.3	.2	PHY performance	.22
	3.3	.3	Radiation performance	.23
	3.4	Aud	dio performance	.25
4	Ref	erer	nce Design	.26
	4.1	Sch	ematic	.26
	4.2	PCE	3 layout	.28
	4.3	Bill	of Materials	.29
	4.4	32k	:Hz XTAL	.32

Table of figures

Figure 1	1 Block diagram	6
Figure 2	2 TLSR8258DK48 photo	7
Figure 3	3 Mechanical dimensions	8
Figure 4	4 Pin layout	9
Figure 5	5 Connection chart to use Arduino interface	11
Figure 6	6 Connection chart to supply power	12
Figure 7	7 Connection chart to download firmware	13
Figure 8	3 Connection chart to test RF signal	14
Figure 9	Onnection chart to use PWM function	15
Figure 1	10 Connection chart to use audio function	16
Figure 1	11 Schematic	27
Figure 1	12 PCB layout	28
Figure 1	13 Connection chart to use 32kHz XTAL	32
Table of t	ables	
Table 1	Pin definition	9
Table 2	Recommended operation condition	17
Table 3	Current in various modes	17
Table 4	Tx Current vs. Power @ 3.3V	18
Table 5	Tx Current vs. Power @ 1.8V	20
Table 6	Tx current and output power at various voltage	20
Table 7	BLE Receiver Sensitivity	21
Table 8	IEEE802.15.4 Receiver Sensitivity	22
Table 9	EVM	22
Table 1	0 Frequency Deviation (Drift)	23

Table 11Test result23Table 12Analog line-in performance25Table 13SDM performance25Table 14BOM table29

1 Product Introduction

1.1 General description

The TLSR8258DK48, which is based on Telink TLSR8258F512ET48 chip, provides a Bluetooth LE wireless system.

The TLSR8258DK48 integrates a power-balanced 32-bit MCU, BLE Radio, 64kB SRAM, 512kB internal Flash, 14bit ADC with PGA, analog and digital microphone input, stereo audio output, 6-channel PWM, one quadrature decoder (QDEC), abundant and flexible GPIO interfaces, and nearly all the peripherals needed for IoT (Internet of Things) and HID (Human Interface Devices) application development (e.g. Bluetooth Low Energy).

The TLSR8258DK48 supports standards and industrial alliance specifications including Bluetooth Low Energy (up to Bluetooth 5), BLE Mesh, 6LoWPAN, Thread, RF4CE, HomeKit, ANT and 2.4GHz proprietary standard.

Tel ink TLSR8258DK48 board can be used for SDK development. Firmware can be directly downloaded to the TLSR8258DK48 board to be up and running.

PS-18121800-E3 5 Ver1.2.0

POWER MANAGEMENT

CLOCK

Telink 8258 EVK TLSR8258DK48 Specification

MEMORY

1.2 Key features

- ♦ Bluetooth 5 Compliant, 1Mbps, 2Mbps, Long Range 125kbps and 500kbps
- ♦ 64kB on-chip SRAM with up to up to 32kB retention
- ♦ 512kB internal Flash
- ♦ A rich set of I/Os: SPI, I2C, USB, Single wire, up to 16 GPIOs, UART with hardware flow control and 7816 protocol support, DMIC (Digital Mic), AMIC (Analog Mic), I2S, Stereo Audio output
- ♦ 6-channel PWM (Pulse Width Modulation) output
- ♦ 10-channel (only GPIO input), 14-bit SAR ADC with 10.5-bit ENOB
- ♦ 4-channel PGA, differential input

- ♦ Rx sensitivity: -96dBm@BLE 1Mbps, -100dBm@ 250kbps, -93dBm @ BLE 2Mbps mode, -98dBm @ BLE 500kbps mode, -100dBm @ BLE 125kbps mode
- ♦ RSSI monitoring with +/-1dB resolution
- ♦ Power supply: 1.8V~3.6V (Battery) or 4.5V~5.5V (USB)
- ♦ Whole module RX mode: 5.7mA

1.3 Mechanical and PCB fabrication Specifications

♦ PCB dimension: 68.6mm*63.3mm*1.6mm

♦ PCB layer: 2 layers

♦ Dielectric constant: 4.2

♦ Impedance: 50Ω

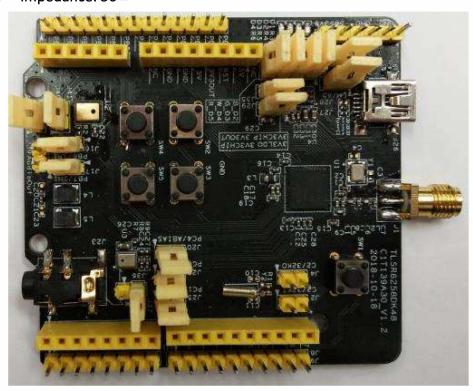


Figure 2 TLSR8258DK48 photo

PS-18121800-E3 7 Ver1.2.0

1.4 Pin layout

1.4.1 GPIO interface

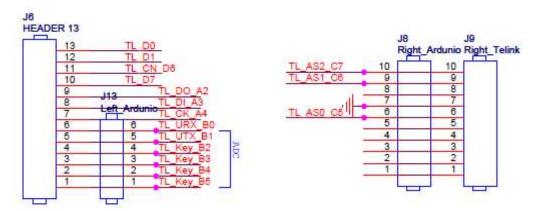


Figure 4 Pin layout

Pin definition is shown as the Table 1:

Table 1 Pin definition

Pin No	Module Pin Name	Chip Pin Name	Description
		J6	
			SDM negative output 0 / PWM5
1	TI Kan DE	SDM_N0/PWM5/lc_comp_ain<5>/	output / Low power comparator
1	TL_Key_B5	sar_aio<5>/PB<5>	input / SAR ADC input / GPIO
			PB[5]
			SDM positive output 0 / PWM4
2	TI Kov D4	SDM_P0/PWM4/lc_comp_ain<4>/	output / Low power comparator
2	TL_Key_B4	sar_aio<4>/PB<4>	input / SAR ADC input / GPIO
			PB[4]
		DIAMAG AL/LIA DT. DTG/TV. CVC2DA /	PWM0 inverting output /
2	TI Van D2	PWM0_N/UART_RTS/TX_CYC2PA/ lc_comp_ain<3>/sar_aio<3>/	UART_RTS / Control external PA /
3	TL_Key_B3	PB<3>	Low power comparator input /
		15.32	SAR ADC input / GPIO PB[3]
		DIMAE (HADT CTC/DV CVC) NA /	PWM5 output / UART_CTS /
4	TI Kan D2	PWM5/UART_CTS/RX_CYC2LNA/	Control external LNA / Low power
4	TL_Key_B2	lc_comp_ain<2>/sar_aio<2>/ PB<2>	comparator input / SAR ADC input
		15.22	/ GPIO PB[2]
			PWM4 output / UART_TX /
5	TI LITY D1	PWM4/UART_TX/ATSEL2/	Antenna select pin 2 / Low power
5	TL_UTX_B1	lc_comp_ain<1>/sar_aio<1>/PB<1>	comparator input / SAR ADC input
			/ GPIO PB[1]
	TI LIDY DO	PWM3/UART_RX/ATSEL1/	PWM3 output / UART_RX /
6	TL_URX_B0	sar_aio<0>/PB<0>	Antenna select pin 1 / SAR ADC

PS-18121800-E3 9 Ver1.2.0

Telink 8258 EVK TLSR8258DK48 Specification

Pin No	Module Pin Name	Chip Pin Name	Description
			input / GPIO PB[0]
-	TI CV AA	CK/HADT DTS/DWM42/DA <45	SPI clock (I2C_SCK) / UART_RTS /
7	TL_CK_A4	CK/UART_RTS/PWM2/PA<4>	PWM2 output / GPIO PA[4]
			SPI data input (I2C_SDA) /
8	TL_DI_A3	DI/UART_CTS/PWM1/PA<3>	UART_CTS / PWM1 output / GPIO
			PA[3]
9	TL_DO_A2	DO/UART_TX/PWM0/PA<2>	SPI data output / UART_TX /
9	TL_DO_A2	DOYORKI_TX/T WWO/TA\2>	PWM0 output / GPIO PA[2]
10	TL_D7	SPI_CK/I2S_BCK/7816_TRX	SPI clock (I2C_SCK) / I2S bit clock
10	16_07	/PD<7>	/ UART 7816 TRX / GPIO PD[7]
			SPI chip select (Active low) /
11	11 TL_CN_D6 CN/UART_RX/ATSEL0/PD<6>	CN/UART_RX/ATSELO/PD<6>	UART_RX / Antenna select pin 0 /
			GPIO PD[6]
12	TL_D1	TX_CYC2PA/UART_CTS/PD<1>	Control external PA / UART_CTS /
12	15_01	TA_CTCZI A/ GART_CT3/T D \ 12	GPIO PD[1]
13	TL_D0	RX_CYC2LNA/7816_TRX/	Control external LNA / UART 7816
	12_00	PD<0>	TRX / GPIO PD[0]
		19	
1	NC		Not connect
2	NC		Not connect
3	NC		Not connect
4	NC		Not connect
5	NC		Not connect
		DMMA2 N/HADT DV/ATCELO/	PWM3 inverting output /
6	TL_AS0_C5	PWM3_N/UART_RX/ATSEL0/ sar_aio<9>/PC<5>	UART_RX / Antenna select pin 0 /
		sai_aio<32/FC<32	SAR ADC input / GPIO PC[5]
7	GND		Ground
8	NC		Not connect
		RX_CYC2LNA/ATSEL1/PWM4_N/	Control external LNA / Antenna
9	TL_AS1_C6	PC<6>	select pin 1 / PWM4 inverting
		. 5.07	output / GPIO PC[6]
		TV CVC2DA /ATSEL2/D\A/A/E N./	Control external PA / Antenna
10	TL_AS2_C7	TX_CYC2PA/ATSEL2/PWM5_N/ PC<7>	select pin 2 / PWM5 inverting
			output / GPIO PC[7]

1.4.2 Arduino interface

Telink TLSR8258DK48 is compatible with Arduino standard interface, which adopts single-column direct-in female headers (J7, J8, J11, J13) with pin distance of 2.54mm. The TLSR8258DK48 can be used as "Host control board" or "Arduino shield daughter board".

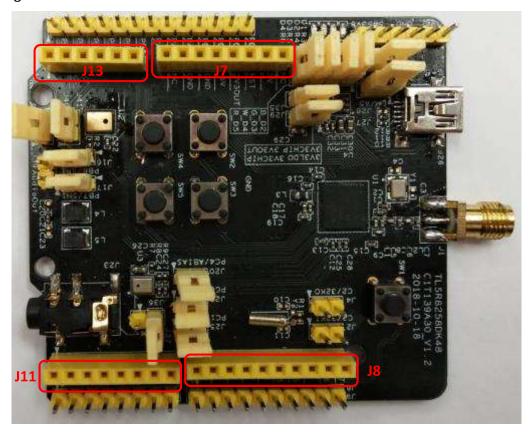


Figure 5 Connection chart to use Arduino interface

PS-18121800-E3 11 Ver1.2.0

2 Pin Connection Guide

2.1 Supply power

There are two methods supported to supply power for the TLSR8258DK48.

1) Supply power via battery:

Connect PIN3 and PIN6 of J18 with GND and 3.3V of power, respectively.

Note: There is no need to connect any header with jumper cap.

2) Supply power via USB interface:

Make sure one jumper cap is connected on J29 of TLSR8258DK48.

Connect the miniUSB interface of the TLSR8258DK48 with PC USB.

Figure 6 Connection chart to supply power

PS-18121800-E3 12 Ver1.2.0

2.2 Download firmware

To download firmware into TLSR8258DK48, first make sure the TLSR8258DK48 is supplied with power normally (please refer to section **2.1**).

Then connect J18 PIN5 (SWS) of the TLSR8258DK48 with SWM of a burning EVK (TLSR8266BR56). Meanwhile, connect the miniUSB interface of the burning EVK with PC USB.

Figure 7 Connection chart to download firmware

PS-18121800-E3 13 Ver1.2.0

2.3 Test RF signal

To test RF signal of TLSR8258DK48, first make sure the TLSR8258DK48 is supplied with power normally (please refer to section **2.1**).

Then remove the antenna from J1 of the TLSR8258DK48, and directly connect the J1 with a spectrum analyzer.

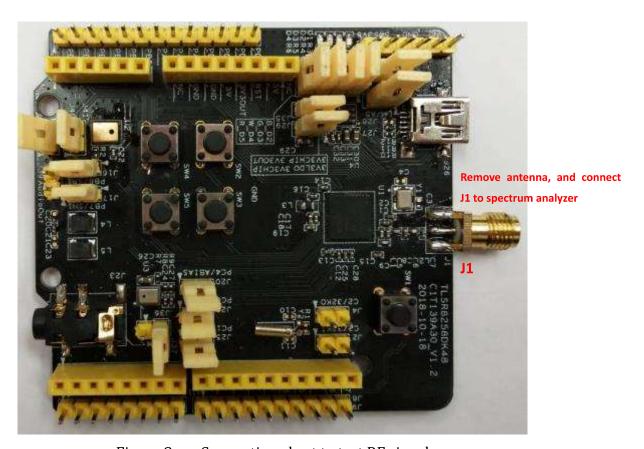


Figure 8 Connection chart to test RF signal

PS-18121800-E3 14 Ver1.2.0

2.4 PWM output function

To control LEDs D1~D4 of TLSR8258DK48 via PWM output, first make sure the TLSR8258DK48 is supplied with power normally (please refer to section **2.1**).

Then make sure four jumper caps are connected on J38 of the TLSR8258DK48.

Figure 9 Connection chart to use PWM function

PS-18121800-E3 15 Ver1.2.0

2.5 Audio function

To use audio function of TLSR8258DK48, first make sure the TLSR8258DK48 is supplied with power normally (please refer to section **2.1**).

- 1) To use DMIC input, make sure two jumper caps are connected on J40 and J41 of the TLSR8258DK48.
- 2) To use AMIC input, make sure four jumper caps are connected on J20, J22, J25 and J36 of the TLSR8258DK48.
- 3) To use I2S input, make sure four jumper caps are connected on J20, J22, J25 and J37 of the TLSR8258DK48.
- 4) To use USB Host input, make sure two jumper caps are connected on J27 and J28 of the TLSR8258DK48.
- 5) To use SDM output, make sure two jumper caps are connected on J16 and J17 of the TLSR8258DK48.

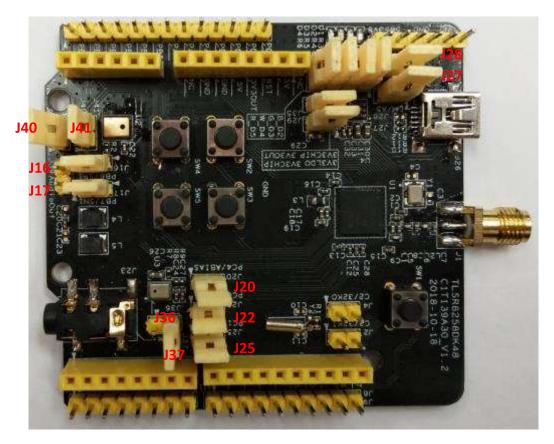


Figure 10 Connection chart to use audio function

PS-18121800-E3 16 Ver1.2.0

3 Electrical Specifications

3.1 Recommended operating condition

Table 2 Recommended operation condition

Item	Sym.	Min	Тур.	Max	Unit	Condition
	VDD	1.8	3.3	3 3.6	V	battery as
Power supply voltage	VDD					power supply
Power-supply voltage	VDUIC	4.5			_	USB as power
	VBUS	4.5	5.0	5.5	V	supply
Operating Temperature Range	T_{Opr}	-40		85	°C	

3.2 DC characteristics

3.2.1 Power consumption

Test equipment: Multimeter - FLUKE17B, Spectrum analyzer - N9020B

DUT FW: EMI binary file

Temperature: room temperature (T=25°C)

Power supply: 3.3V battery (For pin connection to supply power, see section 2.1).

Table 3 Current in various modes

Item	Sym.	Min	Тур.	Max	Unit	Condition
			- 4.9		mA	Continuous Tx transmission,
Tx current		_		_		0dBm output power
ix current	I _{Tx}		10 5		m A	Continuous Tx transmission,
			19.5 mA		IIIA	+11.8dBm Tx power
Rx current	I_{Rx}	-	5.7	-	mA	Continuous Rx reception
Suspend current			31.9		uA	All jumper caps are removed.
Deep sleep current						
without SRAM			0.8		uA	All jumper caps are removed.
retention						
Deep sleep with 8kB			1 5			All important and an area and a
SRAM retention			1.5		uA	All jumper caps are removed.

PS-18121800-E3 17 Ver1.2.0

3.2.2 Tx current vs. Power

Test equipment: Multimeter - FLUKE17B, Spectrum analyzer - N9020B

DUT FW: EMI binary file

Temperature: room temperature (T=25°C)

Power supply (For pin connection to supply power, see section 2.1):

1) Case1: 3.3V battery

2) Case2: 1.8V battery

3.2.3 Tx Current/Power vs. VDD

Test equipment: Multimeter - FLUKE17B, Spectrum analyzer - N9020B

DUT FW: EMI binary file

Temperature: room temperature (T=25℃)

Power supply: DC power - 2230-30-1 (For pin connection to supply power, see

section 2.1)

PS-18121800-E3 20 Ver1.2.0

3.3 RF performance

3.3.1 Receiver sensitivity

Test equipment: BLE-CMW500

DUTFW: BQB binary file

Table 7 BLE Receiver Sensitivity*1

BLE PHY	Frequency (MHz)	Packet Type	Packet Length	RX Sensitivity (dBm)
	2402			-96.1
1Mbps	2440			-96.1
	2480			-96.1
	2402			-92.9
2Mbps	2440	PRBS9		-93.0
	2480		37	-93.0
LE Coded	2402			-98.1
S=2				-98.0
(500kbps)	2480			-98.0
LE Coded	2402			-100.3
S=8	2440			-100.2
(125kbps)	2480			-100.2

¹ For actual sensitivity level of various BLE modes, please refer to Bluetooth 5 specification: Packet number=10000, PER≤30.8%.

PS-18121800-E3 21 Ver1.2.0

 Table 10
 Frequency Deviation (Drift)

Item	Frequency (MHz)	∆ f1avg (kHz)	∆ f2avg (kHz)	∆ f2/ ∆ f1
Frequency	2402	250.5	230.8	0.921
Deviation @ BLE	2440	249.5	232.3	0.931
1Mbps	2480	249.8	227.5	0.911
Frequency	2402	498	450	0.904
Deviation @ BLE	2440	500	446	0.892
2Mbps	2480	497	442	0.889

3.3.3 Radiation performance

DUT: C1T139A30_V1.2_20181019

DUT FW: EMI binary file Test condition: 3.3V, 25℃ Test equipment: FSQ26

Match network: See Table 14 BOM table

Table 11 Test result

No.		Test Result							
	FCC (DUT FW: EMI binary file)								
		ж — т.							
	7 =	8.4							
				5:	ge				
		Tx Power Spec	ctral Density						
1	RF Channel	2.402GHz	2.440GHz	2.480GHz	Pass				
1				III	r d33				
	dBm@3kHz	-4.46	-4.73	-4.63					
	, T	x Minimum 60	B Bandwidth		Pass				
2	RF Channel	2.402GHz	2.440GHz	2.480GHz					
	KHz	>500	>500	>500					
		Tx Band	Limit						
2	Fraguency	30MHz ~	2483.5MHz		Pass				
3	Frequency	2400MHz	~ 25GHz	-: - -	PdSS				
	dB@100kHz	-50	-50	-					
	TX N	TX Mode Harmonic (Radiated), Peak							
4	Frequency	4900MHz	7350MHz	9800MHz	Pass				
	dBm@1MHz	-53	-42	-46.5	Ī				

Telink 8258 EVK TLSR8258DK48 Specification

	Telink 8258 EVK TLSR8258DK48 Specification					
No.		Test It	ems		Test Result	
	TX Mode H	armonic (Radi	ated) 1-25GHz,	Average		
5	Frequency	4900MHz	7350MHz	9800MHz	Pass	
	dBm@1MHz	-61	-43.7	-58	1	
	Tx Radi	ated emission	30-1000MHz, I	Peak		
6	Frequency	475MHz	-]	_	Pass	
	dBm@100kHz	-51.5	7.	: <u>-</u> :	1	
	Tx Ra	diated emissio	n >1GHz, Avera	ige		
7	Frequency	2.1GHz	7.35GHz	-	Pass	
	dBm@100kHz	-47.6	-42		1	
	RX Mode	Spurious Emis	sion (25MHz ~ :	25GHz)		
8	Frequency	432MHz	-		Pass	
	dBm@100kHz	-55.2	*	(**	1	
	SRRC Te	st Items (DUT	FW: EMI binar	y file)		
		Transmitte	er power			
		1		4. 4.		
				19.4	İ	
ř.	T	ransmitter Fre	quency Range			
1	RF Channel	ChL	ChM	ChH	Pass	
	GHz	2.402	2.44	2.48	1	
	Car	rier frequency	offset (BLE 1M)	İ	
2	RF Channel	2.402GHz	2.440GHz	2.480GHz	Pass	
	kHz	16	16	16]	
	0	ccupied Bandv	vidth (BLE 1M)			
3	RF Channel	2.402GHz	2.440GHz	2.480GHz	Pass	
	MHz	770	770	770	1	
		Emission S	pectrum		İ	
	_	30MHz ~	48.5MHz ~	76MHz ~	1	
	Frequency	1GHz	72.5Mhz	108Mhz		
	dBm@100kHz	-55	-70	-71	1	
_	_	167MHz ~	470MHz ~	606MHz ~	1	
4	Frequency	223MHz	566MHz	798MHz	Pass	
	dBm@100kHz	-80	-80	-80		
	F	1GHz ~	10MHz ~		1	
	Frequency	12.75GHz	30MHz	-		
	dBm@100kHz	-42	-70	4, 1 		

PS-18121800-E3 24 Ver1.2.0

3.4 Audio performance

Equipment to test audio precision: Audio analyzer, Model AP525

DUT FW: Audio binary file

Table 12 Analog line-in performance

Input Signal	400mV rms
Level	-1.271dBFS
SNR (Signal-Noise Ratio)	64.356dB
THD (Total Harmonic Distortion)	0.0577%

Table 13 SDM performance

Input Signal	OdBFSB
Level	+7.198dbV
SNR (Signal-Noise Ratio)	59.234dB
THD (Total Harmonic Distortion)	1.337%

PS-18121800-E3 25 Ver1.2.0

4.4 32kHz XTAL

The TLSR8258DK48 supports 32kHz external crystal oscillator. To use 32kHz XTAL (corresponding to PC2*3, PC3), please make sure two jumper caps are connected on J2 and J4 of the TLSR8258DK48.

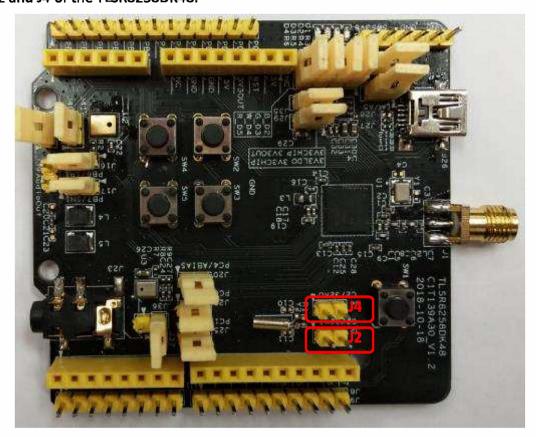
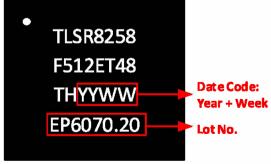



Figure 13 Connection chart to use 32kHz XTAL

For 8258 chips with lot No. of EP6070.20 (VID=0x03, Date code≥1844), PC2 function bug has already been fixed.

PS-18121800-E3 32 Ver1.2.0

 $^{^3}$ For 8258 chips with lot No. of EP5682.20 (VID=0x01, 1827 \leq Data code < 1844), since PC2 is pulled down by an internal diode, all of its functions cannot act normally.

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:

- 1) this device may not cause harmful interference, and
- 2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment.