

FCC Report

Product Name : TLSR8258DG48D

Trade mark : N/A

Mode No. : TLSR8258DG48D

FCC ID: : OEOTLSR8258DG48D

Report Number : BLA-EMC-201903-A46-01

Date of sample receipt : March 19, 2019

Date of Test: : March 19, 2019–March 23, 2019

Date of Issue : March 28, 2019

Test standard : FCC CFR Title 47 Part 15 Subpart C Section 15.247

Test result : PASS

Prepared for:

Telink Semiconductor (Shanghai) Co., Ltd.
Bldg 3, No.1500, Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai
201203, China

Prepared by:

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.
IOT Test Centre of BlueAsia
No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen,
China

TEL: +86-755-28682673 FAX: +86-755-28682673

Compiled by:

20150n

Approved by:

Review by:

Date: March 28, 2019

Sweet ling

Report No. : BLA-EMC-201903-A46-01 Page 2 of 36

2 Version

Version No.	Date	Description
00	March 28, 2019	Original

Page 3 of 36

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		
		_
4		
5	5 GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
6		
7		
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH	
	7.5 POWER SPECTRAL DENSITY	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	23
	7.7.2 Radiated Emission Method	
8	8 TEST SETUP PHOTO	33
9	9 FUT CONSTRUCTIONAL DETAILS	35

Report No.: BLA-EMC-201903-A46-01 Page 4 of 36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

Measurement Uncertainty

-					
Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB			
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB					
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

Report No.: BLA-EMC-201903-A46-01 Page 5 of 36

5 General Information

5.1 General Description of EUT

TLSR8258DG48D
TLSR8258DG48D
C1T139A3_V2.0A
Engineer sample
1.0
1.0
2402MHz-2480MHz
40
2MHz
GFSK
PCB Antenna
0.0dBi
DC 3.3V

Report No.: BLA-EMC-201903-A46-01 Page 6 of 36

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
	• !		. !	• !	• !		•
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No.: BLA-EMC-201903-A46-01 Page 7 of 36

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer Description		Model	Serial Number
Lenovo	Notebook computer	E470C	PF-10FB5C

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering Bureau of ISED for radio equipment testing with CAB identifier CN0028

5.5 Test Location

All tests were performed at:

All tests were performed at:

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Report No.: BLA-EMC-201903-A46-01 Page 8 of 36

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m SAC	SKET	9m*6 m*6m	966	06-10-2018	06-09-2023	
2	Broadband Antenna	SCHWARZBECK	VULB9168	00836 P:00227	07-14-2018	07-13-2019	
3	Horn Antenna	SCHWARZBECK	9120D	01892 P:00331	07-14-2018	07-13-2019	
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A	
5	Pre-amplifier	SKET	N/A	N/A	07-19-2018	07-18-2019	
6	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2018	05-23-2019	
7	EMI Test Receiver	Rohde & Schwarz	ESR7	101199	03-21-2018	03-20-2019	
8	Controller	SKET	N/A	N/A	N/A	N/A	
9	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2018	05-23-2019	
10	Signal Generator	Agilent	E8257D	MY44320250	05-24-2018	05-23-2019	

Conduc	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	EMI Test Receiver	Rohde & Schwarz	ESPI3	101082	06-10-2018	06-09-2019	
2	LISN	CHASE	MN2050D	1447	12-18-2018	12-17-2019	
3	LISN	Rohde & Schwarz	ENV216	3560.6550.15	07-19-2018	07-18-2019	
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A	
5	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2018	07-18-2019	

Report No. : BLA-EMC-201903-A46-01 Page 9 of 36

RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Spectrum Analyzer	Agilent	N9030A	MY50510123	05-24-2018	05-23-2019
2	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2018	05-23-2019
3	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2018	05-23-2019
4	Signal Generator	Agilent	E8257D	MY44320250	05-24-2018	05-23-2019
5	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO27	05-24-2018	05-23-2019
6	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO28	05-24-2018	05-23-2019
7	DC Power Supply	LODESTAR	LP305DE	N/A	07-19-2018	07-18-2019
8	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2018	07-18-2019

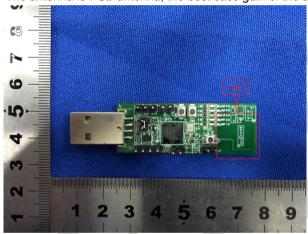
Report No.: BLA-EMC-201903-A46-01 Page 10 of 36

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0.0dBi

Report No.: BLA-EMC-201903-A46-01 Page 11 of 36

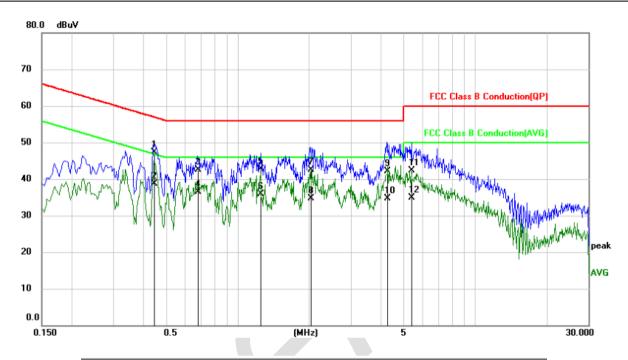
7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Fragues ou range (MUE)	Limit (d	BuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30 * Decreases with the logarithm	60	50		
Test setup:	Reference Plane		7		
	AUX Filter AC power Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement data

Line:

EUT: TLSR8258DG48D Probe: L1


Model: TLSR8258DG48D Power Source: AC120V/60Hz

 Mode:
 TX mode

 Temp./Hum.(%H):
 26°C/60%RH

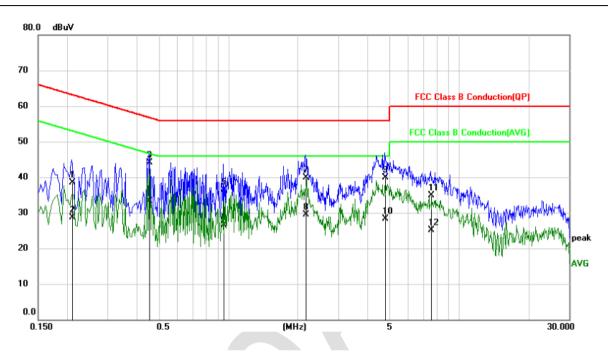
Test by: Eason

Page 12 of 36

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
4			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.4460	37.68	9.59	47.27	56.95	-9.68	QP
	2	*	0.4460	29.04	9.59	38.63	46.95	-8.32	AVG
	3		0.6820	33.01	9.57	42.58	56.00	-13.42	QP
	4		0.6820	26.93	9.57	36.50	46.00	-9.50	AVG
1	5		1.2500	33.10	9.70	42.80	56.00	-13.20	QP
	6		1.2500	26.26	9.70	35.96	46.00	-10.04	AVG
	7		2.0300	32.75	9.73	42.48	56.00	-13.52	QP
	8		2.0300	24.90	9.73	34.63	46.00	-11.37	AVG
	9		4.2580	32.30	9.79	42.09	56.00	-13.91	QP
	10		4.2580	24.86	9.79	34.65	46.00	-11.35	AVG
	11		5.3940	32.45	9.82	42.27	60.00	-17.73	QP
	12		5.3940	25.02	9.82	34.84	50.00	-15.16	AVG

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Neutral:


EUT: TLSR8258DG48D Probe: N

Model: TLSR8258DG48D Power Source: AC120V/60Hz

Page 13 of 36

Mode: TX mode Test by: Eason

Temp./Hum.(%H): 26℃/60%RH

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2100	28.71	9.79	38.50	63.21	-24.71	QP
2	0.2100	19.00	9.79	28.79	53.21	-24.42	AVG
3 *	0.4540	34.53	9.61	44.14	56.80	-12.66	QP
4	0.4540	23.70	9.61	33.31	46.80	-13.49	AVG
5	0.9540	26.87	9.66	36.53	56.00	-19.47	QP
6	0.9540	16.84	9.66	26.50	46.00	-19.50	AVG
7	2.1619	30.05	9.77	39.82	56.00	-16.18	QP
8	2.1619	19.66	9.77	29.43	46.00	-16.57	AVG
9	4.7740	30.09	9.84	39.93	56.00	-16.07	QP
10	4.7740	18.48	9.84	28.32	46.00	-17.68	AVG
11	7.5500	25.06	9.80	34.86	60.00	-25.14	QP
12	7.5500	15.40	9.80	25.20	50.00	-24.80	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct factor
- 4. Correct factor = LISN Factor + Cable Loss
- 5. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

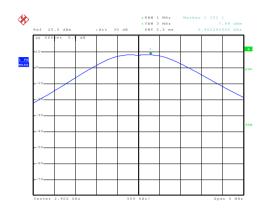
Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

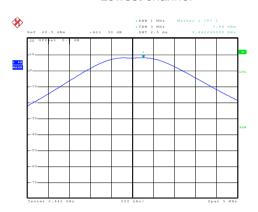
Report No. : BLA-EMC-201903-A46-01 Page 14 of 36

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

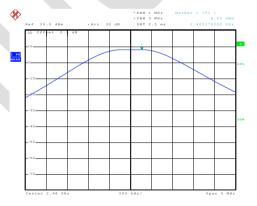

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	7.99		
Middle	7.99	30.00	Pass
Highest	8.03		


Test plot as follows:

Page 15 of 36

Date: 20.MAR.2019 19:24:53


Lowest channel

Date: 20.MAR.2019 19:25:23

Date: 20.MAR.2019 19:26:47

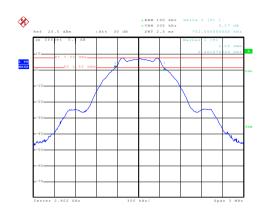
Middle channel

Highest channel

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, Chi Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

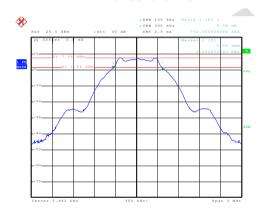
Page 16 of 36

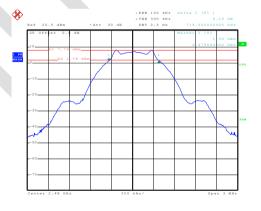
7.4 Channel Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.702		
Middle	0.702	>500	Pass
Highest	0.714		




Date: 20.MAR.2019 19:30:04

Lowest channel

Date: 20.MAR.2019 19:28:58

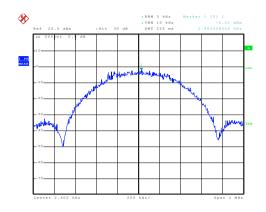
Middle channel

Highest channel

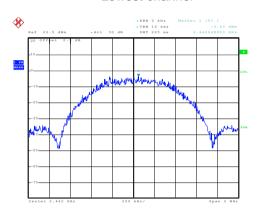
Page 18 of 36

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

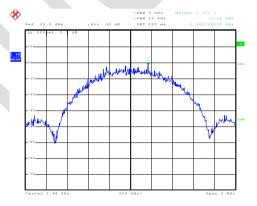

Measurement Data

Test channel	Power Spectral Density (dBm/3KHz)	Limit(dBm/3kHz)	Result
Lowest	-2.21		
Middle	-3.43	8.00	Pass
Highest	-1.64		


Test plot as follows:

Page 19 of 36

Date: 20.MAR.2019 19:32:38

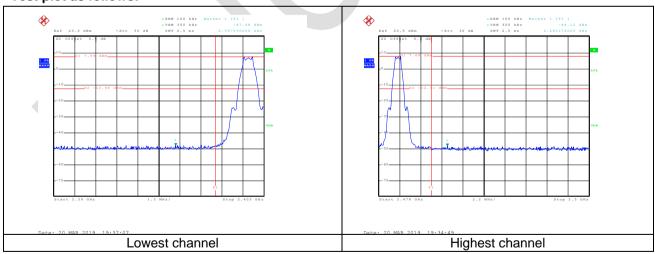

Lowest channel

Date: 20.MAR.2019 19:33:03

Date: 20.MAR.2019 19:33:38

Middle channel

Highest channel


Report No. : BLA-EMC-201903-A46-01 Page 20 of 36

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No. : BLA-EMC-201903-A46-01 Page 21 of 36

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict 2390MHz, 2483		•		nd's (2310MHz to		
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Abovo 1CHz	Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque	Frequency Limit (dBuV/m @3m)			Value		
	Above 1	CH-	54.0	0	Average		
	Above i	GHZ	74.0	0	Peak		
	Test setup: Tum Table Tum Table 150cm > 100cm > 100						
Test Procedure: 1. The EUT was placed on the top of a rotating table of the ground at a 3 meter camber. The table was rotated determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interferer antenna, which was mounted on the top of a variab tower. 3. The antenna height is varied from one meter to four ground to determine the maximum value of the field horizontal and vertical polarizations of the antenna measurement. 4. For each suspected emission, the EUT was arrange and then the antenna was tuned to heights from 1 mand the rotatable was turned from 0 degrees to 36 the maximum reading. 5. The test-receiver system was set to Peak Detect For Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was limit specified, then testing could be stopped and the EUT would be reported. Otherwise the emission 10dB margin would be re-tested one by one using parenage method as specified and then reported in a 7. The radiation measurements are performed in X, And found the X axis positioning which it is worse of worst case mode is recorded in the report.				ole was rotated liation. The interference of a variable meter to four report of the field street antenna are was arranged at the from 1 meters from 1 meters from 1 meters from 2 mode was 10 mode was	ed 360 degrees to ee-receiving sheight antenna meters above the strength. Both se set to make the did to its worst case eter to 4 meters degrees to find action and odB lower than the peak values of that did not have tak, quasi-peak or data sheet.		
Test Instruments:	Refer to section Refer to section						
Test mode:							
Test results:	Pass						

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Report No.: BLA-EMC-201903-A46-01 Page 22 of 36

Test channel: Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	54.94	-14.56	40.38	74.00	-33.62	Horizontal
2390.00	65.03	-14.19	50.84	74.00	-23.16	Horizontal
2310.00	56.35	-14.85	41.50	74.00	-32.50	Vertical
2390.00	65.20	-14.52	50.68	74.00	-23.32	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	42.57	-14.56	28.01	54.00	-25.99	Horizontal
2390.00	44.32	-14.19	30.13	54.00	-23.87	Horizontal
2310.00	42.85	-14.85	28.00	54.00	-26.00	Vertical
2390.00	44.30	-14.52	29.78	54.00	-24.22	Vertical

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	77.65	-13.66	63.99	74.00	-10.01	Horizontal
2500.00	63.59	-13.57	50.02	74.00	-23.98	Horizontal
2483.50	65.08	-14.05	51.03	74.00	-22.97	Vertical
2500.00	66.55	-13.97	52.58	74.00	-21.42	Vertical

Average value:

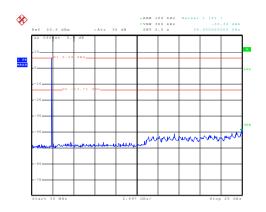
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	42.36	-13.66	28.70	54.00	-25.30	Horizontal
2500.00	43.02	-13.57	29.45	54.00	-24.55	Horizontal
2483.50	41.12	-14.05	27.07	54.00	-26.93	Vertical
2500.00	42.81	-13.97	28.84	54.00	-25.16	Vertical

Remark:

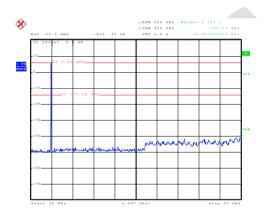
- Final Level = Receiver Read level + Correct factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.
- Correct factor= Antenna Factor + Cable Loss Preamplifier Factor

Report No. : BLA-EMC-201903-A46-01 Page 23 of 36

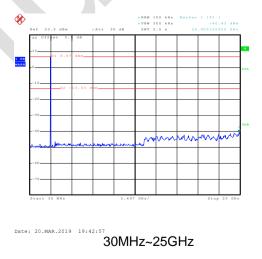
7.7 Spurious Emission


7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					


Test plot as follows:

Lowest channel


Date: 20.MAR.2019 19:39:54 30MHz~25GHz

Middle channel

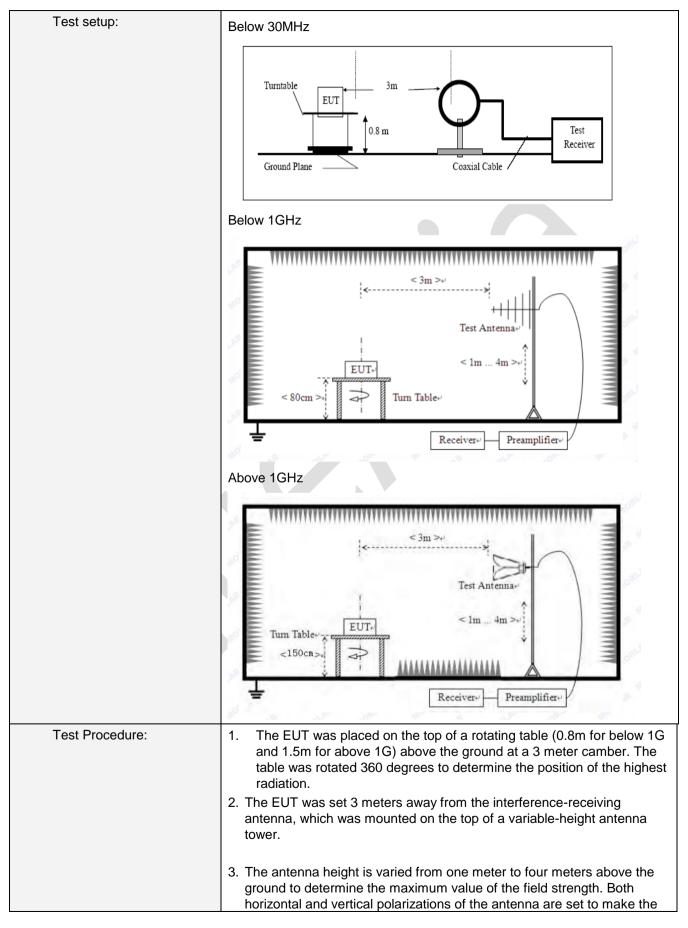
20 MAR 2019 19-41-12 30MHz~25GHz

Highest channel

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia, No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Page 24 of 36


Report No. : BLA-EMC-201903-A46-01 Page 25 of 36

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency		Detector	RBW		VBW	Value	
	9KHz-150KHz	Pł	(,AV,QP	200	Hz	600Hz	PK,AV,QP	
	150KHz-30MHz	Pł	(,AV,QP	9KI	Ηz	30KHz	PK,AV,QP	
	30MHz-1GHz	Qı	uasi-peak	120k	Ήz	300KH	z Quasi-peak	
	Above 1GHz		Peak	1MI	Hz	3MHz	Peak	
	Above 1GHz		Peak	1MHz		10Hz	Average	
Limit: (Spurious Emissions)	Frequency	Frequency		Limit (uV/m)		'alue	Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(KHz)		PK,AV,QP		300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		(Hz) QP		30m	
	1.705MHz-30MH	lz	30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz	<u> </u>	150	50 (QP		
	216MHz-960MH	z	200	200		QP	3m	
	960MHz-1GHz		500		Q		OIII	
	Above 1GHz		500		Averag			
	ADOVE TOTIZ		5000		Peak			
Limit: (band edge)	Emissions radiated of harmonics, shall be fundamental or to th whichever is the less	atten e gei	uated by at neral radiate	least 5	50 dĒ	B below the	he level of the	

Report No.: BLA-EMC-201903-A46-01 Page 26 of 36

Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No.: BLA-EMC-201903-A46-01 Page 27 of 36

Troport No DEA-ENIO-201303	1 agc 27 01 30
	measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

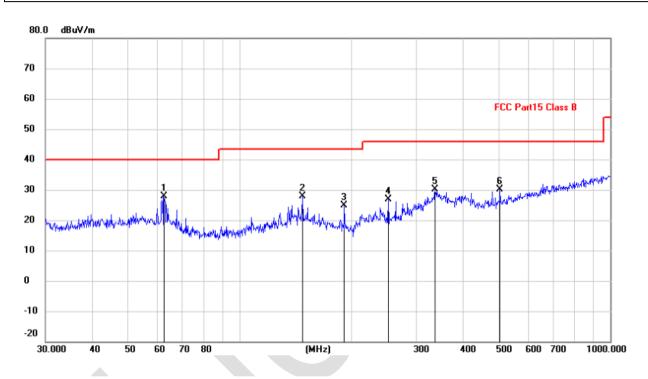
Measurement Data

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No.: BLA-EMC-201903-A46-01 Page 28 of 36

■ Below 1GHz


Horizontal:

EUT: TLSR8258DG48D Polarziation: Horizontal

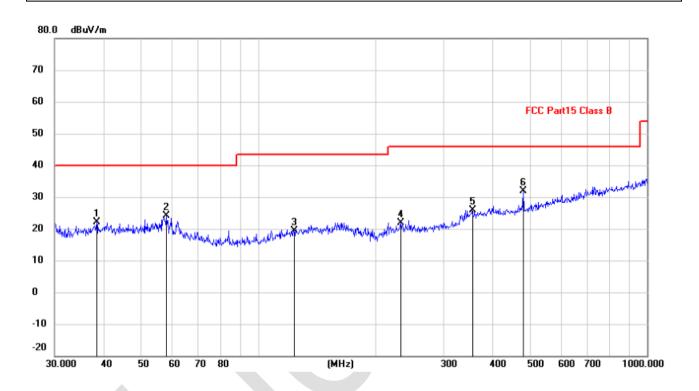
Model: TLSR8258DG48D Power Source: AC120V/60Hz

Mode: TX mode Test by: Eason

Temp./Hum.(%H): 26°C/60%RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	62.4314	15.40	12.40	27.80	40.00	-12.20	QP
2		147.9214	14.96	13.04	28.00	43.50	-15.50	QP
3		191.7450	14.74	10.19	24.93	43.50	-18.57	QP
4		252.0627	14.26	12.69	26.95	46.00	-19.05	QP
5		337.2155	15.44	14.58	30.02	46.00	-15.98	QP
6		504.7062	11.17	18.98	30.15	46.00	-15.85	QP

Report No. : BLA-EMC-201903-A46-01 Page 29 of 36


Vertical:

EUT: TLSR8258DG48D Polarziation: Vertical

Model: TLSR8258DG48D Power Source: AC120V/60Hz

Mode: TX mode Test by: Eason

Temp./Hum.(%H): 26°C/60%RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		38.4809	8.75	13.38	22.13	40.00	-17.87	QP
2		58.2030	11.08	13.13	24.21	40.00	-15.79	QP
3		123.2655	6.77	12.49	19.26	43.50	-24.24	QP
4		232.5318	9.73	12.19	21.92	46.00	-24.08	QP
5		355.4273	10.77	15.16	25.93	46.00	-20.07	QP
6	*	480.5276	13.40	18.41	31.81	46.00	-14.19	QP

■ Above 1GHz

Test channel: Lowest

Page 30 of 36

Pea	k	val	h	Δ.
геа	n	va	u	œ.

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	59.94	-7.43	52.51	74.00	-21.49	Vertical
7206.00	57.71	-2.42	55.29	74.00	-18.71	Vertical
9608.00	58.68	-2.38	56.30	74.00	-17.70	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	64.85	-7.43	57.42	74.00	-16.58	Horizontal
7206.00	59.62	-2.42	57.20	74.00	-16.80	Horizontal
9608.00	58.13	-2.38	55.75	74.00	-18.25	Horizontal
12010.00	*			74.00		Horizontal
14412.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	51.17	-7.43	43.74	54.00	-10.26	Vertical
7206.00	47.16	-2.42	44.74	54.00	-9.26	Vertical
9608.00	45.36	-2.38	42.98	54.00	-11.02	Vertical
12010.00	*			54.00		Vertical
14412.00	*			54.00		Vertical
4804.00	51.24	-7.43	43.81	54.00	-10.19	Horizontal
7206.00	45.16	-2.42	42.74	54.00	-11.26	Horizontal
9608.00	44.44	-2.38	42.06	54.00	-11.94	Horizontal
12010.00	*			54.00		Horizontal
14412.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level +Correct factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No.: BLA-EMC-201903-A46-01 Page 31 of 36

Test channel	:		Middle			
Peak value:						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	60.03	-7.49	52.54	74.00	-21.46	Vertical
7326.00	57.36	-2.40	54.96	74.00	-19.04	Vertical
9768.00	58.41	-2.38	56.03	74.00	-17.97	Vertical
12210.00	*			74.00		Vertical
14652.00	*			74.00		Vertical
4884.00	65.20	-7.49	57.71	74.00	-16.29	Horizontal
7326.00	58.16	-2.40	55.76	74.00	-18.24	Horizontal
9768.00	60.03	-2.38	57.65	74.00	-16.35	Horizontal
12210.00	*			74.00		Horizontal
14652.00	*			74.00		Horizontal

Average value:

Average value.						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	51.25	-7.49	43.76	54.00	-10.24	Vertical
7326.00	48.81	-2.40	46.41	46.41 54.00		Vertical
9768.00	46.62	-2.38	44.24	54.00	-9.76	Vertical
12210.00	*			54.00		Vertical
14652.00	*			54.00		Vertical
4884.00	51.72	-7.49	44.23	54.00	-9.77	Horizontal
7326.00	47.71	-2.40	45.31	54.00	-8.69	Horizontal
9768.00	45.51	-2.38	43.13	54.00	-10.87	Horizontal
12210.00	*			54.00		Horizontal
14652.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level +Correct factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3 . Correct factor = Antenna Factor + Cable Loss Preamplifier Factor

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No.: BLA-EMC-201903-A46-01 Page 32 of 36

Test channel:	Highest
---------------	---------

Peak value:

reak value.						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	61.65	-7.47	54.18	74.00	-19.82	Vertical
7440.00	57.69	-2.45	55.24	74.00	-18.76	Vertical
9920.00	58.24	-2.37	55.87	74.00	-18.13	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	67.40	-7.47	59.93	74.00	-14.07	Horizontal
7440.00	58.03	-2.45	55.58	74.00	-18.42	Horizontal
9920.00	58.71	-2.37	56.34	74.00	-17.66	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	49.34	-7.47	41.85	54.00	-12.13	Vertical
7440.00	46.69	-2.45	44.24	54.00	-9.76	Vertical
9920.00	45.87	-2.37	43.50	54.00	-10.50	Vertical
12400.00	*			54.00		Vertical
14880.00	*			54.00		Vertical
4960.00	53.19	-7.47	45.72	54.00	-8.28	Horizontal
7440.00	47.73	-2.45	45.28	54.00	-8.72	Horizontal
9920.00	45.29	-2.37	42.92	54.00	-11.08	Horizontal
12400.00	*			54.00		Horizontal
14880.00	*			54.00		Horizontal

Remark:

- Final Level = Receiver Read level + Correct factor.
 "*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor.


No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No.: BLA-EMC-201903-A46-01 Page 33 of 36

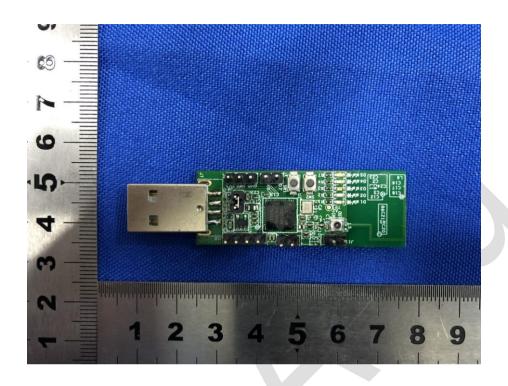
Test Setup Photo 8

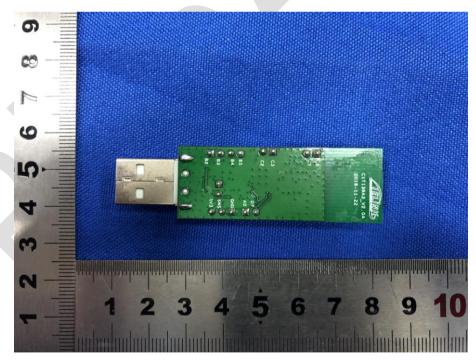
Radiated Emission

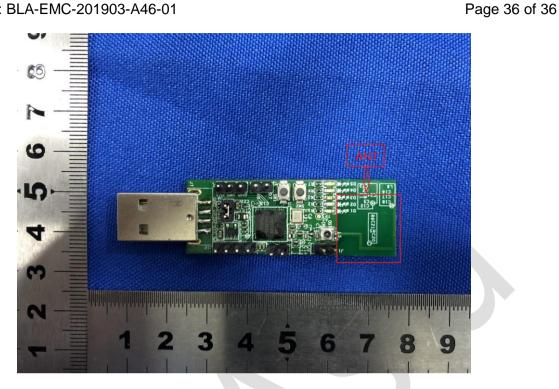
Qianhai BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No.: BLA-EMC-201903-A46-01 Page 34 of 36


Conducted Emission




Report No.: BLA-EMC-201903-A46-01 Page 35 of 36

9 EUT Constructional Details

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.