

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF TEL:+82 31 330-1700 FAX:+82 31 322 2332

FCC EVALUATION REPORT FOR VERIFICATION

Applicant:

i-SENS, Inc.

43, Banpo-daero 28-gil, Seocho-gu,

Seoul 06646, Korea, republic of

Attn.: So Young Kang

Dates of Issue : January 20, 2021

Test Report No. : NK-20-R-358

Test Site : Nemko Korea Co., Ltd.

FCC ID

Brand Name

Contact Person

OELPN300107

N/A

i-SENS, Inc.

43, Banpo-daero 28-gil, Seocho-gu, Seoul 06646,

Korea, republic of So Young Kang

Telephone No.: 82-2-910-0630

Applied Standard: FCC 47 CFR Part 15.247

Classification: Digital Transmission System (DTS)

EUT Type: PT/INR Monitoring Meter

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

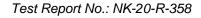
I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Chanho Jin

Engineer

Reviewed By: Seungyong Shin

Tan. 20, 2021

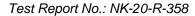

Technical Manager

i-SENS, Inc.

Page 1 of 28

NKQF-27-18 (Rev. 00)

FCC ID: OELPN300107



FCC Certification

Revision History

Rev.	Issue Date	Revisions	Revised By
00	January 20, 2021	Initial issue	

TABLE OF CONTENTS

1.	Scope	4
2.	Introduction (Site Description)	5
	2.1 Test facility	5
	2.2 Accreditation and listing	6
3.	Test Conditions & EUT Information	7
	3.1 Operation During Test	7
	3.1.1 Table of test power setting	7
	3.1.2 Table of test channels	7
	3.1.3 Antenna information	7
	3.1.4 Additional Information Related to Testing	8
	3.2 Support Equipment	8
	3.3 Setup Drawing	9
	3.4 EUT Information	10
4.	Summary of Test Results	11
5.	Recommendation / Conclusion	12
6.	Antenna Requirements	12
7.	Description of Test	14
	7.1 Radiated Emissions	14
8.	Test Data	15
	8.1 Radiated Emissions	15
	8.2 Radiated Spurious Emissions	18
	8.3 Radiated Band Edge	24
9.	Test Equipment	26
10.	Accuracy of Measurement	27

1. SCOPE

Test Report No.: NK-20-R-358

FCC Certification

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15

Responsible Party: i-SENS, Inc.

43, Banpo-daero 28-gil, Seocho-gu, Seoul 06646,

Korea, republic of

Contact Person: So Young Kang

Manufacturer: CoaguSense, Inc.

48377 Fremont Blvd., STE. 113 Fremont, CA 94538 USA

FCC ID: OELPN300107

Model: P/N 300107

Brand Name: N/A

EUT Type: PT/INR Monitoring Meter

Classification: Digital Transmission System (DTS)

Applied Standard: FCC 47 CFR Part 15.247

Test Procedure(s): ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05

KDB 996369 D04 Module Integration Guide v02

Dates of Test: December 19, 2020 ~ December 29, 2020

Place of Test: Nemko Korea Co., Ltd.

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating from **i-SENS**, **Inc FCC ID**: **OELPN300107**.

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory .

The site address 155 & 159, Osan-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPULIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 km (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 km (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014 according to §2.948.

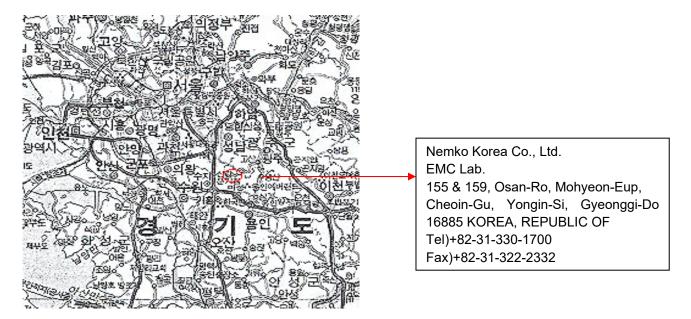


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

i-SENS, Inc. FCC ID: OELPN300107

2.2 Accreditation and listing

	Accreditation number	
F©	CAB Accreditation for DOC	Designation No. KR0026
KOLAS 00 PESTING NO. 155	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. KT155
Industry Canada	Canada IC Registered site	Site No. 2040E
V€I	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118
IECEE SCHEME	EMC CBTL	-
	KCC(RRL)Designated Lab.	Registration No. KR0026

3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

The EUT contains FCC approved RF modules.

Module supports the BLE mode. The Laptop was used to control the EUT to transmit the wanted TX channel by the testing program supported by manufacturer.

The EUT was tested at the worst case in accordance with the module report. The worst case was recorded in the report.

3.1.1 Table of test power setting

RF Mode	Modulation	Power setting Level	Remark
NFC	ASK	Default	N/A
Bluetooth Module(BLE)	GFSK	0	Power setting level of approved Bluetooth module. (FCC ID : OELBM001)

3.1.2 Table of test frequency

RF Mode	Channel	Frequency (MHz)	Measurement range
NFC	Default	13.56	Below 1 GHz
INIC	Default	13.56	1 GHz to 26.5 GHz
Bluetooth Module(BLE)	20	2442	Below 1 GHz
Bidetootii Module(BLE)	39	2480	1 GHz to 26.5 GHz

3.1.3 Antenna information

Frequency band	Mode	Antenna TX mode	Support MIMO
13.110~14.010 MHz	NFC	■ 1TX, □ 2TX	□Yes, ∎No
2.4 GHz	BLE	■ 1TX, □ 2TX	□Yes, ∎No

i-SENS, Inc. FCC ID: OELPN300107

Test Report No.: NK-20-R-358

FCC Certification

3.1.4 Additional Information Related to Testing

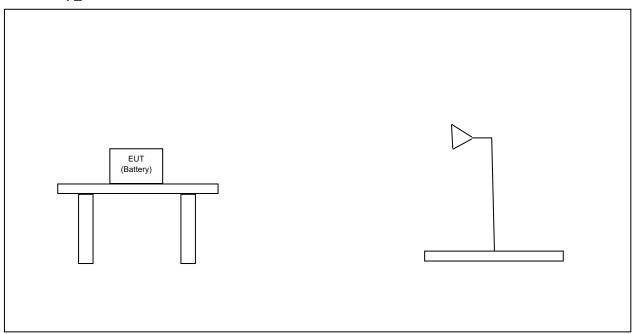
RF module approved as below are installed in this device.

Product Name	Module Name	FCC ID	Remark
Bluetooth Module	BM001	OELBM001	Bluetooth BLE module

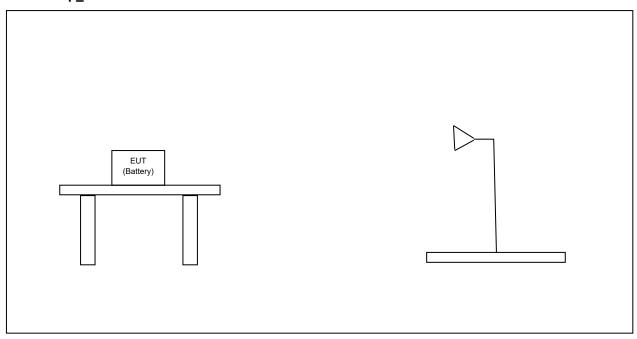
According to KDB 996369 D04 Module Integration Guide V02, only radiated emissions testing was performed in the worst case declared by manufacture.

The results of all conducted testing are referred to the report of module.

3.2 Support Equipment


EUT	i-SENS, Inc Model : P/N 300107	S/N: N/A
Laptop Computer	HP Model : G62-355TU 1.5 m shielded pin connector cable	FCC DOC S/N : CNF0489WDT
AC/DC Adapter	HP Model : PPP009D 1.5 m unshielded power cable	FCC DOC S/N: WBGSV0ACXZH162

i-SENS, Inc. FCC ID: OELPN300107


3.3 Setup Drawing

Test Setup_BLE mode

^{*} Refer to Photographs of Test setup and clause 7, 8 in this report for detail.

Test Setup_BLE + NFC mode

^{*} Refer to Photographs of Test setup and clause 7, 8 in this report for detail.

i-SENS, Inc.

Page 9 of 28 **FCC ID: OELPN300107**

^{*} Laptop and Jig board were removed after Transmission setup.

^{*} Laptop and Jig board were removed after Transmission setup.

3.4 EUT Information

The EUT is the i-SENS, Inc PT/INR Monitoring Meter FCC ID: OELPN300107.

Specifications:

EUT Type	PT/INR Monitoring Meter
Model Name	P/N 300107
Brand Name	N/A
Frequency of Operation	13.110 MHz to 14.010 MHz (NFC) 2 402 MHz to 2 480 MHz (BLE)
Maximum Conducted Output Power	-0.44 dBm (BLE)
FCC Classification	Digital Transmission System (DTS)
Number of Channels	1 CH (NFC) 40 CH (BLE)
Modulations	ASK (NFC) GFSK (BLE)
Antenna Gain (peak)	1.50 dBi (Bluetooth BLE Module)
Antenna Setup	1TX/1RX (NFC) 1TX/1RX (BLE)
EUT Rated Voltage	6.0 Vdc (4 AA batteries)
EUT Test Voltage	6.0 Vdc (4 AA batteries)
Temperature Range	-20 ℃ ~ +50 ℃
Size (L x W x H)	About 100 mm x 150 mm x 30 mm
Weight	About 334 g
Remarks	-

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	FCC Paragraph No.	Result	Remark
Conducted Emission	15.207	N/A	Refer to clause 3.1.4 in this report
Radiated Emission	15.209	Complies	-
6 dB Bandwidth	15.247(a)(2)	N/A	Refer to clause 3.1.4 in this report
Maximum Conducted Output Power	15.247(b)(3)	N/A	Refer to clause 3.1.4 in this report
Power Spectral Density	15.247(e)	N/A	Refer to clause 3.1.4 in this report
Conducted Spurious Emission	15.247(d)	N/A	Refer to clause 3.1.4 in this report
Radiated Spurious Emission	15.247(d)	Complies	-
Maximum Permissible Exposure	1.1307(b)	N/A	Refer to clause 3.1.4 in this report

Test Report No.: NK-20-R-358

FCC Certification

5. RECOMMENDATION/CONCLUSION

The data collected shows that the **i-SENS**, **Inc PT/INR Monitoring Meter FCC ID: OELPN300107** is in compliance with Part 15.247 of the FCC Rule

i-SENS, Inc. FCC ID: OELPN300107

Test Report No.: NK-20-R-358

FCC Certification

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the i-SENS, Inc PT/INR Monitoring Meter FCC ID: OELPN300107 is permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

Used Antenna		
Model Name of Approved RF module Max. gain (dBi)		
i-BLE Module	1.5	

7. DESCRIPTION OF TESTS

7.1 Radiated Emissions

The measurement was performed at the test site that is specified in accordance with ANSI C63.10-2013.

The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna(Rohde&Schwarz, HFH2-Z2) and 30 to 1000 MHz using Trilog broadband test antenna(Schwarzbeck, VULB 9163). Above 1 GHz, Horn antenna (Schwarzbeck HF907: up to 18 GHz, Q-par Angus QMS-00225 : 18 to 26.5 GHz) was used.

For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in ANSI 63.10-2013 section 11.12. Peak emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 10 kHz, Detector = Peak, Trace mode = max hold. Allow max hold to run for at least $50 \times (1/\text{duty cycle})$ times traces.

4000.				
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705–30.0	30	30		
30–88	100	3		
88–216	150	3		
216–960	200	3		
Above 960	500	3		

Radiated Emissions Limits per 47 CFR 15.209(a) and RSS-GEN Issue 4 8.9

FCC Certification

Test Report No.: NK-20-R-358

8.1 Radiated Emissions

8. TEST DATA

FCC §15.209

Test Mode: Set to worst case

Result

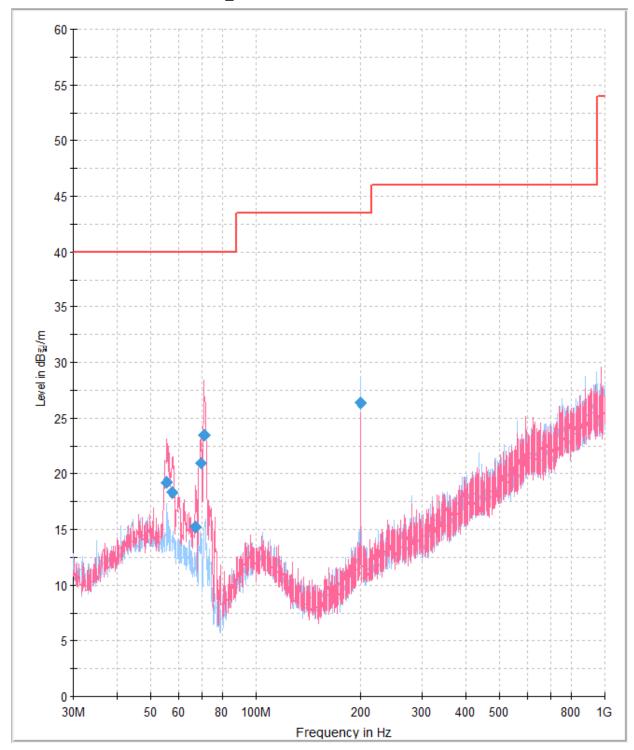
BLE mode

Frequency (MHz)	Reading (dBµV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
69.61	47.3	V	QuasiPeak	-26.4	20.9	40.0	19.1
71.28	50.6	V	QuasiPeak	-27.1	23.5	40.0	16.5
199.97	50.4	Н	QuasiPeak	-24.1	26.3	40.0	13.7

Radiated Measurements at 3meters

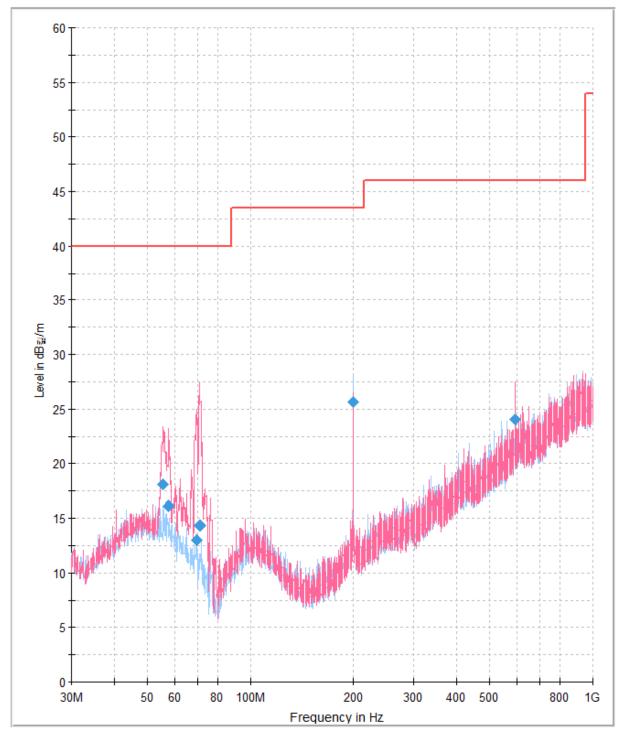
BLE mode + 13.56MHz mode

Fr	equency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
	(MHz)	(dBuV)	(H/V)	illoue	(dB)**	(dBuV/m)	(dBuV/m)	(dB)
	199.97	49.8	Н	QuasiPeak	-24.1	25.7	43.5	17.8


Radiated Measurements at 3meters

Notes:

- 1. Testing was performed in the worst case declared by manufacture..
- 2. *Pol. H = Horizontal, V = Vertical
- 3. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 4. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 5. Radiated emissions from SMPS which are not related to RF module was ignored.
- 6. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 7. The limit is on the FCC §15.209
- 8. Other emissions were greater than 20 dB below the limit.



Radiated emission below 1GHz BLE mode

Radiated emission below 1GHz_BLE + NFC mode

TEST DATA

8.2 Radiated Spurious Emissions

FCC §15.247(d)

Test Mode : Set to worst case

Result

BLE mode

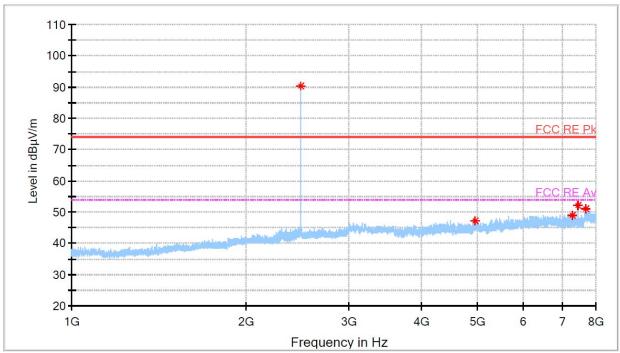
Frequency (MHz)	Reading (dBµV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
14490.00	41.2	Н	peak	17.0	58.2	74.0	15.8
14490.00	30.9	Н	Average	17.0	47.9	54.0	6.1
16016.25	38.5	Н	Peak	17.8	56.3	74.0	17.7
16016.25	30.4	Н	Average	17.8	48.2	54.0	5.9
17815.00	37.5	V	Peak	20.4	57.9	74.0	16.1
17815.00	30.7	V	Average	20.4	51.1	54.0	3.0
17998.75	40.0	V	Peak	21.0	61.0	74.0	13.0
17998.75	30.3	V	Average	21.0	51.3	54.0	2.7

Test Report No.: NK-20-R-358

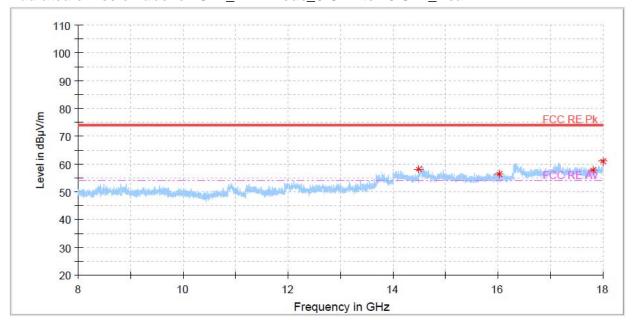
FCC Certification

TEST DATA

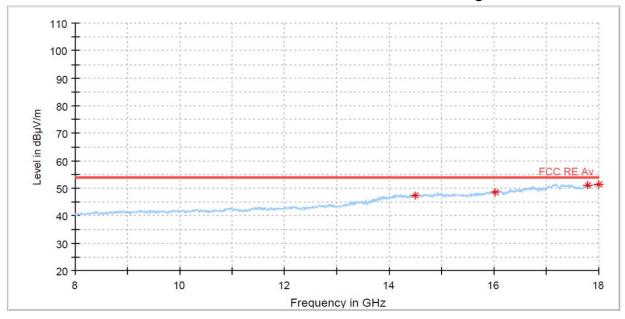
BLE + NFC mode


Frequency (MHz)	Reading (dBuV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBuV/m)	Limit (dBµV/m)	Margin (dB)
14485.00	40.0	٧	Peak	16.9	56.9	74.0	17.1
14485.00	31.1	٧	Average	16.9	48.0	54.0	6.1
15945.00	38.8	٧	Peak	18.1	56.9	74.0	17.2
15945.00	30.4	٧	Average	18.1	48.5	54.0	5.5
16130.00	39.2	٧	Peak	18.3	57.5	74.0	16.5
16130.00	30.3	٧	Average	18.3	48.6	54.0	5.5
17845.00	37.4	Н	Peak	20.8	58.2	74.0	15.8
17845.00	30.3	Н	Average	20.8	51.1	54.0	3.0
18000.00	41.4	Н	Peak	21.0	62.4	74.0	11.6
18000.00	30.4	Н	Average	21.0	51.4	54.0	2.7

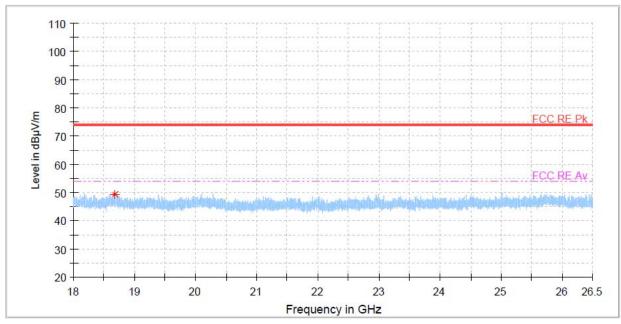
Note:


- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 4. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 5. Average emissions were measured using RBW = 1 MHz, VBW = 3 kHz, Detector = Peak.
- 6. The spectrum was measured from 9 kHz to 10th harmonic and the worst-case emissions were reported. No significant emissions were found beyond the 3rd harmonic for this device.
- 7. Other emissions were greater than 20 dB below the limit.

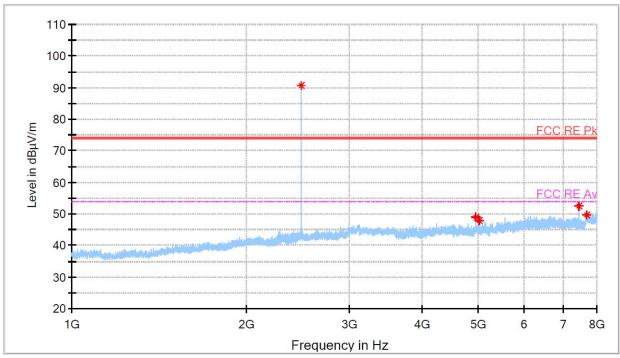
Radiated emission above 1GHz_BLE mode_1 GHz to 8 GHz_Peak



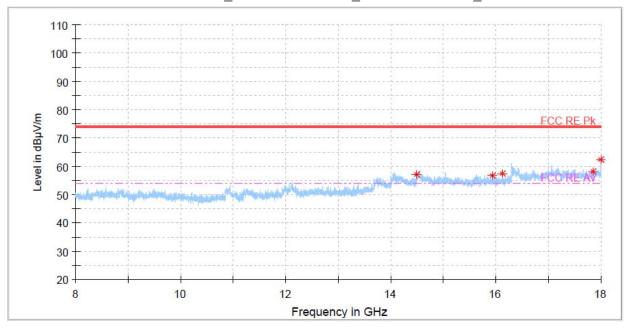
Radiated emission above 1GHz_BLE mode_8 GHz to 18 GHz_Peak



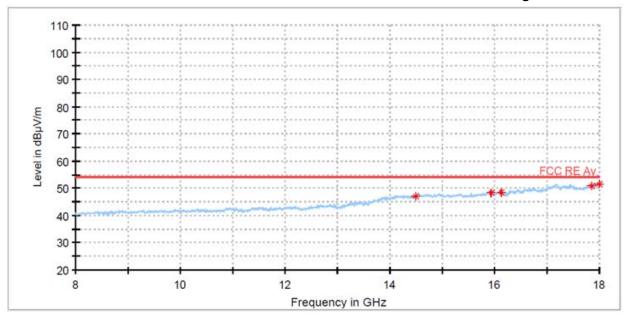
Radiated emission above 1GHz_BLE mode_8 GHz to 18 GHz_Average



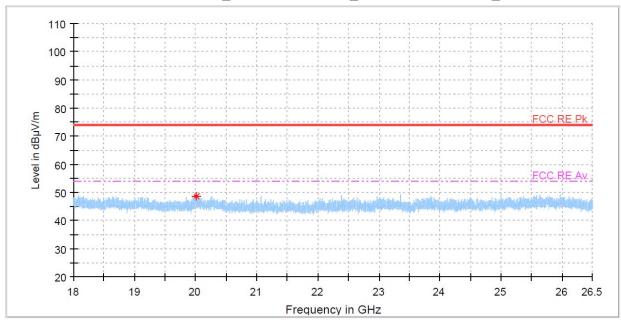
Radiated emission above 1GHz_BLE mode_18 GHz to 26.5 GHz_Peak



Radiated emission above 1GHz_BLE + NFC mode_1 GHz to 8 GHz_Peak



Radiated emission above 1GHz_BLE + NFC mode_8 GHz to 18 GHz_Peak



Radiated emission above 1GHz_BLE + NFC mode_8 GHz to 18 GHz_Average

Radiated emission above 1GHz_BLE + NFC mode_18 GHz to 26.5 GHz_Peak

TEST DATA

8.3 Radiated Band Edge

FCC §15.247(d)

Test Mode: Set to worst case

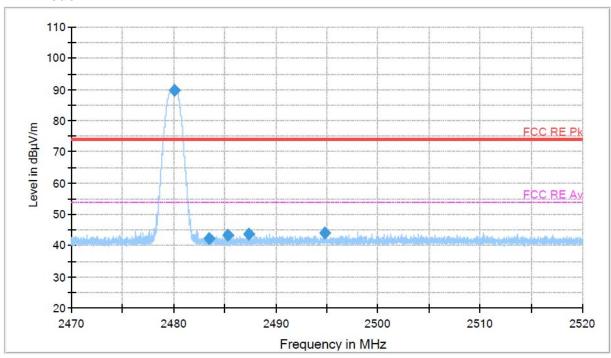
Result

BLE mode

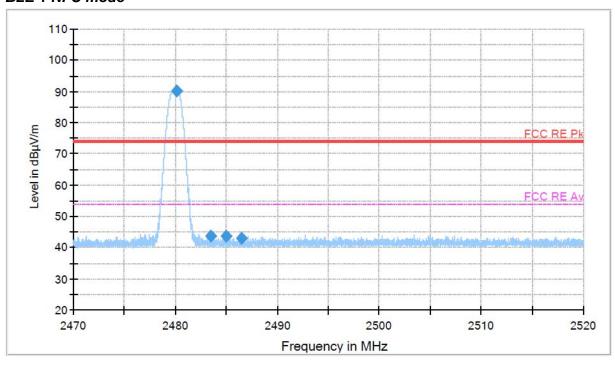
Frequency (MHz)	Reading (dBuV)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dBuV/m)	Limit (dBµV/m)	Margin (dB)
2483.50	49.7	V	peak	-7.4	42.3	74.0	31.7
2485.28	50.7	Н	peak	-7.3	43.4	74.0	30.7
2487.40	50.8	V	peak	-7.3	43.5	74.0	30.5
2494.76	51.2	V	peak	-7.2	44.0	74.0	30.0

BLE + 13.56MHz mode

Frequency	Reading	Pol*	modo	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBuV)	(H/V)	mode	(dB)**	(dBuV/m)	(dBuV/m)	(dB)
2483.51	51.0	V	peak	-7.4	43.6	74.0	30.4
2484.96	51.0	Н	peak	-7.3	43.7	74.0	30.3
2486.54	50.2	Н	peak	-7.3	42.9	74.0	31.1


Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Average measurement was not performed when peak-detected emission complies with the average limit.
- 4. Highest channel (2480MHz) was the worst condition.
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.



PLOT OF TEST DATA

BLE mode

BLE + NFC mode

9. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R&S	ESU 40	100202	Apr. 02 2020	1 year
2	Test Receiver	R&S	ESCI	101041	Apr. 02 2020	1 year
3	*Attenuator	FAIRVIEW	SA3N5W-06	N/A	Apr. 03 2020	1 year
4	Attenuator	FAIRVIEW	SA3N5W-10	N/A	Jul. 13 2020	1 year
5	Attenuator	API technologies	40A2W-10	1913	Apr. 03 2020	1 year
6	*Amplifier	R&S	SCU 01	10029	Apr. 02 2020	1 year
7	*Amplifier	R&S	SCU18	10065	Apr. 02 2020	1 year
8	*Amplifier	R&S	SCU26D	1984522	Apr. 03 2020	1 year
9	Amplifier	R&S	SCU40	100380	Jul. 14 2020	1 year
10	Spectrum Analyzer	KEYSIGHT	N9030B	MY57144248	Jun. 05 2020	1 year
11	Spectrum Analyzer	Agilent	E4440A	MY44022567	Oct. 12 2020	1 year
12	Spectrum Analyzer	R&S	FSW43	100732	Mar. 24 2020	1 year
13	*Loop Antenna	R&S	HFH2-Z2	100279	Mar. 25 2020	2 year
14	*Horn Antenna	R&S	HF907	102585	Jul. 16 2020	1 year
15	*Horn Antenna	Q-par Angus	QMS-00225	17637	Sep. 22 2020	1 year
16	Horn Antenna	Q-par Angus	QSH22K20	8180	Sep. 22 2020	1 year
17	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9163	946	Jul. 11 2019	2 year
18	LISN	R&S	ENV216	101156	Oct. 12 2020	1 year
19	Position Controller	INNCO	CO2000	12480406/L	N/A	N/A
20	*Controller	INNCO	CO3000	CO3000/937/38330516/L	N/A	N/A
21	Turn Table	INNCO	DS1200S	N/A	N/A	N/A
22	*Turn Table	INNCO	DT2000-2t	N/A	N/A	N/A
23	*Antenna Mast	INNCO	MA4000	N/A	N/A	N/A
24	*TILT Antenna Mast	INNCO	MA4640-XP-EP	N/A	N/A	N/A
25	Open Switch And Control Unit	R&S	OSP-120	100081	N/A	N/A
26	*Open Switch And Control Unit	R&S	OSP-120	101766	N/A	N/A
27	Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A
28	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
29	WiFi Filter Bank	R&S	U083	N/A	N/A	N/A
30	*WiFi Filter Bank	R&S	U082	N/A	N/A	N/A

^{*)} Test equipment used during the test

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%

1. Conducted Uncertainty Calculation

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN-Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00	-	-	0.00	1	0.00
AMN Impedance	dΖ	± 1.80	triangular	2.449	0.73	1	0.73
Mismatch	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
(b) Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	a: AMN-Receiver Mismatch : + b: AMN-Receiver Mismatch : -						
Combined Standard Uncertainty	Normal			± 1.88			
Expended Uncertainty U		Normal (k =	2)	± 3.76			

2. Radiation Uncertainty Calculation

		Uncert	ainty of <i>Xi</i>				
Source of Uncertainty	Χi	Value (dB)	Probability Distribution	Coverage factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability	RS	0.34	normal 1	1.00	0.34	1	0.34
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.92	normal 2	2.00	0.46	1	0.46
Pulse repetition rate response	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.25	1	0.25
Antenna Factor Calibration	AF	± 2.00	rectangular	√3	1.15	1	1.15
Cable Loss	CL	± 1.00	normal 2	2.00	0.50	1	0.50
Antenna Directivity	AD	± 0.00	rectangular	√3	0.00	1	0.00
Antenna Factor Height Dependence	AH	± 2.00	rectangular	√3	1.15	1	1.15
Antenna Phase Centre Variation	AP	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	Ai	± 0.25	rectangular	√3	0.14	1	0.14
Site Imperfections	Si	± 4.00	triangular	√6	1.63	1	1.63
Measurement Distance Variation	DV	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance	Dbal	± 0.90	rectangular	√3	0.52	1	0.52
Cross Polarisation	DCross	± 0.00	rectangular	√3	0.00	1	0.18
Mismatch	М	+ 0.98 - 1.11	U-Shaped	$\sqrt{2}$	0.74	1	0.74
EUT Volume Diameter	Vd	0.33	normal 1	1.00	0.33	1	0.11
Remark							
Combined Standard Uncertainty	Normal						
Expended Uncertainty U			Norm	al (<i>k</i> = 2)			