

FCC and IC Certification

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF TEL:+82 31 330 1700 FAX:+82 31 322 2332

FCC and IC EVALUATION REPORT FOR CERTIFICATION

Applicant:

i-SENS, Inc.

43, Banpo-daero 28-gil, Seocho-gu,

Seoul 06646, Korea, republic of

(Post code: 06646) Attn.: Da Yun Lee Dates of Issue: January 08, 2016

Test Report No.: NK-15-R-123

Test Site: Nemko Korea Co., Ltd.

FCC ID

Contact Person

OELBM001 21003-BM001

i-SENS, Inc.

43, Banpo-daero 28-gil, Seocho-gu, Seoul 06646, Korea, republic of

> Da Yun Lee Telephone No.: +82-2-910-0630

Applied Standard: FCC 47 CFR Part 15C and IC RSS-247 Issue 1

Classification:

Digital Transmission System

EUT Type:

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any

Bluetooth module

government agencies. The test results in the report only apply to the tested sample.

Jan 08, 2016

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Wonho Son

Engineer

Reviewed By : Deokha Ryu

Technical Manager

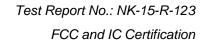
i-SENS, Inc.

FCC ID: OELBM001 / IC: 21003-BM001

Page 1 of 54

TABLE OF CONTENTS

1.	Scope	4
2.	Introduction (Site Description)	5
	2.1 Test facility	5
	2.2 Accreditation and listing	6
3.	Test Conditions & EUT Information	7
	3.1 Operation During Test	7
	3.1.1 Table of test channels and mode	7
	3.1.2 Antenna Tx mode information	8
	3.2 Support Equipment	8
	3.3 Setup Drawing	8
	3.4 EUT Information	9
4.	Summary of Test Results	10
5.	Recommendation / Conclusion	11
6.	Antenna Requirements	11
7.	Description of Test	12
	7.1 Conducted Emissions	12
	7.2 Radiated Emissions	13
	7.3 6 dB Bandwidth	14
	7.4 Peak Output Power and E.I.R.P.	15
	7.5 Peak Power Spectral Density	16
	7.6 Conducted Spurious Emissions	17
8.	Test Data	18
	8.1 Conducted Emissions	18
	8.2 Radiated Emissions	21
	8.3 6 dB Modulated Bandwidth	23
	8.4 Peak Output Power and E.I.R.P	26



Test Report No.: NK-15-R-123

FCC and IC Certification

	8.5 Peak Power Spectral Density	29
	8.6 Conducted Spurious Emissions	32
	8.7 Radiated Spurious Emissions	36
	8.8 Radiated Band Edge	40
9.	Test Equipment	43
10.	Accuracy of Measurement	44
Apper	ndix A: Labelling Requirement	46
Apper	ndix B: Photographs of Test Set-up	47
• •	ndix B: Photographs of Test Set-up	47 50

i-SENS, Inc. FCC ID : OELBM001 / IC : 21003-BM001

1. SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15 and IC RSS-247 Issue1.

Responsible Party:

Contact Person:

i-SENS, Inc.

Da Yun Lee

Manufacturer:

i-SENS, Inc.

43, Banpo-daero 28-gil, Seocho-gu, Seoul 06646,

Korea, republic of

FCC ID: OELBM001

IC 21003-BM001

Model: BM001

EUT Type: Bluetooth module

Classification: **Digital Transmission System**

Applied Standard: FCC 47 CFR Part 15 subpart C and IC RSS-247 Issue 1

ANSI C63.10-2013 and FCC guidance of Guidance 558074 D01 Test Procedure(s):

DTS Meas Guidance v03r03

Dates of Test: December 07, 2015 ~ December 16, 2015

Place of Tests: Nemko Korea Co., Ltd.

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating from **i-SENS, Inc. FCC ID**: **OELBM001** and **IC**: **21003-BM001**

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory .

The site address 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPULIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 km (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 km (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014 according to §2.948.

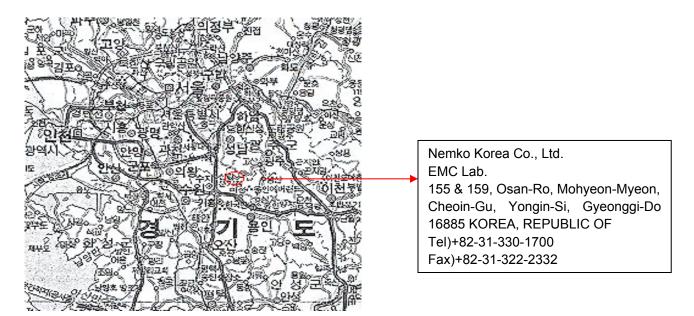


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

i-SENS, Inc. FCC ID : OELBM001 / IC : 21003-BM001

2.2 Accreditation and listing

	Accreditation type	Accreditation number
F©	CAB Accreditation for DOC	Designation No. KR0026
KOLAS (8)	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. 155
Industry Canada	Canada IC Registered site	Site No. 2040E
VEI	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118
IECEE CB SCHEME	EMC CBTL	-
	KCC(RRL)Designated Lab.	Registration No. KR0026

i-SENS, Inc. FCC ID : OELBM001 / IC : 21003-BM001

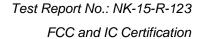
3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

The EUT is the transceiver which is the Bluetooth Low Energy (BLE) 4.1 module.

The Laptop and Test Jig were used to control the EUT to transmit the wanted TX channel countinuously (dutycycle 100%) by the testing program (SmartRF Studio) which manufacturer supported. The Laptop was removed after controlling the EUT to transmit the wanted signal. The EUT was tested at the lowest channel, middle channel and the highest channel with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

The EUT was programmed with the following output power setting that was used during testing:

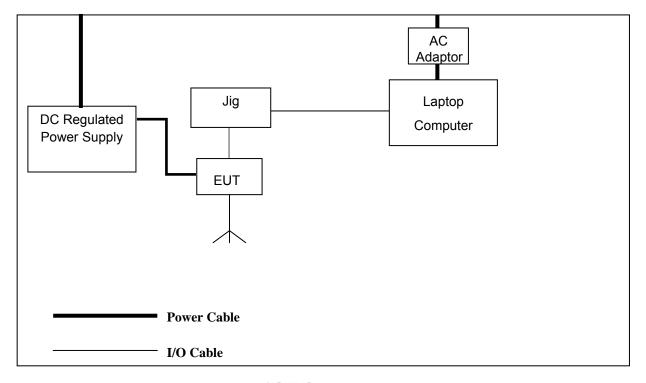

Frequency band	Mode	Frequency (MHz)	Channel	Power setting Level
		2402	37	0 dBm
2402~2480 MHz	LE	2442	18	0 dBm
		2480	39	0 dBm

3.1.1 Table of test channels and modes

Test Items	Mode	Modulation	Test Channel (CH)
Radiated Emissions			18
6 dB Bandwidth			37/18/39
Peak Output Power	LE	GFSK	37/18/39
Peak Power Spectral Density			37/18/39
Conducted Spurious Emission			37/18/39
Radiated Spurious Emission, Band edge Emission			37/18/39

i-SENS, Inc.

Page 7 of 54


3.1.2 Antenna TX mode information:

Frequency band	Mode	Antenna TX mode	Support MIMO
2.4 GHz	LE	■ 1TX, □ 2TX	☐ Yes, ■ No

3.2 Support Equipment

Bluetooth Module (EUT)	i-SENS, Inc. Model: BM001	S/N: N/A
Laptop Computer	Samsung Electronics Co., Ltd. Model : NT-R520 0.3 m shielded USB cable	FCC DOC S/N: ZK6V93FS800012Y
AC/DC Adaptor for Laptop	Chicony Power Technology Co., Ltd. Model : AD-6019R 1.5 m unshielded power cable	FCC DOC S/N: CNBA440024ADON897I2602
DC Regulated Power Supply	GS Instruments. Model : PL-5003S 1.5 m unshielded power cable	FCC DOC S/N: PL-5003S0201

3.3 Setup Drawing

i-SENS, Inc.

Page 8 of 54

* The labtop and Jig were removed after controlling the EUT to transmit the wanted signal.

3.4 EUT Information

The EUT is the **i-SENS**, **Inc. Bluetooth module FCC ID**: **OELBM001**, **IC**: **21003-BM001**This unit supports only Bluetooth Low Energy (BLE) 4.1 standard system.

Specifications:

Specifications:	
Category	Bluetooth Module
Model Name	BM001
Frequency of Operation	2402 MHz ~ 2480 MHz
Maximum Conducted Output Power	-0.44 dBm
Channels	40ch
Antenna Gain (peak)	1.5 dBi
Antenna Setup	1TX / 1RX
Modulations	GFSK(BLE)
Temperature Range	-10 ℃ ~ +50 ℃
Voltage	3 Vdc
Dimensions (H x W x D)	20 mm x 12 mm x 3 mm
Weight	Appox. 1 g
Remarks	-

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

	FCC	IC		
Name of Test	Paragraph No.	Paragraph No.	Result	Remark
Conducted Emission	15.207	RSS-GEN Issue 4 8.8	Complies	
Radiated Emission	15.209	RSS-GEN Issue 4 8.9	Complies	
6 dB Bandwidth	15.247(a)(2)	RSS-247 Issue 1 5.2	Complies	
Peak Output Power and E.I.R.P	15.247(b)(3)	RSS-247 Issue 1 5.4(4)	Complies	
Power Spectral Density	15.247(e)	RSS-247 Issue 1 5.2	Complies	
Conducted Spurious Emission	15.247(d)	RSS-247 Issue 1 5.5	Complies	
Radiated Spurious Emission	15.247(d)	RSS-247 Issue 1 5.5	Complies	
Maximum Permissible Exposure	1.1307(b)	RSS-102 Issue 5	Complies	

i-SENS, Inc. FCC ID : OELBM001 / IC : 21003-BM001

5. RECOMMENDATION/CONCLUSION

The data collected shows that the **i-SEN**, **Inc. Bluetooth module FCC ID**: **OELBM001**, **IC**: **21003-BM001** is in compliance with Part 15.247 of the FCC Rule and RSS-247 Issue 1 of the IC specification.

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the **i-SEN**, **Inc.** Bluetooth module FCC ID: OELBM001, IC: 21003-BM001 is permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

FCC ID : OELBM001 / IC : 21003-BM001

i-SENS, Inc.

7. DESCRIPTION OF TESTS

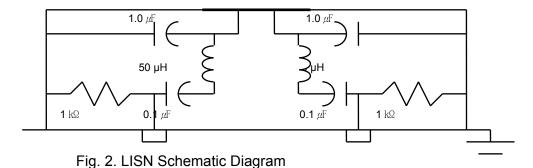
7.1 Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 meter shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6. A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room Rohde & Schwarz (ESH3-Z5) and (ESH2-Z5) of the 50 ohm/50 μ H Line Impedance Stabilization Network (LISN) are bonded to the shielded room. The EUT is powered from the Rohde & Schwarz LISN (ESH3-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH2-Z5). Power to the LISNs are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ".

If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs, All interconnecting cables more than 1 meter were shortened by non inductive bundling (serpentinefashion) to a 1 meter length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.


The spectrum was scanned from 150 kHz to 30 MHz with 200 msec sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver.

(Rohde & Schwarz ESCS30). The detector functions were set to CISPR quasi-peak mode & average mode. The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

i-SENS, Inc.

Page 12 of 54

FCC and IC Certification

7.2 Radiated Emissions

The measurement was performed at the test site that is specified in accordance with ANSI C63.10-2013.

The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna(Rohde&Schwarz, HFH2-Z2) and 30 to 1000 MHz using Trilog broadband test antenna(Schwarzbeck, VULB 9163). Above 1 GHz, Horn antenna (Schwarzbeck BBHA 9120D: up to 18 GHz, Q-par Angus QSH20S20: 18 to 26.5 GHz, QSH22K20: up to 40 GHz) was used.

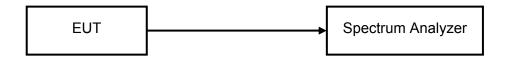
For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in KDB "558074D01 DTS Meas Guidance v03r03" in section 12.2.4 and 12.2.5.1. Peak emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = RMS, Trace averaging in power averaging (RMS) mode over a minimum of 100 traces, If continuous transmission of the EUT couldn't be achieved and duty cycle was constant, a correction factor (10 log (1 / x)) was added to the measurement result.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	0.009–0.490 2400/F(kHz)	
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30 30	
30–88	100	3
88–216	150	3
216–960	200	3
Above 960	500	3

Radiated Emissions Limits per 47 CFR 15.209(a) and RSS-GEN issue 4 8.9

FCC ID : OELBM001 / IC : 21003-BM001


i-SENS, Inc.

FCC and IC Certification

7.3 6 dB Bandwidth

Test Setup

Test Procedure

EUTs 6 dB bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

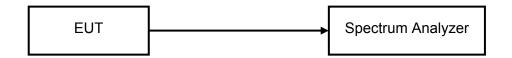
RBW = 100 kHz

 $VBW \geq 3 \times RBW$

Detector = Peak

Trace mode = max hold

Sweep = auto couple


Allow the trace to stabilize.

The bandwidth measurement function on the spectrum analyzer is used to measure the 6 dB bandwidth.

7.4 Peak Output Power and E.I.R.P

Test Setup

Test Procedure

EUTs Maximum Peak Conducted Output Power is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

RBW = 1 MHz

VBW = 3 MHz

Span = fully encompass the DTS bandwidth

Detector = peak

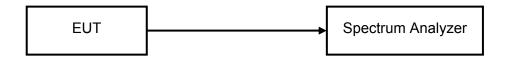
Sweep time = auto couple

Trace mode = max hold

Allow the trace to stabilize.

Use peak marker function to determine the peak amplitude level.

E.I.R.P is calculated according to KDB412172 D01 Determining ERP and EIRP v01


i-SENS, Inc.

Page 15 of 54

7.5 Peak Power Spectral Density

Test Setup

Test Procedure

EUTs Peak Power Spectral Density is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Center frequency = DTS channel center frequency

Span = 1.5 times the DTS channel bandwidth

 $RBW \geq 3 kHz$

 $VBW \geq 3 \times RBW$

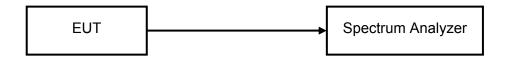
Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow the trace to stabilize.

The peak search function on the spectrum analyzer is used to determine the maximum amplitude level within the RBW.


FCC ID : OELBM001 / IC : 21003-BM001

i-SENS, Inc.

7.6 Conducted Spurious Emissions

Test Setup

Test Procedure

EUTs Conducted spurious emissions are measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

1) Reference Level

RBW = 100 kHz

VBW ≥ 300 kHz

Span = 1.5 times the DTS channel bandwidth

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow the trace to stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

2) Unwanted Emissions

RBW = 100 kHz

VBW ≥ 300 kHz

Span = encompass the spectrum to be examined

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow the trace to stabilize.

The amplitude of all unwanted emissions outside of the authorized frequency band is confirmed that it is attenuated by at least the minimum requirements specified.

i-SENS, Inc.

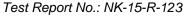
Page 17 of 54

8. TEST DATA

8.1 Conducted Emissions

FCC §15.207, RSS-Gen Issue 4 8.8

Result


Frequency	Level(dBµV)		*)Factor	**) Line	Limit(dBµV)		Margin(dB)	
(MHz)	Q-Peak	Average	(dB)		Q-Peak	Average	Q-Peak	Average
0.15	25.8	9.7	10.4	N	66.0	56.0	40.2	46.3
0.17	21.3	7.4	10.3	L	65.0	55.0	43.7	47.6
0.19	17.5	12.8	10.4	N	64.0	54.0	46.5	41.2
0.23	12.6	9.1	10.4	N	62.4	52.4	49.8	43.3
24.00	20.9	9.3	11.5	L	60.0	50.0	39.1	40.7
26.00	21.3	7.8	11.8	N	60.0	50.0	38.7	42.2

Line Conducted Emissions Tabulated Data

Notes:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
- 3. *) Factor = LISN + Cable Loss
- 4. **) LINE : L = Line , N = Neutral
- 5. The limit is on the FCC Part section 15.207(a) and IC RSS-Gen Issue 4 8.8

i-SENS, Inc. FCC ID: OELBM001 / IC: 21003-BM001

PLOTS OF EMISSIONS

Conducted Emission (Line)

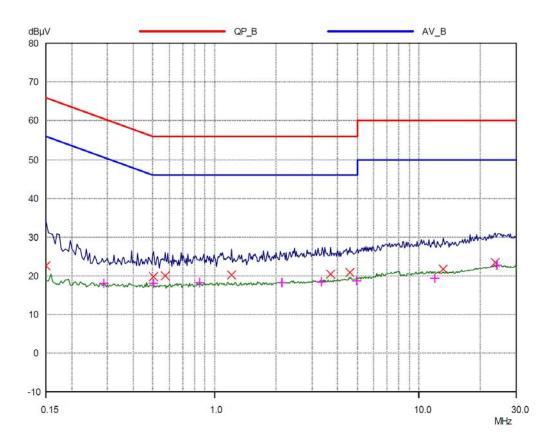
NEMKO KOREA (NK-15-R-0123)

12 Dec 2015 17:56

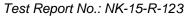
Conducted Emissions

EUT: i-SENS, Inc. Manuf: Op Cond: a.c. 120 V / 60 Hz, LE Wonho. Son Operator: Test Spec: FCC Part 15 MODEL: BM001 Comment:

LINE: LINE-PE


Result File: r123_l.dat : New Measurement

Scan Settings (1 Range) Frequencies Receiver Settings IF BW OpRge Start Stop Step Detector M-Time Atten Preamp 150kHz 30MHz 3.9063kHz 9kHz PK+AV 20msec 20 dB OFF 60dB


Transducer No. Start Stop Name 1 150kHz 30MHz ESH3 Z5 Line

Final Measurement: Detectors: XQP/+AV

Meas Time: 1sec Subranges: 8 Acc Margin: 60 dB

i-SENS, Inc.

PLOTS OF EMISSIONS

• Conducted Emission (Neutral)

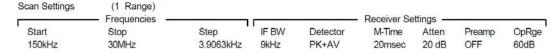
NEMKO KOREA (NK-15-R-0123)

12 Dec 2015 17:43

Conducted Emissions

EUT: EUT

Manuf: i-SENS, Inc.

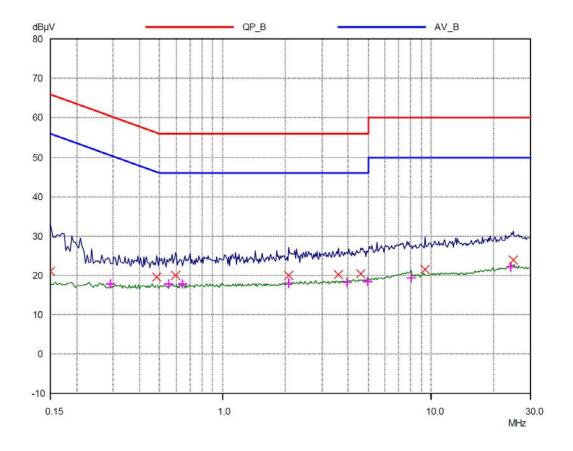

Op Cond: a.c. 120 V / 60 Hz, LE

Operator: Wonho. Son

Test Special

Operator: Wonho, Son
Test Spec: FCC Part 15
Comment: MODEL: BM001
LINE: NEUTRAL-PE

Result File: r123_n.dat : New Measurement



Transducer No. Start Stop Name

1 150kHz 30MHz ESH3_Z5_Neutral

Final Measurement: Detectors: X QP / + AV

Meas Time: 1sec Subranges: 8 Acc Margin: 60 dB

i-SENS, Inc.

Page 20 of 54

TEST DATA

8.2 Radiated Emissions

FCC §15.209, RSS-Gen Issue 4 8.9

Result

resuit								
Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
350.29	48.60	Н	100	101	-18.7	29.9	46.0	16.1
353.79	48.70	Н	100	106	-18.6	30.1	46.0	15.9
395.06	47.90	Н	100	299	-17.4	30.5	46.0	15.5
398.84	47.80	Н	100	305	-17.3	30.5	46.0	15.5
401.90	47.20	Н	100	314	-17.3	29.9	46.0	16.1
432.02	49.00	Н	100	112	-16.5	32.5	46.0	13.5

Radiated Measurements at 3meters

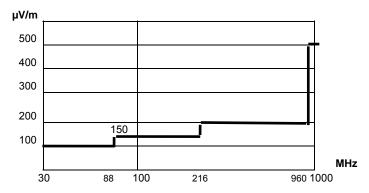
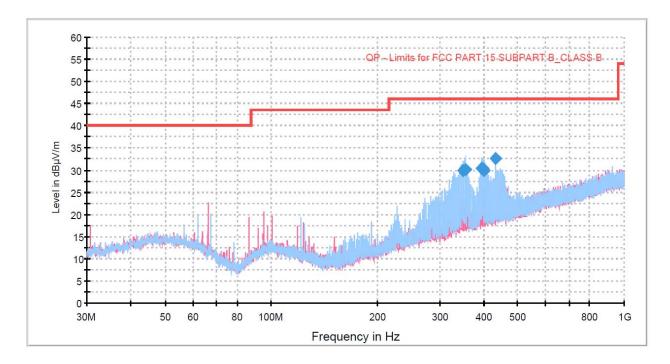


Fig. 3. Limits at 3 meters

Notes:

- 1. All modes were measured and the worst-case emission was reported.
- 2 The radiated limits are shown on Figure 3. Above 1GHz the limit is 500 μ V /m.
- 3. *Pol. H = Horizontal, V = Vertical
- 4. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 5. Measurements using CISPR quasi-peak mode below 1 GHz.
- 6. The radiated emissions testing were made by rotating the receive antenna with horizontal, Vertical polarization. The worst date was recorded.
- 7. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).


i-SENS, Inc.

Page 21 of 54

PLOTS OF EMISSIONS

Worst Case: 2442 MHz GFSK modulation

i-SENS, Inc. FCC ID: OELBM001 / IC: 21003-BM001

8.3 6 dB Modulated Bandwidth

FCC §15.247(a)(2), IC RSS-247 Issue 1 5.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result

Channel	Frequency (MHz)	6 dB modulated bandwidth (MHz)		
Lowest	2402	0.78	0.50	0.28
Middle	2442	0.79	0.50	0.29
Highest	2480	0.80	0.50	0.30

i-SENS, Inc. FCC ID: OELBM001 / IC: 21003-BM001

PLOTS OF EMISSIONS

6 dB Bandwidth, Middle Channel (2442 MHz)

PLOTS OF EMISSIONS

TEST DATA

8.4 Peak Output Power and E.I.R.P.

FCC §15.247(b)(3), IC RSS-247 Issue 1 5.4(4)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result

Modulation	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	E.I.R.P* (dBm)	Limit (dB)	Result
GFSK	2402	-0.44	30.00	1.06	36.00	Complies
GFSK	2441	-0.61	30.00	0.89	36.00	Complies
GFSK	2480	-0.96	30.00	0.54	36.00	Complies

Note:

The following formular was used for spectrum offset:

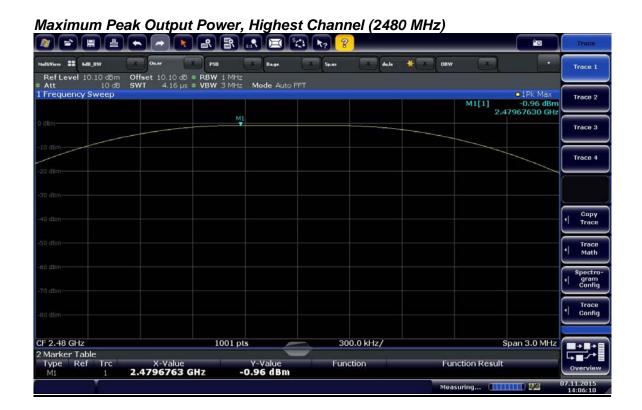
Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

*) E.I.R.P was calculated by following equation according to KDB412172 D01 Determining ERP and EIRP v01

$$E.I.R.P = P_T + G_T - Lc$$

 P_T = Peak outputpower (dBm)

 G_T = Gain of the transmitting antenna in dBi, Peak antenna gain is 1.5dBi.


 L_C = Signal attenuation in the connecting cable between the transmitter and antenna in dB. This factor of an integral antenna is negligible.

Page 28 of 54

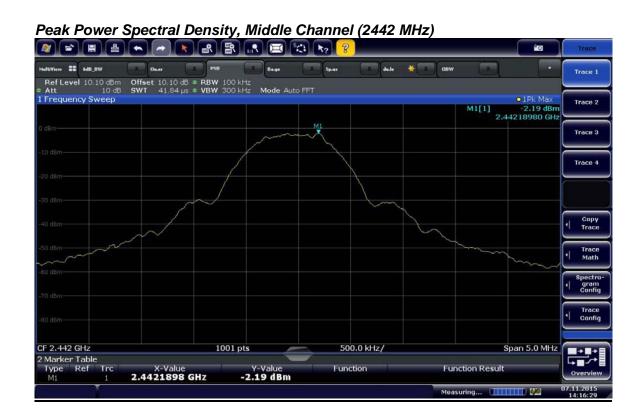
8.5 Peak Power Spectral Density

FCC §15.247(e), IC RSS-247 Issue 1 5.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result

Channel	Frequency(MHz)	Limit (dBm)		
Low	2402	-1.84	8.0	
Middle	2442	-2.19	8.0	
High	2480	-2.56	8.0	


Note:

The following equation was used for spectrum offset:

Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

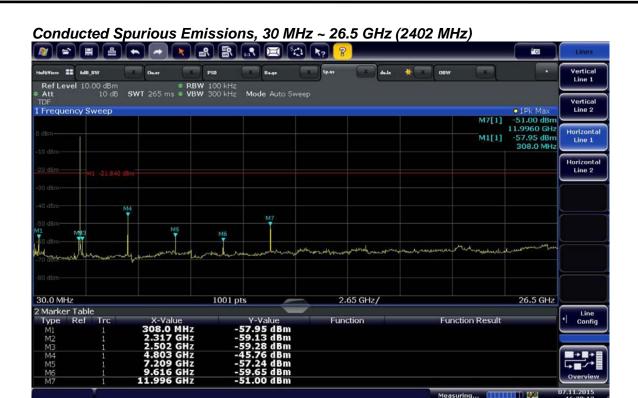
8.6 Conducted Spurious Emissions

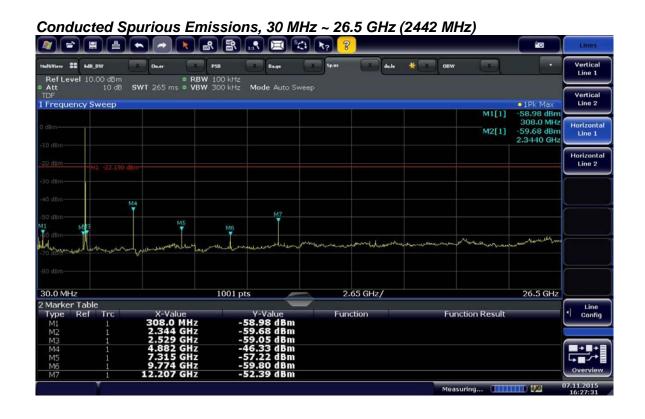
FCC §15.247(d), IC RSS-247 Issue 1 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result

Itesuit				
Channel	Frequency (MHz)	Reference Level (dBm)*	Conducted Spurious Emissions (dBc)	Limit (dBc)
Low	2402	-1.84	More than 20 dBc	20
Middle	2442	-2.19	More than 20 dBc	20
High	2480	-2.59	More than 20 dBc	20


Note:


The cable and attenuator loss from 30 MHz to 25 GHz was reflected in spectrum analyzer with correction factor for the spurious emissions test.

Page 32 of 54 FCC ID: OELBM001 / IC: 21003-BM001

^{*)} Peak power spectral density measured in 8.5 was used for reference level.

Page 33 of 54

8.7 Radiated Spurious Emissions

FCC §15.247(d), IC RSS-247 Issue 1 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result

Lowest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp Result		Limit	Margin
(MHz)	(dBµV)	(H/V)		(dB)**	(dBµV/m)	(dBµV/m)	(dB)
4803.94	44.4	V	peak	9.4	53.8	74.0	20.2
4803.94	34.3	V	average	9.4	43.7	54.0	10.3
7205.92	43.7	Н	peak	16.3	60.0	74.0	14.0
7205.92	30.5	Н	average	16.3	46.8	54.0	7.2

Middle Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)		(dB)**	(dBµV/m)	(dBµV/m)	(dB)
4883.79	45.1	V	peak	9.7	54.8	74.0	19.2
4883.79	32.5	V	average	9.7	42.2	54.0	11.8
7326.34	43.5	Н	peak	16.8	60.3	74.0	13.7
7326.34	30.6	Н	average	16.8	47.4	54.0	6.6

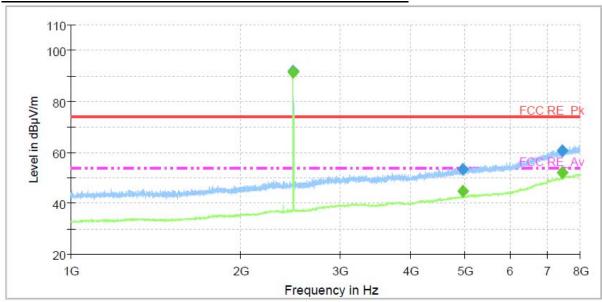
Highest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)		(dB)**	(dBµV/m)	(dBµV/m)	(dB)
4960.01	45.3	Н	peak	9.9	55.2	74.0	18.8
4960.01	36.0	Н	average	9.9	45.9	54.0	8.1
7440.29	44.8	Н	peak	17.0	61.8	74.0	12.2
7440.29	34.7	Н	average	17.0	51.7	54.0	2.3

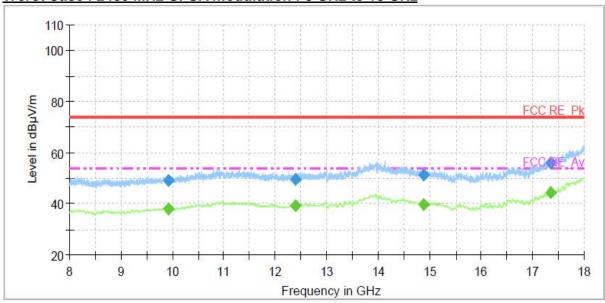
i-SENS, Inc. FCC ID: OELBM001 / IC: 21003-BM001

Test Report No.: NK-15-R-123

FCC and IC Certification


Note:

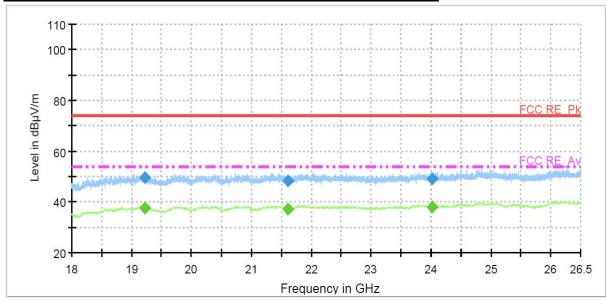
- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Other spurious was under 20 dB below Fundamental.
- 4. GFSK modulation mode was the worst condition.
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 7. For average measurements, "12.2.5.1 Average Power Measurement Procedures" at "558074 D01 DTS Meas Guidance v03r03" was used.
- 8. The spectrum was measured from 9 kHz to 10th harmonic and the worst-case emissions were reported. No significant emissions were found beyond the 3nd harmonic for this device.
- 9. At frequencies above 1 GHz, EUT was placed at a height of 1.5m above the floor on a support according to ANSI 63.10-2013.



PLOTS OF EMISSIONS

Worst Case: 2480 MHz GFSK modulation: 1 GHz to 8 GHz

Worst Case: 2480 MHz GFSK modulation: 8 GHz to 18 GHz


i-SENS, Inc. FCC ID: OELBM001 / IC: 21003-BM001

PLOTS OF EMISSIONS

Worst Case: 2480 MHz GFSK modulation: 18 GHz to 26.5 GHz

i-SENS, Inc. FCC ID: OELBM001 / IC: 21003-BM001

TEST DATA

8.8 Radiated Band Edge

FCC §15.247(d), RSS-247 Issue 1 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel

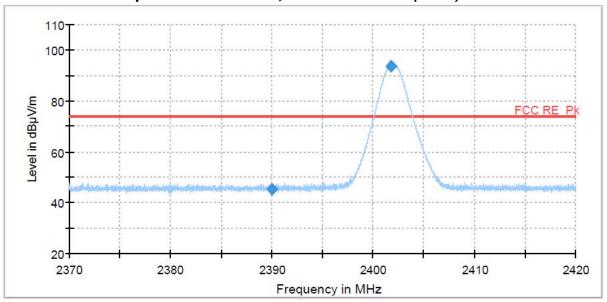
Result

Lowest Channel

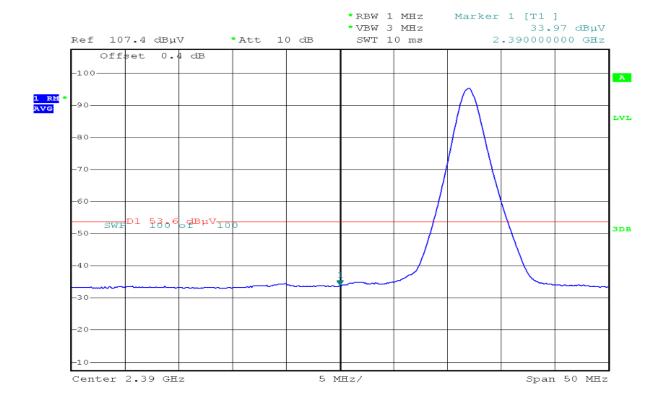
Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Lim it	Margin
(MHz)	(dBµV)	(H/V)		(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2390.00	45.70	V	peak	0.40	45.30	74.0	28.70
2390.00	34.37	V	average	0.40	33.97	54.0	20.03

Highest Channel

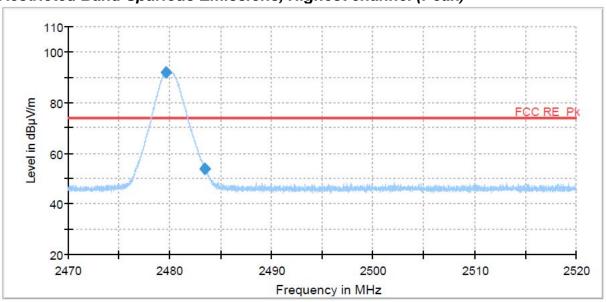
Frequency	Reading	Pol*	m o d e	AF+CL+Amp	Result	Lim it	Margin
(MHz)	(dBµV)	(H/V)		(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2483.50	54.60	Н	peak	0.80	53.80	74.0	20.20
2483.50	52.45	Н	average	0.80	51.65	54.0	2.35

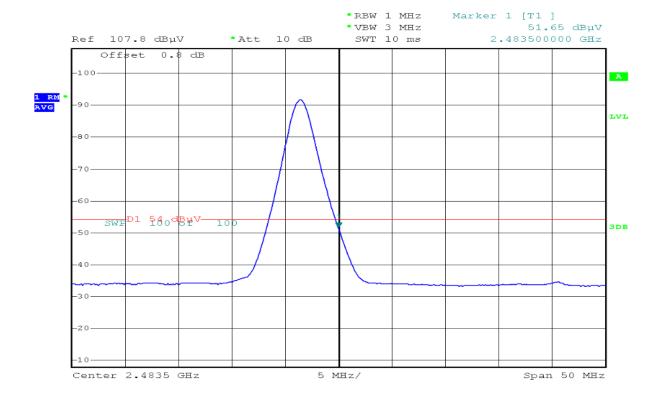

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Other spurious was under 20 dB below Fundamental.
- 4. GFSK modulation mode was the worst condition.
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 7. For average measurements, "12.2.5.1 Average Power Measurement Procedures" at "558074 D01 DTS Meas Guidance v03r03" was used.
- 8. At frequencies above 1 GHz, EUT was placed at a height of 1.5m above the floor on a support according to ANSI 63.10-2013.


i-SENS, Inc. Page 40 of 54

Restricted Band Spurious Emissions, Lowest channel (Peak)


Restricted Band Spurious Emissions, Lowest channel (Average)


i-SENS, Inc.

Restricted Band Spurious Emissions, Highest channel (Peak)

Restricted Band Spurious Emissions, Highest channel (Average)

i-SENS, Inc.

9. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R&S	ESU 40	100202	Apr. 01 2015	1 year
2	*Test Receiver	R&S	ESCS30	100302	Oct. 06 2015	1 year
3	Attenuator	AGILENT	8491B	57773	Oct. 06 2015	1 year
4	*Attenuator	FAIRVIEW	SA3N5W-06	N/A	Apr. 01 2015	1 year
5	*Attenuator	FAIRVIEW	SA3N5W-10	N/A	Apr. 01 2015	1 year
6	*Attenuator	WEINSCHEL	56-10	58765	Apr. 02 2015	1 year
7	*Amplifier	R&S	SCU 01	10030	Apr. 01 2015	1 year
8	*Amplifier	R&S	SCU18	10065	Apr. 01 2015	1 year
9	*Amplifier	R&S	SCU26	10011	Jul. 17 2015	1 year
10	Amplifier	R&S	SCU40	10008	Aug. 10 2015	1 year
11	*Pre Amplifier	HP	8449B	3008A00107	Jan. 09 2015	1 year
12	Spectrum Analyzer	R&S	FSW43	100732	Apr. 07 2015	1 year
13	*Spectrum Analyzer	Agilent	E4440A	MY44022567	Apr. 01 2015	1 year
14	*Spectrum Analyzer	R&S	FSP40	100361	Jul. 16 2015	1 year
15	*DC Power Supply	Protek	PL-5003S	PL5003S0201	Jul. 17 2015	1 year
16	*Loop Antenna	R&S	HFH2-Z2	100279	Feb. 13 2014	2 year
17	*Wideband Power Sensor	R&S	NRP-Z81	100634	Jul. 17 2015	1 year
18	*Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-474	Sep. 01 2014	2 year
19	*Horn Antenna	Q-par Angus	QSH20S20	8179	Apr. 30 2015	2 year
20	Horn Antenna	Q-par Angus	QSH22K20	8180	Apr. 30 2015	2 year
21	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9163	9163-454	Nov. 11 2014	2 year
22	*LISN	R&S	ESH3-Z5	833874/006	Oct. 06 2015	1 year
23	*Controller	INNCO	CO2000-G	CO2000/562/23890210/L	N/A	N/A
24	*Turn Table	INNCO	DT3000-3T	N/A	N/A	N/A
25	*Antenna Mast	INNCO	MA4000-EP	N/A	N/A	N/A
26	*Open Switch And Control Unit	R&S	OSP-120	100015	N/A	N/A
27	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
28	*Position Controller	INNCO	CO2000	12480406/L	N/A	N/A
29	*Turn Table	INNCO	DS1200S	N/A	N/A	N/A
30	*Antenna Mast	INNCO	MA4000	N/A	N/A	N/A
31	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
32	Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A
33	*Open Switch And Control Unit	R&S	OSP-120	100081	N/A	N/A

^{*)} Test equipment used during the test

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%

1. Conducted Uncertainty Calculation

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Χi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN-Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00	-	-	0.00	1	0.00
AMN Impedance	dΖ	± 1.80	triangular	2.449	0.73	1	0.73
(a) Mismatch	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	_	Receiver Misma Receiver Misma					
Combined Standard Uncertainty	Normal			± 1.88			
Expended Uncertainty U		Normal (k =	: 2)		± 3.	76	

i-SENS, Inc. FCC ID: OELBM001 / IC: 21003-BM001

FCC and IC Certification

2. Radiation Uncertainty Calculation

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability	RI	0.34	normal 1	1.00	0.34	1	0.34
Receiver reading	dVsw	± 0.02	normal 2	2.00	0.01	1	0.01
Sine wave voltage	dVpa	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpr	± 0.92	normal 2	2.00	0.46	1	0.46
Pulse repetition rate response	dVnf	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	AF	± 0.50	normal 2	2.00	0.25	1	0.25
Antenna Factor Calibration	CL	± 2.00	rectangular	√3	1.15	1	1.15
Cable Loss	AD	± 1.00	normal 2	2.00	0.50	1	0.50
Antenna Directivity	AH	± 0.00	rectangular	√3	0.00	1	0.00
Antenna Factor Height Dependence	AP	± 2.00	rectangular	√3	1.15	1	1.15
Antenna Phase Centre Variation	AI	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	SI	± 0.25	rectangular	√3	0.14	1	0.14
Site Imperfections	DV	± 4.00	triangular	√6	1.63	1	1.63
Measurement Distance Variation	Dbal	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance	DCross	± 0.90	rectangular	√3	0.52	1	0.52
Cross Polarisation	М	± 0.00	rectangular	√3	0.00	1	0.18
Mismatch	М	+ 0.98 - 1.11	U-Shaped	√2	0.74	1	0.74
EUT Volume Diameter	М	0.33	normal 1	1.00	0.33	1	0.11
Remark							
Combined Standard Uncertainty	Normal						
Expended Uncertainty U			Norma	al (<i>k</i> = 2)			

i-SENS, Inc. FCC ID : OELBM001 / IC : 21003-BM001

APPENDIX A - LABELLING REQUIREMENTS

Labelling Requirements

The sample label shown shall be *permanently affixed* at a conspicuous location on the device and be readily visible to the user at the time of purchase.

i-SENS, Inc.