

Appendix C. Maximum Permissible Exposure

FCC ID: ODMGDUO Page No. : 1 of 3

Report No.: FR982112-01

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E 2, H 2 or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Power Density (\$) Strength (H) (A/m) (mW/ cm²)		Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073		30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: ODMGDUO Page No. : 2 of 3

Report No.: FR982112-01

1.3. Calculated Result and Limit

1.3.1. For Radio 1:

Antenna Type: Dipole Antenna

Max Conducted Power for IEEE 802.11b/g: 23.70dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
5	3.1623	23.7000	234.4229	0.147554	1	Complies

1.3.2. For Radio 2:

Antenna Type: Dipole Antenna

Max Conducted Power for IEEE 802.11b/g: 23.98dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
5	3.1623	23.9800	250.0345	0.157380	1	Complies

1.3.3. For Radio 1 and Radio 2 (Co-Location):

Antenna Type: Dipole Antenna

Max Conducted Power for IEEE 802.11b/g: 23.70dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
5	3.1623	23.7000	234.4229	0.147554	1	Complies

Antenna Type: Dipole Antenna

Max Conducted Power for IEEE 802.11b/g: 23.98dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
5	3.1623	23.9800	250.0345	0.157380	1	Complies

CONCULSION:

Both of the 2.4GHz and 2.4GHz can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.147554 / 1 + 0.157380 / 1 = 0.304934, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

FCC ID: ODMGDUO Page No. : 3 of 3