

FCC Measurement/Technical Report on

Vehicular immobilizer system EWS4

FCC ID: ODE-MREWS5012 IC: 10430A-MREWS5012

Test Report Reference: MDE_BECOM_2001_FCC_01

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

 7layers GmbH

 Borsigstraße 11

 40880 Ratingen, Germany

 T +49 (0) 2102 749 0

 F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	6
3	Administrative Data	7
3.1	Testing Laboratory	7
3.2	Project Data	7
3.3	Applicant Data	7
3.4	Manufacturer Data	7
4	Test object Data	8
4.1	General EUT Description	8
4.2	EUT Main components	8
4.3	Ancillary Equipment	9
4.4	Auxiliary Equipment	9
4.5	EUT Setups	9
4.6	Operating Modes / Test Channels	9
4.7	Product labelling	10
5	Test Results	11
5.1	Occupied Bandwidth (99%)	11
5.2	Wanted Emissions (Carrier)	14
5.3	Spurious Emissions Radiated	16
6	Test Equipment	22
7	Antenna Factors, Cable Loss and Sample Calculations	24
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	24
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	25
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	26
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	27
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	28
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	29
8	Measurement Uncertainties	30
9	Photo Report	31

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements

ANSI C63.10–2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for FCC and IC for general radio equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5 & Amdt. 1 2019: 8.8
Transmitter spurious radiated emissions	§ 15.209 (a)	RSS-Gen Issue 5 & Amdt. 1: 6.13/8.9/8.10; RSS-210 Issue 10: 7.2/7.3
Restricted Bands	§ 15.205	RSS-Gen Issue 5 & Amdt. 1: 8.10; RSS-210 Issue 10: 7.1;
Wanted Emission (Carrier)	§ 15.209	RSS-210 Issue 10: 7.3 RSS-Gen Issue 5 & Amdt. 1: 6.12, 8.9
Other requirements, e.g. Transmitter frequency stability	-	RSS- Gen, Issue 5 & Amdt. 1: 6.11/8.11
Receiver spurious emissions	-	RSS Gen Issue 5 & Amdt. 1: 5/7
Occupied bandwidth	§2.1049	RSS Gen Issue 5 & Amdt. 1: 6.7

Note: This EUT is subject to RSS-210, 7.3

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.209	§ 2.1049			
Occupied Bandwidth (99% and 20 dB) The measurement was performed accordir	ng to ANSI C63.10)	Final Re	sult
OP-Mode Radio Technology, Operating Mode	Setup	Date	FCC	IC
RF ID 134 kHz, Operating Mode 1 Remark: None	S02_AB01	2020-11-12	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.209	§ 15.209			
Wanted Emissions (Carrier)				
The measurement was performed accordir	ng to ANSI C63.10)	Final Re	sult
OP-Mode Radio Technology, Operating Mode	Setup	Date	FCC	IC
RF ID 134 kHz, Operating Mode 1 Remark: None	S01_AA01	2020-11-18	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.209	§ 15.209			
Spurious Emissions Radiated The measurement was performed accordir	ng to ANSI C63.10)	Final Re	sult
OP-Mode Radio Technology, Operating Mode, Measurement range	Setup	Date	FCC	IC
RF ID 134 kHz, Operating Mode 1, 30 MHz - 1 GHz Remark: None	S01_AA01	2020-11-20	Passed	Passed
RF ID 134 kHz, Operating Mode 1, 9 kHz - 30 MHz Remark: None	S01_AA01	2020-10-29	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2021-01-27		valid	

COMMENT: -

(responsible for accreditation scope) Dipl.-Ing. Wolfgang Richter

Lin

(responsible for testing and report) Dipl.-Ing. Dobrin Dobrinov

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name:	7layers GmbH
Address:	Borsigstr. 11 40880 Ratingen Germany
The test facility is accredited by the fol	llowing accreditation organisation:
Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Wolfgang Richter

Report Template Version: 2020-06-15

3.2 PROJECT DATA

Responsible for testing and report:	DiplIng. Dobrin Dobrinov
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2021-01-27
Testing Period:	2020-10-29 to 2020-11-20

3.3 APPLICANT DATA

Company Name:	BECOM Electronics GmbH
Address:	Technikerstraße 1 7442 Hochstrass Austria
Contact Person:	Mrs. Stephanie Kirnbauer

3.4 MANUFACTURER DATA

Company Name: please see applicant data

Address:

Contact Person:

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Vehicular immobilizer system
Product name	EWS4
Declared EUT data by	the supplier
Power Supply Type	DC Vechicle Battery
Nominal Voltage / Frequency	13.5 V
Test Voltage / Frequency	13.5 V
Highest internal frequency	100 MHz
General Description	Vehicular immobilizer system transceiver operating on 134 kHz
Ports	Enclosure, DC Power Supply, CAN
Special software used for testing	Special software based on serial software

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT B	DE1392001ab01	conducted sample with test SW
Sample Parameter	Value	
Serial No.	9444628-01331835	
HW Version	07/10/2019156788	
SW Version	Special test software based on serial software	
Comment	Used for Occupied bandwidth testing	

Sample Name	Sample Code Description		
EUT A	DE1392001aa01 radiated sample with test SV		
Sample Parameter	Value		
Serial No.	9444628-01331868		
HW Version	07/10/2019156788		
SW Version Special test software based on serial software		al software	
Comment	Used for testing RSE, Peak Power Output		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
-	-	-

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT A	EUT radiated sample with power-supply cables
S02 AB01	D1 EUT B	EUT conducted sample with power-supply cables and
302_AD01	201 0	temporary antenna connector installed

OPERATING MODES / TEST CHANNELS 4.6

This chapter describes the operating modes of the EUTs used for testing.

Operating mode	Description
TX-on	Controlled by test software, the EUT transmits modulated carrier at 134.4 kHz

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL ODE-MREWS5012

4.7.2 IC ID LABEL 10430A-MREWS5012

4.7.3 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:Resolution Bandwidth (RBW): 200 Hz

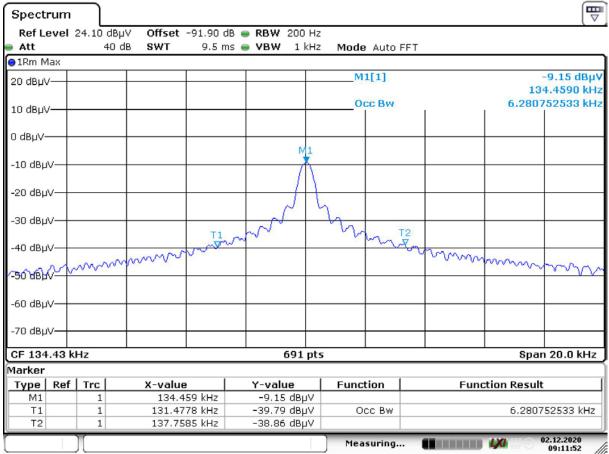
- Video Bandwidth (VBW): 1 kHz
- Span: 20 kHz
- Trace: Maxhold
- Sweeps: 2000
- Sweeptime: 9.5 ms
- Detector: RMS

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

5.1.2 TEST REQUIREMENTS / LIMITS

5.1.3 TEST PROTOCOL

RF ID 134 kHz


Band	Operating Mode	Frequency [MHz]	99 % Bandwidth [kHz]
134 kHz	Mode 1	134.46	6.281
Band	Operating Mode	Frequency [MHz]	20 dB Bandwidth [kHz]
134 kHz	Mode 1	134.46	2.026

Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOTS

Radio Technology = RF ID 134 kHz, Operating Mode = TX-on (S02_AB01) OCCUPIED BANDWIDTH (99%)

Date: 2.DEC.2020 09:11:51

Radio Technology = RF ID 134 kHz, Operating Mode = Mode TX-on (S02_AB01) OCCUPIED BANDWIDTH (20 dB)

Spectrum						
Ref Level	117.40	dBµV Offset 10.40 d	iB 🥃 RBW 200 Hz			
Att		10 dB SWT 9.5 m	ns 👄 VBW 🛛 1 kHz	Mode Auto FR	FT	
●1Pk Max						
110 dBµV				M1[1] M2[1]		93.42 dBµ\ 134.4580 kHz 72.96 dBµ\
100 dBµV			MI		1	133.4449 kHz
90 dBµV	1 93.1	90 dBµV				
80 dBµV			M2	∿W3		
70 dBµV	D2	73.190 dBµV		M3 V		
60 dBµV		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			man	
50 dBµV	~~~~					
40 dBµV						
30 dBµV						
20 dBµV						
CF 134.4 kH	z		691 pts			Span 20.0 kHz
Marker						
	Trc	X-value	Y-value	Function	Fund	ction Result
M1	1	134.458 kHz	93.42 dBµV			
M2 M3	1	133.4449 kHz 135.4709 kHz	72.96 dBµV 73.08 dBµV			
		· · · · · ·) Measuring		04.12.2020 14:51:44

Date: 4.DEC.2020 14:51:44

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

5.2 WANTED EMISSIONS (CARRIER)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.2.1 TEST DESCRIPTION

Please see test description in subclause 5.3.1 Spurious Emissions Radiated, abstract 2.

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

The fundamental emission of the EUT must be outside the restricted bands of operation as defined in §15.205.

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 – 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

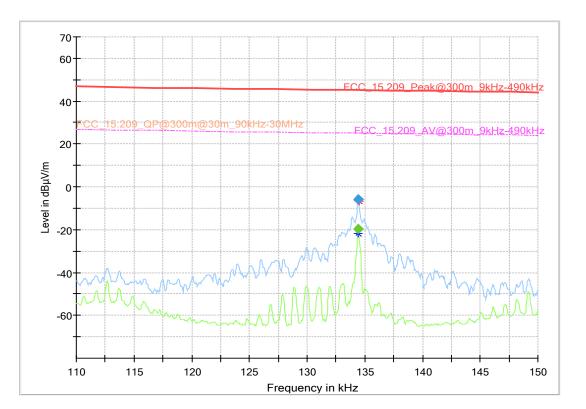
Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.2.3 TEST PROTOCOL

RF ID 134 kHz

Band	Operating	Frequency	Output Power	Limit	Margin to Limit
	Mode	[MHz]	[dBµV/m]	[dBµV/m]	[dB]
134 kHz	TX-ON	134.45	-6.0	46.0	52.0

Remark: Please see next sub-clause for the measurement plot.



5.2.4 MEASUREMENT PLOT

Radio Technology = RF ID 134 kHz, Operating Mode = Operating Mode TX-on (S01_AA01)

Common Information

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m Test Standard: FCC 15c209 EUT / Setup Code: DE1392001aa01 **Operating Conditions:** 13.5V DC Labor PS **Operator Name:** DOB Comment: measurement time preview and adjustment: 500 ms, final: 1 s x-Orientation (indicate h=100) loop plane vertical, vector in measurement axis directed to EUT y-Orientation (indicate h=200) loop plane vertical, vector perpendicular to measurement axis z-Orientation (indicate h=300) loop plane horizontal, normal vector directed to ground Legend: Trace: blue = Peak; green = AV, Star: = critical frequency; Rhombus: blue = final QP

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimuth (deg)	Corr. (dB/m)
0.134450		25.05	44.68	1000.0	0.200	100.0	90.0	-59.6
0.134450	-6.04	45.05	51.09	1000.0	0.200	100.0	90.0	-59.6

5.2.5 TEST EQUIPMENT USED

- Radiated Emissions

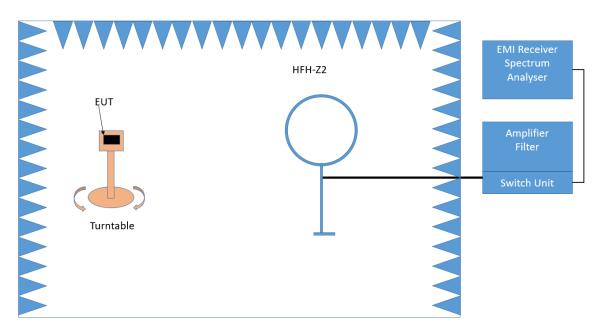
5.3 SPURIOUS EMISSIONS RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.3.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapters of ANSI C63.10:


- < 30 MHz: Chapter 6.4
- 30 MHz 1 GHz: Chapter 6.5
- > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

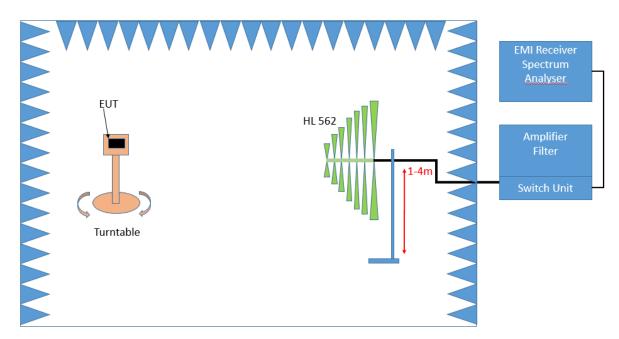
1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF–Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360° . During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary between 1 - 4 meter. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360 °
- Height variation range: 1 4 m
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

- EMI receiver settings for step 3:
- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

5.3.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 – 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

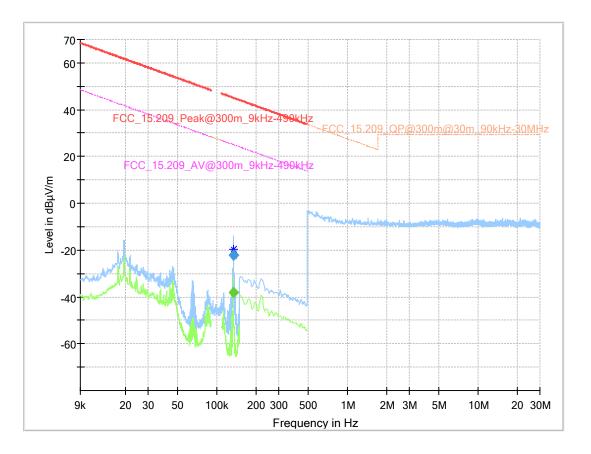
Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.3.3 TEST PROTOCOL

RF ID 134 kHz

Ch. Center Freq. [kHz]	Operating Mode	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
134.45	Mode 1	0.009 - 30					>20
134.45	Mode 1	30 -1000					>15

Remark: Please see next sub-clause for the measurement plot.



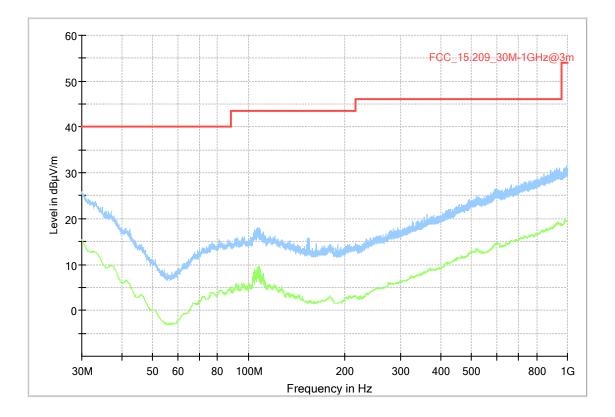
5.3.4 MEASUREMENT PLOTS

Radio Technology = RF ID 134 kHz, Operating Mode = tx-on, Measurement range = 9 kHz - 30 MHz (S01_AA01)

Common Information

Test Description: Test Standard: EUT / Setup Code: Operating Conditions: Operator Name: Comment: x-Orientation (indicate h=100) y-Orientation (indicate h=200) z-Orientation (indicate h=300) Legend: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m FCC 15c209 DE1302001ab01 13.5V DC, DOB radiated sample, serial antenna EUT vertical loop plane vertical, vector in measurement axis directed to EUT loop plane vertical, vector perpendicular to measurement axis loop plane horizontal, normal vector directed to ground Trace: blue = Peak; green = AV, Star: = critical frequency; Rhombus: blue = final QP

Final_Result


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimuth (deg)	Corr. (dB/m)
0.134450		25.05	62.95	1000.0	0.200	300.0	203.0	-59.6
0.134450	-22.21	45.05	67.26	1000.0	0.200	300.0	203.0	-59.6

Radio Technology = RF ID 134 kHz, Operating Mode TX-on, Measurement range = 30 MHz - 1 GHz, (S01_AA01)

Common Information

Test Description: Test Standard EUT / Setup Code Operating Conditions: Operator Name: Comment: Legend: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m FCC § 15.209 DE1302001ab01 13.5V DC, DOB radiated sample, serial antenna EUT vertical Trace: blue = Peak; green = AV, Star: = critical frequency; Rhombus: blue = final QP

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment

5.3.5 TEST EQUIPMENT USED

- Radiated Emissions

6 TEST EQUIPMENT

1 R&S TS8997

2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2020-08	2023-08
1.2	EX520	Digital Multimeter 12	Extech Instruments Corp	05157876	2020-04	2022-04
1.3	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
1.4	Opus10 THI (8152.00)	T/H Logger 15	Lufft Mess- und Regeltechnik GmbH	13985	2019-06	2021-06
1.5	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456	2020-01	2022-01
1.6	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
1.7	SMB100A	5	Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2021-11
1.8	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
1.9	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2019-06	2021-06
1.10	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2019-11	2022-11
1.11	OSP120	Contains Power Meter and Switching Unit OSP- B157W8	Rohde & Schwarz	101158	2018-05	2021-05

2 Radiated Emissions

Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1		Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
2.2		Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
2.3	Opus10 TPR (8253.00)	55	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
2.4			Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
-	Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	2018-06	2021-06

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.6	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
2.7	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
2.8	WRD1920/1980- 5/22-5EESD		Wainwright Instruments GmbH	11		
2.9	TDS 784C	Digital Oscilloscope [SA2] (Aux)	Tektronix	B021311		
2.10	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2019-06	2021-06
2.11	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.12	foRS232 Unit 1	Fibre optic link RS232	PONTIS Messtechnik GmbH	4021516036		
2.13	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
2.14	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
2.15	SGH-08	Standard Gain / Pyramidal Horn Antenna (90 - 140 GHz)	RPG-Radiometer Physics GmbH	064		
2.16	FS-Z140	Harmonic Mixer 90 -140 GHz	Rohde & Schwarz Messgerätebau GmbH	101007	2020-03	2023-03
2.17	OLS-1 M	Fibre optic link USB 1.1	Ingenieurbüro Scheiba	018		
2.18 2.19	HFH2-Z2 SB4- 100.OLD20- 3T/10 Airwin 2 x 1.5 kW	Loop Antenna Air compressor (oil-free)	Rohde & Schwarz airWin Kompressoren UG	829324/006 901/00503	2018-01	2021-01
2.20	FS-Z90	Harmonic Mixer 60 - 90 GHz	Rohde & Schwarz Messgerätebau GmbH	101686	2020-03	2023-03
2.21	CO3000	Controller for bore sight mast SAC	innco systems GmbH	CO3000/967/393 71016/L		
2.22	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

Fraguana	Corr.	LISN insertion loss ESH3- Z5	cable loss (incl. 10 dB atten- uator)
Frequency MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	 10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	 11.2	0.5	10.7
28	 11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

			1							
				cable	cable	cable	cable	distance	dLimit	dused
	<u>م ح</u>			loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
Fraguanay	AF	Corr		(inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	HFH-Z2)	Corr.		chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz 0.009	dB (1/m)	dB		dB	dB 0.1	dB	dB 0.1	dB -80	m	m 3
	20.50	-79.6		0.1		0.1	_		300 300	
0.01	20.45	-79.6		0.1	0.1	0.1	0.1	-80 -80	300	3
0.015	20.37	-79.6 -79.6		0.1	0.1	0.1	0.1		300	3
-	20.36	-79.6		0.1	0.1	0.1	0.1	-80 -80	300	3
0.025	20.38 20.32			0.1	0.1	0.1	0.1	-80 -80	300	3
0.03		-79.6		0.1	0.1	0.1	0.1	-80 -80	300	3
0.05	20.35 20.30	-79.6 -79.6		0.1	0.1	0.1	0.1	-80 -80	300	3
0.08	20.30	-79.6		0.1	0.1	0.1	0.1	-80 -80	300	3
0.1		-79.6		0.1	0.1	0.1	0.1	-80 -80	300	3
0.2	20.17			0.1	0.1	0.1	0.1	-80 -80		3
	20.14	-79.6		-	-	-	-		300	3
0.49	20.12	-79.6		0.1	0.1	0.1	0.1	-80	300	
0.490001	20.12	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6		0.1	0.1	0.1	0.1	-40	30	
0.8	20.10 20.09	-39.6 -39.6		0.1	0.1	0.1	0.1	-40 -40	30 30	3
		-39.6				-			30	3
2	20.08 20.06	-39.6		0.1	0.1	0.1	0.1	-40 -40	30	3
4				0.1		0.1	0.1	-40	30	3
5	20.05 20.05	-39.5 -39.5		0.2	0.1	0.1	0.1	-40	30	3
6	20.03	-39.5		0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5		0.2	0.1	0.1	0.1	-40	30	3
10	19.93	-39.5		0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4		0.2	0.1	0.2	0.1	-40	30	3
14	19.71	-39.4		0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.3		0.2	0.1	0.2	0.1	-40	30	3
18	19.53	-39.3		0.3	0.1	0.2	0.1	-40	30	3
20	19.50	-39.3		0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3		0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3		0.3	0.1	0.2	0.1	-40	30	3
24	19.01	-39.3		0.3	0.1	0.2	0.1	-40	30	3
28	19.34	-39.2		0.3	0.1	0.2	0.1	-40	30	3
30	19.40	-39.2		0.3	0.1	0.3	0.1	-40	30	3
	17.13	-37.1		0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d _{Limit}	d _{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(<u>d_{Limit} = 10 m)</u>

	7								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

		5111 /0/	ς.		0 011 <u></u>				
Frequency MHz 1000 2000 3000 4000 5000	AF R&S HF907 dB (1/m) 24.4 28.5 31.0 33.1 34.4	Corr. dB -19.4 -17.4 -16.1 -14.7 -13.7		cable loss 1 (relay + cable inside chamber) dB 0.99 1.44 1.87 2.41 2.78	cable loss 2 (outside chamber) dB 0.31 0.44 0.53 0.67 0.86	cable loss 3 (switch unit, atten- uator & pre-amp) dB -21.51 -20.63 -19.85 -19.13 -18.71	cable loss 4 (to receiver) dB 0.79 1.38 1.33 1.31 1.40		
6000	34.7	-12.7		2.74	0.90	-17.83	1.47		
7000	35.6	-11.0		2.82	0.86	-16.19	1.46		
Frequency	AF R&S HF907	Corr.		cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1								
		-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
Frequency	AF R&S HF907	Corr.		cable loss 1 (relay inside chamber)	cable loss 2 (High Pass)	cable loss 3 (pre- amp)	cable loss 4 (inside chamber)	cable loss 5 (outside chamber)	cable loss 6 (to receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.00	1.60
10000	37.1	-56.2		0.08	0.05	-61.91	3.28	1.09	1.67
11000	37.5	-56.2		0.70			3.28	1.20	1.67
12000	37.5				0.61	-61.40			
		-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.54	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.49	-61.51	4.17	1.51	1.85
17000	42.8	-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			-			-		
				cable	cable	cable	cable	cable
	AF			loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO			(inside	(pre-	(inside	(switch	(to
Frequency	3160-09	Corr.		chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB
18000	40.2	-23.5		0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2		0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0		0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3		0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3		0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9		0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1		0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1		0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7		0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0		0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5		0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3		0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8		0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5		0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3		0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4		0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3		0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1		0.90	-35.20	7.15	3.91	2.36

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver readingAF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ – 40 GHZ)

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

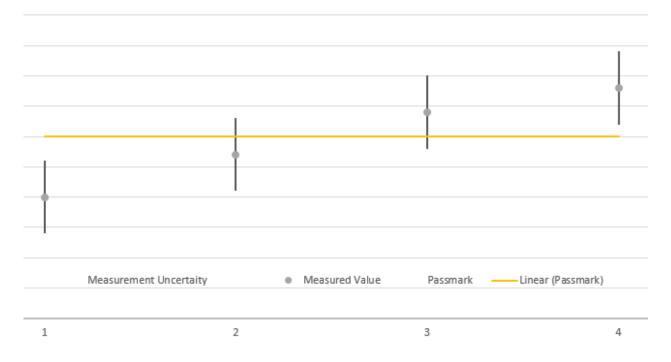
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = $-20 \times LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Voltage	± 3.4 dB
Field Strength of spurious radiation	Voltage	± 5.5 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.