

FCC PART 15.247 TEST REPORT

For

Techwall Electronics Co., Ltd.

24/F, Tower 1, Tern Centre, 237 Queen's Road, Central, Hong Kong

FCC ID: OD9BC70BU

Report Type: Product Name:

Original Report Digital Baby Monitor

Report Number: RDG171219003-00B

Report Date: 2018-07-12

Jerry Zhang

EMC Manager

Reviewed By:

Bay Area Compliance Laboratories Corp. (Dongguan)

Test Laboratory: No.69 Pulongcun, Puxinhu Industry Area,

Tangxia, Dongguan, Guangdong, China

Jerry Zhang

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	6
SUPPORT CABLE LIST AND DETAILS	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
FCC §15.247 (i), §1.1310, §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
APPLICABLE STANDARD	9
FCC §15.203 - ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	10
ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
EUT SETUP	
EMI TEST RECEIVER SETUP	11
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (1) – CHANNEL SEPARATION TEST	
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	22
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	25
APPLICABLE STANDARD	25
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	25

Test Data	25
FCC §15.247(a) (1) (i) - QUANTITY OF HOPPING CHANNEL TEST	28
APPLICABLE STANDARD	28
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §15.247(a) (1) (i) - TIME OF OCCUPANCY (DWELL TIME)	30
APPLICABLE STANDARD	30
TEST PROCEDURE	30
TEST EQUIPMENT LIST AND DETAILS	
Test Data	30
FCC §15.247(b) (2) - PEAK OUTPUT POWER MEASUREMENT	33
APPLICABLE STANDARD	33
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §15.247(d) - BAND EDGES TESTING	34
APPLICABLE STANDARD	34
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	35

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	Product Type:	Digital Baby Monitor(Baby Unit)
EUT Name:		Digital Baby Monitor
EUT Model:		BC-70
	FCC ID:	OD9BC70BU
Rated Input Voltage:		DC 5V from adapter or DC4.5V from AAA*3
A 1 .	Model:	SW0500600-A04
Adapter Information	Input:	100-240V~50/60Hz Max. 200mA
inioi mation	Output:	DC 5V, 600mA
External Dimension:		Length (95 mm)*Width (95 mm)*High (32 mm)
Serial Number:		171219003
EU	UT Received Date:	2017.12.19

Objective

This report is prepared on behalf of *Techwall Electronics Co., Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules

The tests were performed in order to determine the EUT compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

Part of system submissions with FCC ID: OD9BC70PU, FCC ID:OD9BSM1.

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.55 dB,200M~1GHz: 5.92 dB,1G~6GHz: 4.98 dB, 6G~18GHz: 5.89 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode. 57 hopping channels are provided:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	915.8	16	918.8	31	921.8	46	924.8
2	916	17	919	32	922	47	925
3	916.2	18	919.2	33	922.2	48	925.2
4	916.4	19	919.4	34	922.4	49	925.4
5	916.6	20	919.6	35	922.6	50	925.6
6	916.8	21	919.8	36	922.8	51	925.8
7	917	22	920	37	923	52	926
8	917.2	23	920.2	38	923.2	53	926.2
9	917.4	24	920.4	39	923.4	54	926.4
10	917.6	25	920.6	40	923.6	55	926.6
11	917.8	26	920.8	41	923.8	56	926.8
12	918	27	921	42	924	57	927
13	918.2	28	921.2	43	924.2	/	/
14	918.4	29	921.4	44	924.4	/	/
15	918.6	30	921.6	45	924.6	/	/

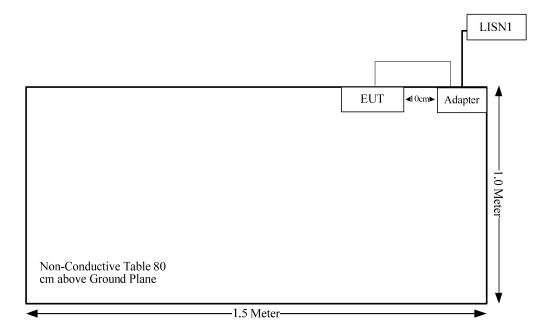
Channel 1, 29, 57 were selected to test.

EUT Exercise Software

No software was used in test, the device was configured to engineer mode by manufacturer.

Equipment Modifications

No modification was made to the EUT.


Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From	То
DC Power Cable	No	No	2.0	Adapter	EUT

Page 6 of 37

Report No.: RDG171219003-00B

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1091	Maximum Permissable Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test Complia	
§15.247(a)(1)(i)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(i)	Quantity of hopping channel Test	Compliance
§15.247(b)(2)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

FCC $\S15.247$ (i) , $\S1.1310$, $\S2.1091$ - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation Formula:

Prediction of power density at the distance of the applicable MPE limit:

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency Range	Antenna Gain		Max. Target Power including Tolerance		Evaluation Distance	Power Density (W/m ²)	MPE Limit (W/m²)
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(W/III)	(W/III)
915.8-927	0	1.00	20	100.00	20.00	0.02	0.61

Note: the Max. Target Power including Tolerance was declared by manufacturer.

Result: Compliance, The device meets MPE requirement for Devices Used by the General Public (Uncontrolled Environment) at distance ≥20 cm.

FCC §15.203 - ANTENNA REQUIREMENT

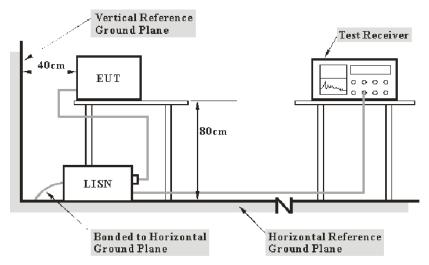
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement, and the antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


Page 10 of 37

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein,

 V_C : corrected voltage amplitude V_R : reading voltage amplitude A_c : attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

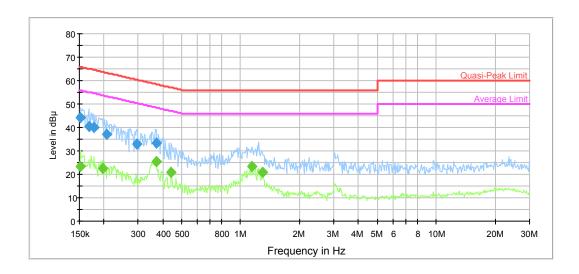
Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2017-12-11	2018-12-11
R&S	Two-line V-network	ENV 216	101614	2017-12-08	2018-12-08
R&S	L.I.S.N	ESH2-Z5	892107/021	2017-09-25	2018-09-25
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-01	2017-09-05	2018-09-05
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

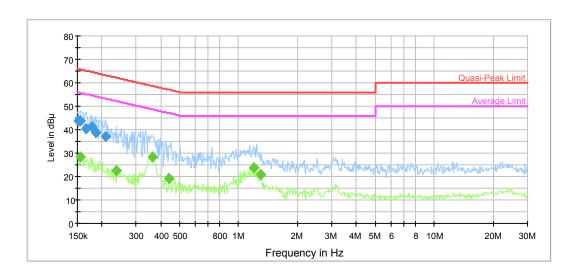
Test Data


Environmental Conditions

Temperature:	30.2 °C
Relative Humidity:	57 %
ATM Pressure:	101.3 kPa

The testing was performed by Sider Huang on 2018-06-22.

Test Mode: Transmitting


AC120V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.152410	44.0	9.000	L1	11.2	21.9	65.9	Compliance
0.167702	40.3	9.000	L1	10.9	24.8	65.1	Compliance
0.178741	39.8	9.000	L1	10.8	24.7	64.5	Compliance
0.207957	37.0	9.000	L1	10.6	26.3	63.3	Compliance
0.295282	32.9	9.000	L1	10.2	27.5	60.4	Compliance
0.369089	33.5	9.000	L1	10.0	25.0	58.5	Compliance

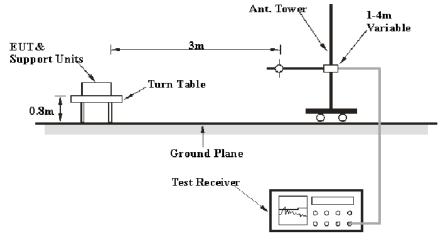
Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.152410	23.2	9.000	L1	11.2	32.7	55.9	Compliance
0.196675	22.4	9.000	L1	10.7	31.3	53.7	Compliance
0.369089	25.2	9.000	L1	10.0	23.3	48.5	Compliance
0.443327	20.8	9.000	L1	9.9	26.2	47.0	Compliance
1.144267	23.2	9.000	L1	9.8	22.8	46.0	Compliance
1.289541	20.8	9.000	L1	9.8	25.2	46.0	Compliance

AC120V, 60 Hz, Neutral:

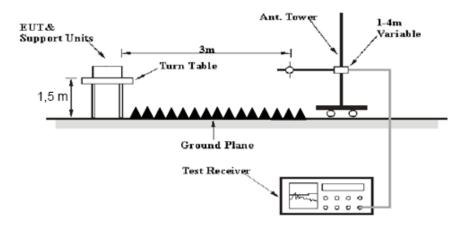
Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.152410	44.0	9.000	N	11.1	21.9	65.9	Compliance
0.156097	43.7	9.000	N	11.1	22.0	65.7	Compliance
0.166371	40.6	9.000	N	10.9	24.5	65.1	Compliance
0.178741	41.1	9.000	N	10.8	23.4	64.5	Compliance
0.186006	38.7	9.000	N	10.7	25.5	64.2	Compliance
0.209621	37.0	9.000	N	10.6	26.2	63.2	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.156097	28.2	9.000	N	11.1	27.5	55.7	Compliance
0.238124	22.6	9.000	N	10.4	29.6	52.2	Compliance
0.363254	28.3	9.000	N	10.0	20.4	48.7	Compliance
0.443327	19.4	9.000	N	9.9	27.6	47.0	Compliance
1.190776	23.8	9.000	N	9.8	22.2	46.0	Compliance
1.289541	20.9	9.000	N	9.8	25.1	46.0	Compliance

Report No.: RDG171219003-00B


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission Below 1GHz tests were performed in the 3 meters chamber A, above 1GHz tests were performed in the 3 meters chamber B, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 10 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	AV

Note: If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP measurement

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

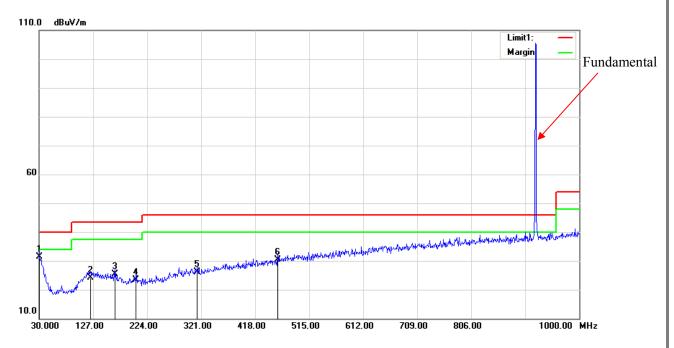
Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Data

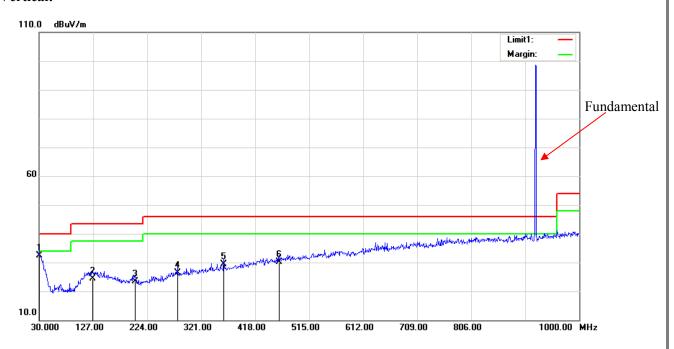
Environmental Conditions


Temperature:	26.9~28.6°C
Relative Humidity:	37~44 %
ATM Pressure:	101.3~101.7 kPa

^{*} The testing was performed by Tyler Pan and Sunny Cen on 2018-06-22~2018-06-27.

Test Mode: Transmitting

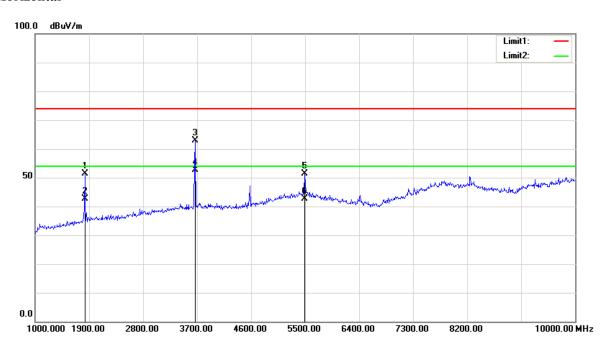
1) 30MHz-1GHz(Low channel was the worst)


Horizontal:

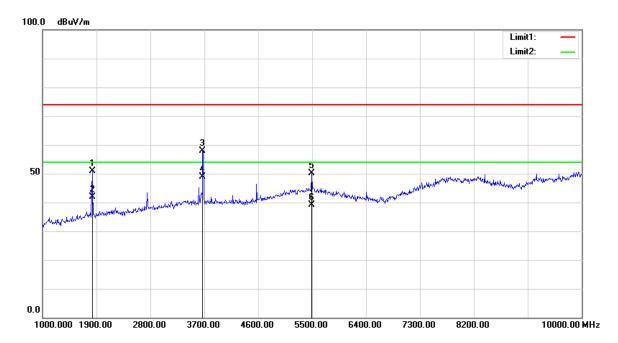
Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.0000	3.63	QP	27.87	31.50	40.00	8.50
122.1500	3.00	QP	21.20	24.20	43.50	19.30
165.8000	5.85	QP	19.45	25.30	43.50	18.20
203.6300	4.08	QP	19.32	23.40	43.50	20.10
314.2100	4.20	QP	21.90	26.10	46.00	19.90
458.7400	4.73	QP	25.77	30.50	46.00	15.50

Report No.: RDG171219003-00B

Vertical:



Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.0000	4.63	QP	27.87	32.50	40.00	7.50
126.0300	3.30	QP	21.20	24.50	43.50	19.00
202.6600	3.85	QP	19.55	23.40	43.50	20.10
278.3200	5.07	QP	21.23	26.30	46.00	19.70
361.7400	6.25	QP	23.05	29.30	46.00	16.70
460.6800	4.33	QP	25.87	30.20	46.00	15.80


2) Fundamental, bandedge and above 1GHz

	R	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	T	3.5
Frequency (MHz)	Reading	Measurement	Polar	Factor	loss	Gain	Amplitude	Limit (dBµV/m)	Margin (dB)
	(dBµV)	'	(H/V)	(dB/m)	(dB)	(dB)	(dBµV/m)		
015.00	02.70	OD		w Channel:			100.22	NT/A	NT/A
915.80	82.70	QP	Н	22.40	4.22	0.00	109.32	N/A	N/A
915.80	79.10	QP	V	22.40	4.22	0.00	105.72	N/A	N/A
902.00	12.10	QP	Н	22.34	4.29	0.00	38.73	46.00	7.27
1831.60	60.62	PK	Н	26.59	1.66	35.95	52.92	74.00	21.08
1831.60	51.21	AV	Н	26.59	1.66	35.95	43.51	54.00	10.49
2747.40	47.19	PK	Н	29.19	1.91	36.51	41.78	74.00	32.22
2747.40	36.44	AV	Н	29.19	1.91	36.51	31.03	54.00	22.97
3663.20	65.25	PK	Н	31.66	2.51	37.06	62.36	74.00	11.64
3663.20	55.64	AV	Н	31.66	2.51	37.06	52.75	54.00	1.25
4579.00	48.33	PK	Н	32.46	3.08	37.13	46.74	74.00	27.26
4579.00	36.77	AV	Н	32.46	3.08	37.13	35.18	54.00	18.82
5494.80	52.61	PK	Н	34.09	3.54	37.34	52.90	74.00	21.10
5494.80	43.74	AV	Н	34.09	3.54	37.34	44.03	54.00	9.97
	•	T		dle Channe			T	1	1
921.40	82.10	QP	Н	22.43	4.30	0.00	108.83	N/A	N/A
921.40	78.30	QP	V	22.43	4.30	0.00	105.03	N/A	N/A
1842.80	57.61	PK	Н	26.64	1.66	35.97	49.94	74.00	24.06
1842.80	48.05	AV	Н	26.64	1.66	35.97	40.38	54.00	13.62
2764.20	54.87	PK	Н	29.25	1.92	36.53	49.51	74.00	24.49
2764.20	45.30	AV	Н	29.25	1.92	36.53	39.94	54.00	14.06
3685.60	64.51	PK	Н	31.71	2.55	37.03	61.74	74.00	12.26
3685.60	55.01	AV	Н	31.71	2.55	37.03	52.24	54.00	1.76
4607.00	47.51	PK	Н	32.51	3.10	37.13	45.99	74.00	28.01
4607.00	36.94	AV	Н	32.51	3.10	37.13	35.42	54.00	18.58
5528.40	52.64	PK	Н	34.11	3.55	37.41	52.89	74.00	21.11
5528.40	43.49	AV	Н	34.11	3.55	37.41	43.74	54.00	10.26
			Н	igh Channe	1: 927 MF	łz			
927.00	82.90	QP	Н	22.54	4.35	0.00	109.79	N/A	N/A
927.00	79.50	QP	V	22.54	4.35	0.00	106.39	N/A	N/A
928.00	12.40	QP	Н	22.56	4.34	0.00	39.30	46.00	6.70
1854.00	58.93	PK	Н	26.69	1.66	35.99	51.29	74.00	22.71
1854.00	49.50	AV	Н	26.69	1.66	35.99	41.86	54.00	12.14
2781.00	56.12	PK	Н	29.31	1.93	36.55	50.81	74.00	23.19
2781.00	47.61	AV	Н	29.31	1.93	36.55	42.30	54.00	11.70
3708.00	62.30	PK	Н	31.76	2.57	37.02	59.61	74.00	14.39
3708.00	53.61	AV	Н	31.76	2.57	37.02	50.92	54.00	3.08
4635.00	46.22	PK	Н	32.57	3.08	37.11	44.76	74.00	29.24
4635.00	35.58	AV	Н	32.57	3.08	37.11	34.12	54.00	19.88
5562.00	52.34	PK	Н	34.12	3.56	37.49	52.53	74.00	21.47
5562.00	43.59	AV	Н	34.12	3.56	37.49	43.78	54.00	10.22

Worst plots(Low channel) Horizontal

Vertical

FCC §15.247(a) (1) – CHANNEL SEPARATION TEST

Applicable Standard

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/04	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 3 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	28.8°C
Relative Humidity:	56 %
ATM Pressure:	101.1 kPa

^{*} The testing was performed by Swim Lv on 2018-07-10.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)
Low	915.8	0.2003	0.14128
Middle	921.4	0.2003	0.14429
High	927	0.2003	0.14429

Low Channel

Middle Channel

Report No.: RDG171219003-00B

High Channel

FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/04	Each time	N/A

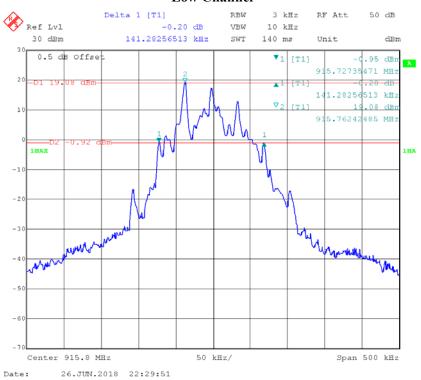
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.6°C
Relative Humidity:	53 %
ATM Pressure:	101.8 kPa

^{*} The testing was performed by Swim Lv on 2018-06-26.

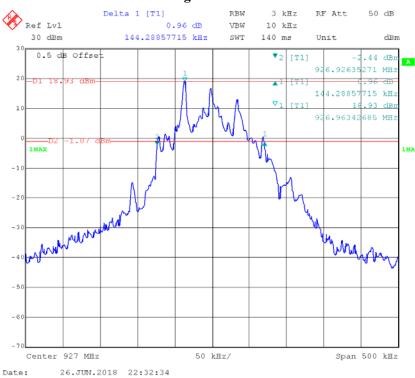

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Low	915.8	0.14128
Middle	921.4	0.14429
High	927	0.14429

Low Channel



Middle Channel

Report No.: RDG171219003-00B

High Channel

FCC §15.247(a) (1) (i) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

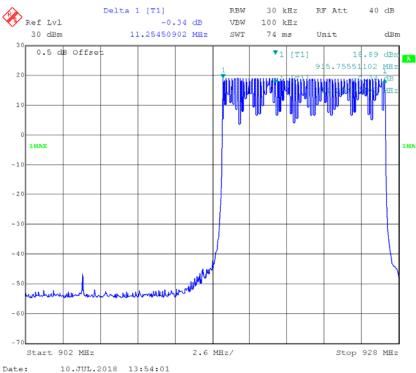
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/04	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.8°C
Relative Humidity:	56 %
ATM Pressure:	101.1 kPa


^{*} The testing was performed by Swim Lv on 2018-07-10.

Test Result: Compliance.

Please refer to following tables and plots

Frequency Range (MHz)	Number of Hopping Channel	Limit
902-928	57	50

Number of Hopping Channels

FCC §15.247(a) (1) (i) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

The EUT was worked in channel hopping; the time of single pulses was tested.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/04	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

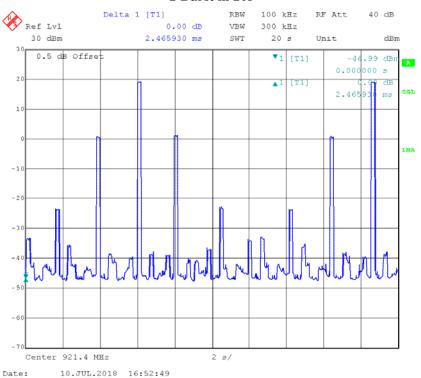
Test Data

Environmental Conditions

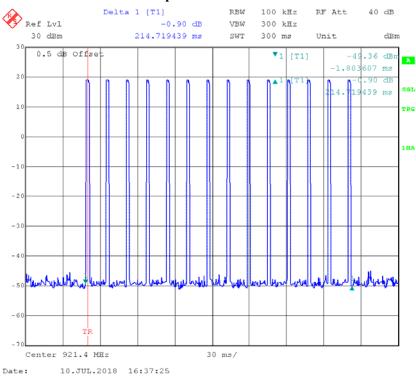
Temperature:	28.8°C
Relative Humidity:	56 %
ATM Pressure:	101.1 kPa

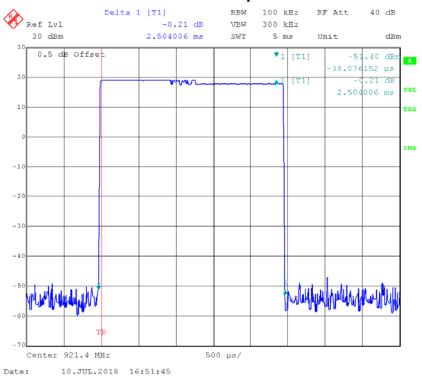
^{*} The testing was performed by Swim Lv on 2018-07-10.

Test Result: Compliance. Please refer to following tables and plots


Test Mode: Transmitting

Channel	Occupancy Time For Single Hop (ms)	Hops in Observed Period (20s)	Dwell time (s)	Limit (s)	Result
Middle	2.504	28	0.07	0.4	Compliance


Dwell time=Pulse time (ms) \times hopping number per channel in Observed Period(14*2=28) Observed Period=20S


Report No.: RDG171219003-00B

14 pulse in one Burst

2.504ms for one pulse

FCC §15.247(b) (2) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	USB Wideband Power Sensor	U2022XA	MY5417006	2017-12-11	2018-12-11
Unknown	Coaxial Cable	C-SJ00-0010	C0010/04	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.6°C
Relative Humidity:	53 %
ATM Pressure:	101.8 kPa

^{*} The testing was performed by Swim Lv on 2018-06-26.

Test Result: Compliance.

Test Mode: Transmitting

Channel	Frequency (MHz)	Peak Conducted Output power (dBm)	Limit (dBm)
Low	915.8	19.06	30
Middle	921.4	19.06	30
High	927	18.93	30

Note: The data above was tested in conducted mode.

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW/ VBW of spectrum analyzer to 100/300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

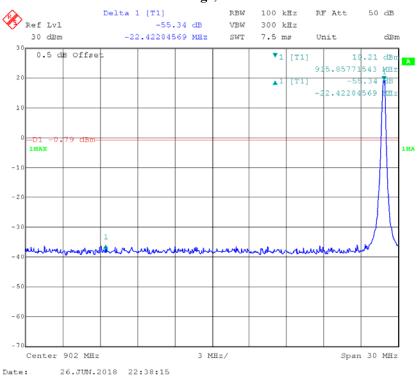
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/04	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

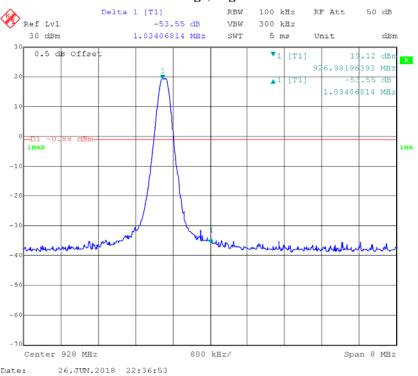
Test Data

Environmental Conditions

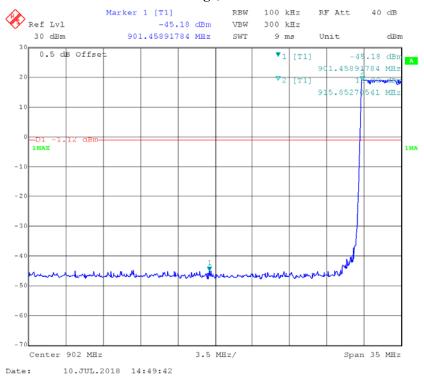

Temperature:	27.6~28.8°C	
Relative Humidity:	53~56 %	
ATM Pressure:	101.1~101.8 kPa	

^{*} The testing was performed by Swim Lv on 2018-06-26 & 2018-07-10.

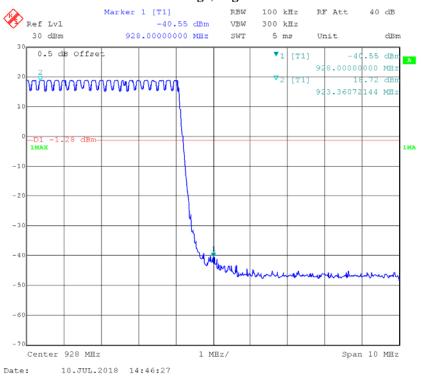
Test Result: Compliance


Single Channel Mode,

Band Edge, Left Side


Band Edge, Right Side

Report No.: RDG171219003-00B


Hopping Mode

Band Edge, Left Side

Band Edge, Right Side

Report No.: RDG171219003-00B

***** END OF REPORT *****