Ringway Tech(Jiangsu) Co.,Ltd.

DIGITAL PIANO

Main Model: TG8862 Serial Model: TG8876, RP-320, RP-420

November 22, 2013

Report No.: 13020969-FCC-E

(This report supersedes NONE)

Modifications made to the product : None

This Test Report is Issued Under the Authority of:

Kevin Tian	Alex. Lin	
Kevin Tian Compliance Engineer	Alex Liu Technical Manager	

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:2 of 34

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, Telecom
Canada	EMC, RF/Wireless, Telecom
Taiwan	EMC, RF, Telecom , Safety
Hong Kong	RF/Wireless, Telecom
Australia	EMC, RF, Telecom, Safety
Korea	EMI, EMS, RF, Telecom, Safety
Japan	EMI, RF/Wireless, Telecom
Singapore	EMC, RF, Telecom
Europe	EMC, RF, Telecom, Safety

Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:3 of 34

This page has been left blank intentionally.

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
4	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
ANN	NEX A. TEST INSTRUMENTATION & GENERAL PROCEDURES	14
ANN	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	19
ANN	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	28
ANN	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	32
ANN	NEX E. DECLARATION OF SIMILARITY	33

SIEMIC, INC. Accessing global markets EMC Test Report for DIGITAL PIANO

Main Model: TG8862 Serial Model: TG8876, RP-320, RP-420 To: FCC Part 15 Subpart B Class B: 2013, ANSI C63.4:2009 Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:5 of 34

1 EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programme was to demonstrate compliance of the Ringway Tech(Jiangsu) Co.,Ltd., DIGITAL PIANO and Model: TG8862 against the current Stipulated Standards. The DIGITAL PIANO has demonstrated compliance with the FCC Part 15 Subpart B Class B: 2013, ANSI C63.4: 2009.

EUT Information

EUT Description	DIGITAL PIANO
Main Model	TG8862
Serial Model	TG8876, RP-320, RP-420
Input Power	12V2500mA MAX 50W 12V2500mA MAX 50W Adapter: OH-1028A1202500U-UL Input: 100-240ac 50/60Hz 800mA MAX Output: 12V 2.5A
Classification Per Stipulated Test Standard	Class B Emission Product Per FCC Part 15 Subpart B Class B: 2013, ANSI C63.4: 2009

Note: The differences between these models please refer to Annex E. Declaration of Similarity.

Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:6 of 34

2 TECHNICAL DETAILS

Purpose	Compliance testing of DIGITAL PIANO with stipulated standards
Applicant / Client	Ringway Tech(Jiangsu) Co.,Ltd. No. 101 West Hanjiang Road, Changzhou,Jiangsu, China
Manufacturer	Ringway Tech(Jiangsu) Co.,Ltd. No. 101 West Hanjiang Road, Changzhou,Jiangsu, China
Laboratory performing the tests	SIEMIC (Nanjing-China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel: +86(25)86730128/86730129 Fax: +86(25)86730127 Email: China@siemic.com.cn
Test report reference number	13020969-FCС-Е
Date EUT received	October 24, 2013
Standard applied	FCC Part 15 Subpart B Class B: 2013, ANSI C63.4: 2009
Dates of test (from – to)	November 15 to November 18, 2013
No of Units	#1
Equipment Category	Class B Emission
Trade Name	N/A
Operating Frequency(ies)	12MHz
FCC ID	OCDTG8862
Port/Connectors	USB*2 Port, Power Port, Midi*3 Port,Line*3 Port,Pedal port

Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:7 of 34

3 **MODIFICATION**

NONE

Issue Date: November 22, 2013 Page: 8 of 34

TEST SUMMARY 4

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Class B Emission Product

Test Results Summary

Emissions						
Test Standard	Description	Product Class	Pass / Fail			
FCC Part 15 Subpart B Class B: 2013, ANSI C63.4: 2009	Conducted Emissions	See Above	Pass			
FCC Part 15 Subpart B Class B: 2013, ANSI C63.4: 2009	Radiated Emissions	See Above	Pass			

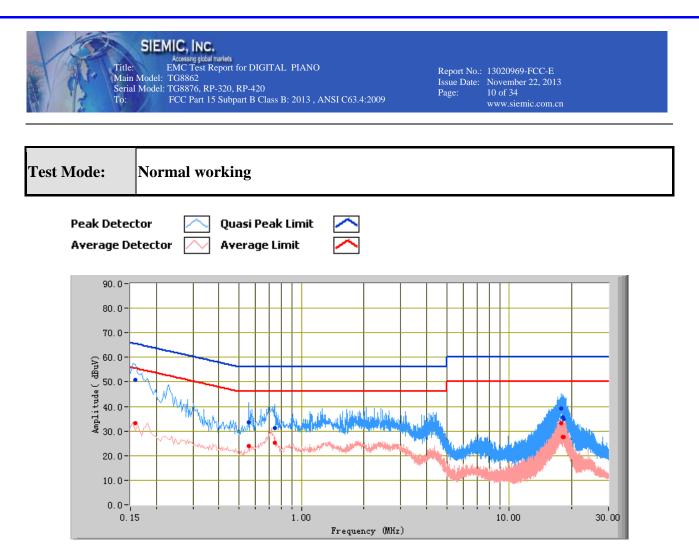
All measurement uncertainty is not taken into consideration for all presented test result.

Report No.: 13020969-FCC-E Issue Date: November 22, 2013 Page: 9 of 34

20°C

50%

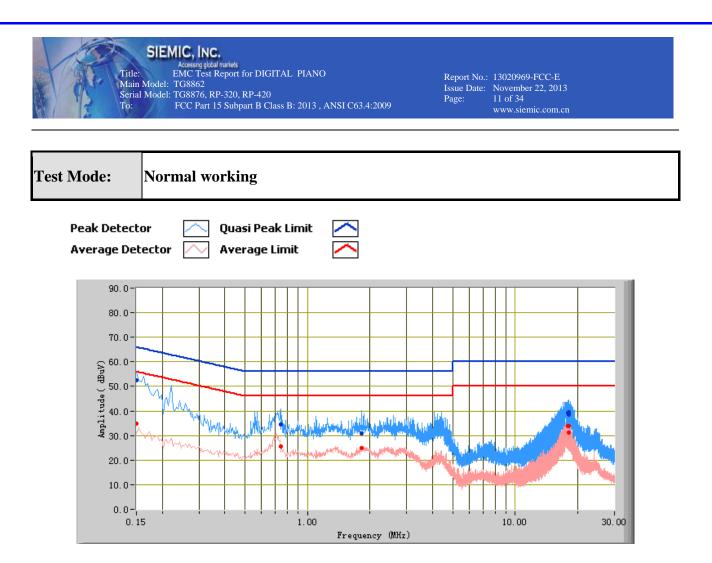
1009mbar


5 <u>MEASUREMENTS, EXAMINATION AND DERIVED</u> <u>RESULTS</u>

5.1 Conducted Emissions Test Result

Note:

- 1. All possible modes of operation were investigated. Only the several worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.86dB.
- 4. Environmental Conditions Temperature Relative Humidity Atmospheric Pressure
- 5. Test date : November 18, 2013 Tested By : Kevin Tian


Test Result: Pass

Test Data

Phase Line Plot at 120V AC, 60Hz

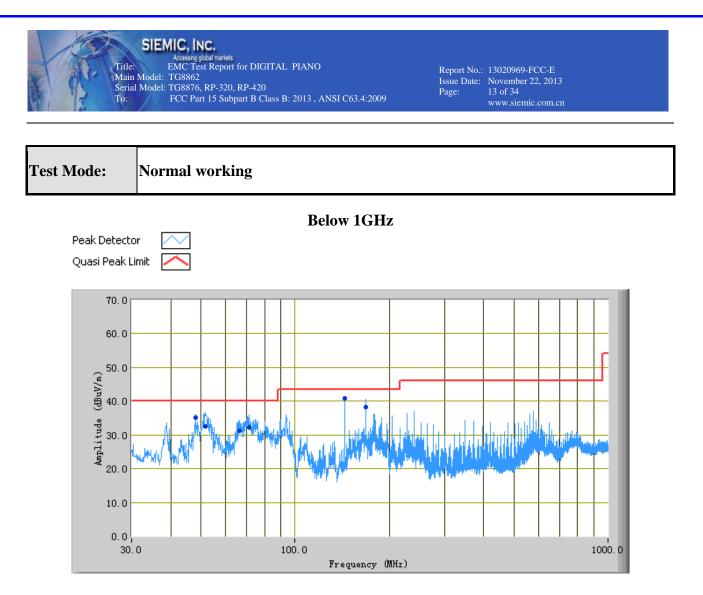
Frequency (MHz)	Quasi Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Factors (dB)
0.16	50.95	65.57	-14.62	33.16	55.57	-22.41	12.11
0.56	33.65	56.00	-22.35	23.83	46.00	-22.17	11.04
17.72	39.28	60.00	-20.72	33.25	50.00	-16.75	11.48
18.10	35.56	60.00	-24.44	27.52	50.00	-22.48	11.49
0.75	31.31	56.00	-24.69	25.16	46.00	-20.84	10.89
18.32	35.01	60.00	-24.99	27.44	50.00	-22.56	11.50

Test Data

Phase Natural Plot at 120V AC, 60Hz

Frequency (MHz)	Quasi Peak (dBµV/m)	Limit (dBµV/m))	Margin (dB)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Factors (dB)
0.15	52.40	66.00	-13.60	34.98	56.00	-21.02	12.21
0.74	34.50	56.00	-21.50	25.74	46.00	-20.26	10.89
18.13	38.54	60.00	-21.46	31.18	50.00	-18.82	11.51
1.82	30.98	56.00	-25.02	24.93	46.00	-21.07	10.88
18.07	39.40	60.00	-20.60	33.94	50.00	-16.06	11.51
17.88	39.29	60.00	-20.71	33.92	50.00	-16.08	11.50

5.2 Radiated Emissions Test Result


To:

Note:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 1GHz (QP only @ 3m & 10m) is +6dB/-6dB (for EUTs < 0.5m X 0.5m X 0.5m).

4.	Environmental Conditions	Temperature	20°C
		Relative Humidity	50%
		Atmospheric Pressure	1011mbar
5.	Test date : November 15, 2013		
	Tested By : Kevin Tian		

Test Result: Pass

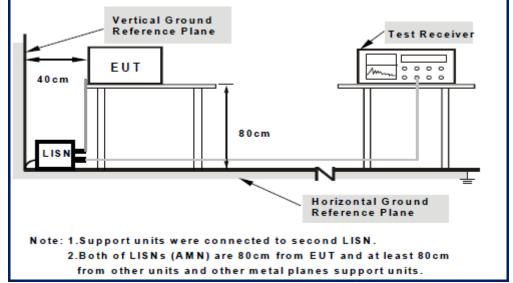
Test Data

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
144.00	40.96	128.00	Н	229.00	-32.17	43.50	-2.54
167.99	38.13	136.00	Н	148.00	-31.80	43.50	-5.37
51.43	32.50	138.00	V	101.00	-33.77	40.00	-7.50
48.02	35.01	271.00	V	104.00	-31.85	40.00	-4.99
71.20	32.36	169.00	Н	385.00	-37.84	40.00	-7.64
66.51	31.23	176.00	Н	304.00	-38.19	40.00	-8.77

Note: The highest frequency of the internal sources of the EUT is less than 108MHz, so the measurement shall only be made up to 1GHz.

Report No.: 13020969-FCC-E Issue Date: November 22, 2013 Page: 14 of 34

TEST INSTRUMENTATION & GENERAL PROCEDURES Annex A.


TEST INSTRUMENTATION Annex A.i.

Instrument	Model	Serial #	Calibration Date	Calibration Due Date
AC Line Conducted Emissions				
R&S EMI Test Receiver	ESPI3	101216	09/27/2013	09/26/2014
ROHDE&SCHWARZ V-LISN	ESH3-Z5	838979/005	09/27/2013	09/26/2014
Com-Power Transient Limiter	LIT-153	531021	09/27/2013	09/26/2014
SIEMIC Labview Conducted Emissions software	V1.0	N/A	N/A	N/A
Radiated Emissions				
Hp Spectrum Analyzer	8563E	3821A09023	09/27/2013	09/26/2014
R&S EMI Receiver	ESPI3	101216	09/27/2013	09/26/2014
Antenna (30MHz~6GHz)	JB6	A121411	03/27/2013	03/26/2014
ETS-Lindgren Antenna (1~18GHz)	3115	N/A	10/09/2013	10/08/2014
A-INFOMW Antenna	JXTXLB-	J2031081120	10/09/2013	10/08/2014
(1 ~18GHz)	10180	092		
Horn Antenna (18~40GHz)	AH-840	101013	04/22/2013	04/22/2014
Microwave Pre-Amp (18~40GHz)	PA-840	181250	05/30/2013	05/29/2014
Hp Agilent Pre-Amplifier	8447F	1937A01160	10/27/2013	10/26/2014
MITEQ Pre-Amplifier (0.1 ~ 18GHz)	AMF-7D- 00101800- 30-10P	1451709	10/27/2013	10/26/2014
Chamber	3m	N/A	04/13/2013	04/12/2014
SIEMIC Labview Radiated Emissions software	V1.0	N/A	N/A	N/A

Annex A.ii. AC LINE CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a $1.5m \times 1m \times 0.8m$ high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration1

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Description of Conducted Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 150 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.

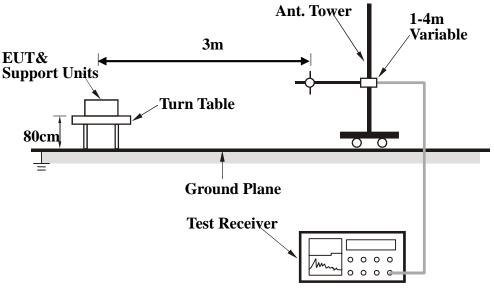
Sample Calculation Example

At 20 MHz	$limit = 250 \ \mu V = 47.96 \ dB\mu V$	
Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB		
Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$ (Calibrated for system losses)		
Therefore, Q-P margin = $47.96 - 40.00 = 7.96$	i.e. 7.96 dB below limit	

SIEMIC, INC.

Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:17 of 34

Annex A. iii. RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8 m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred; clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS) or 3m EMC chamber.

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5mX1.0mX0.8m high, non-conductive table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration2

Report No.: 13020969-FCC-E Issue Date: November 22, 2013 Page: 18 of 34

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on an open test site. As the same purpose, for emission frequencies measured above 1GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1GHz, set the spectrum analyzer on a 100kHz and 1MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
- 5. Repeat step 4 until all frequencies need to be measured was complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100kHz	100kHz
Above 1000	Peak	1MHz	1MHz
	Average	1MHz	10Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1GHz. And the measuring instrument is set to quasi peak detector function.

Report No.: 13020969-FCC-E Issue Date: November 22, 2013 Page: 19 of 34

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. **Photograph 1: EUT External Photo**

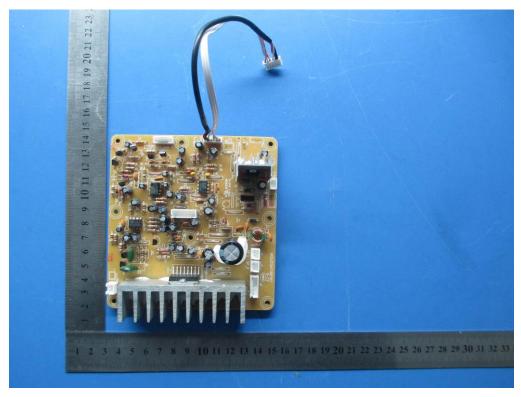
EUT - Front View

EUT - Rear View

Report No.: 13020969-FCC-E Issue Date: November 22, 2013 Page: 20 of 34 www.siemic.com.cn

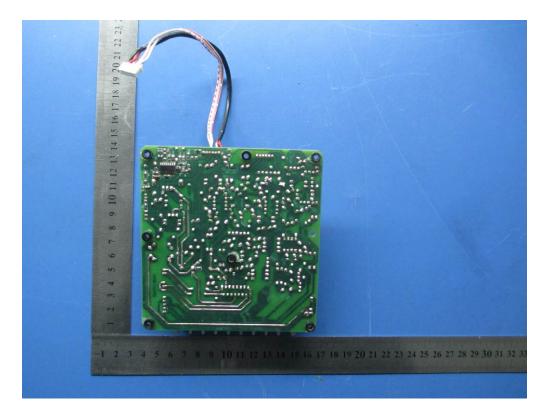
EUT - Left View

EUT - Right View



Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:21 of 34

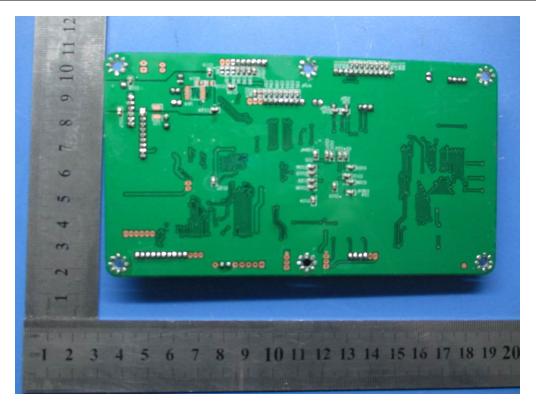
Annex B.ii. **Photograph 2: EUT Internal Photo**


Cover Off - Top View

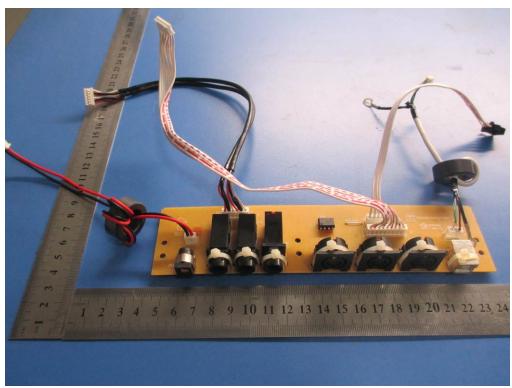
EUT PCB 1 - Front View

Report No.: 13020969-FCC-E Issue Date: November 22, 2013 Page: 22 of 34 Page:

EUT PCB 1 -Rear View



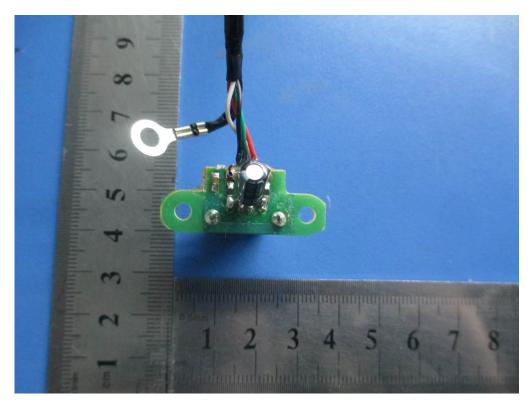
EUT PCB 2 - Front View



Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:23 of 34

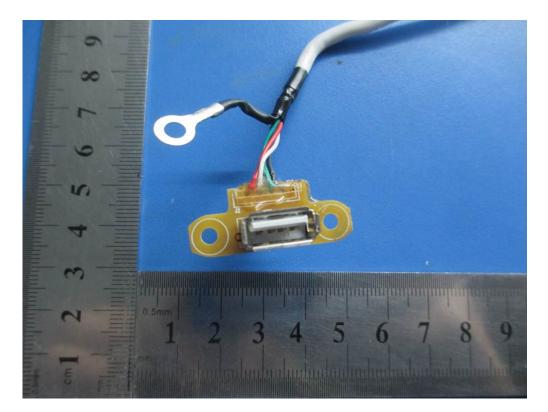
EUT PCB 2 -Rear View

EUT PCB 3 - Front View



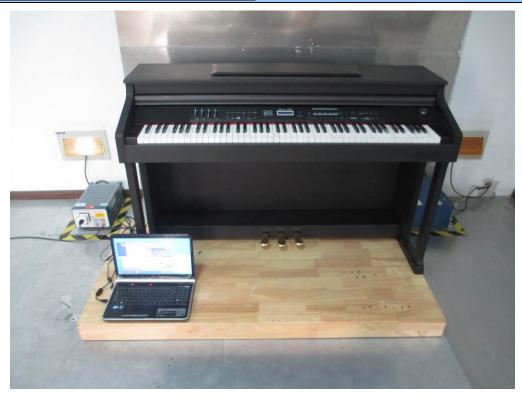
Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:24 of 34

EUT PCB 3 -Rear View



EUT PCB 4 - Front View

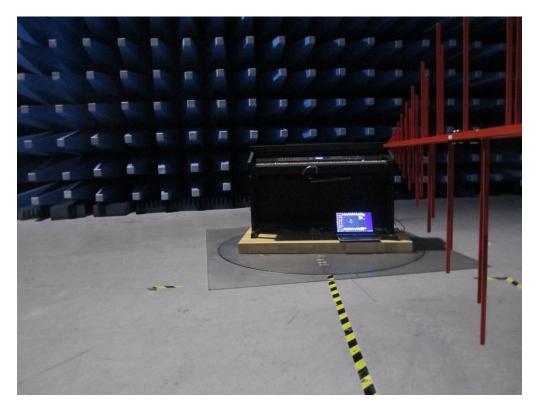
Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:25 of 34



EUT PCB 4 -Rear View

Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:26 of 34

Annex B.iii. **Photograph 3: Test Setup Photo**


Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

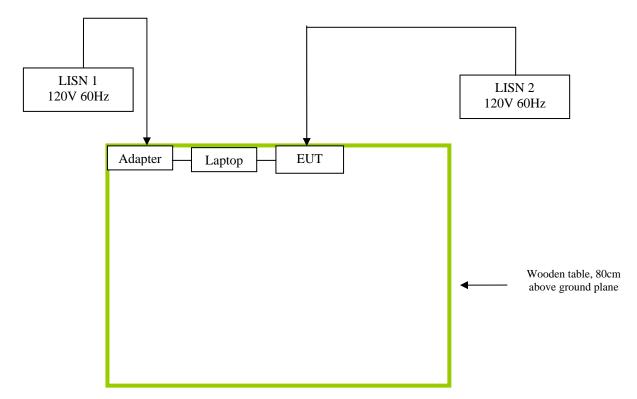
Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:27 of 34

Radiated Spurious Emissions Test Setup Below 1GHz - Front View

 Issue Date:
 November 22, 2013

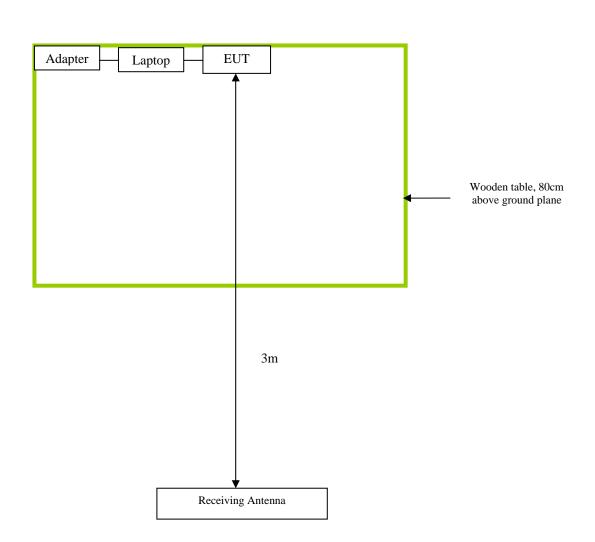
 Page:
 28 of 34
Page:

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT


EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
Gateway Laptop	MS2288 & LXWHF02013951C3CA92200	N/A


Block Configuration Diagram for Conducted Emissions

Block Configuration Diagram for Radiated Emissions

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions	Normal Working

Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:32 of 34

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

Annex E. DECLARATION OF SIMILARITY

Ringway Tech(Jiangsu) Co.,Ltd.

To: SIEMIC INC.

Declaration letter

Dear Sir,

For our business issue and marketing requirement, we would like to list different models numbers on the CE\FCC certificates and reports, as following:

Model No.: TG8862、TG8876、RP-320、RP-420

The difference between the four models TG8862, TG8876, RP-320, RP-420 are as follows:

TG8862, TG8876, RP-320, RP-420 are all digital piano of the same serial product. Their main part like adaptor, main board and AMP board is with no difference; only the panel function, shape and silkscreen are different.

TG8862 and RP-320, their defferent is model name only. TG8876 and RP-420, their defferent is model name only.

Report No.:13020969-FCC-EIssue Date:November 22, 2013Page:34 of 34

TG8862 and TG8876, their appearance photo is as follow:

Thank you!

Signature:

Printed name/title: Address: No. 101 West Hanjiang Road, Changzhou, Jiangsu, China