Ringway Tech(Jiangsu) Co.,Ltd.

DIGITAL PIANO

Main Model: GRAND110 Serial Model: SG110

June 11, 2012 Report No.: 12020434-FCC-E (This report supersedes NONE)

Modifications made to the product : None

This Test Report is Issued Under the Authority of:							
Emin · Boo	Alex. Lin						
Emin Bao Compliance Engineer	Alex Liu Technical Manager						

N I

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

SIEMIC, INC. Accessing global markets Title: EMC Test Report for DIGITAL PIANO Main Model: GRAND110 Serial Model: SG110 To: FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009

Report No.: Issue Date: Page:

12020434-FCC-E June 11, 2012 2 of 25

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North</u> <u>America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Country/Region	Accreditation Body	Scope					
USA	FCC, A2LA	EMC, RF/Wireless, Telecom					
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom					
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom, Safety					
Hong Kong	OFTA , NIST	RF/Wireless, Telecom					
Australia	NATA, NIST	EMC, RF, Telecom, Safety					
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety					
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom					
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom					
Europe	A2LA, NIST	EMC, RF, Telecom, Safety					

Accreditations for Conformity Assessment

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB , NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC, (RCB 208)	RF, Telecom
HongKong	OFTA (US002)	RF, Telecom

This page has been left blank intentionally.

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
4	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
ANN	IEX A. TEST INSTRUMENT & METHOD	.15
ANN	EX B. EUT AND SETUP PHOTOGRAPHS	.19
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	.20
ANN	IEX D. USER MANUAL, BLOCK DIAGRAM, CIRCUIT DIAGRAM	.24
ANN	IEX E. DECLARATION OF SIMILARITY	.25

SIEMIC, INC. Accessing global markets Title: EMC Test Report for DIGITAL PIANO Main Model: GRAND110 Serial Model: SG110 To: FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009

Report No.: Issue Date: Page:

12020434-FCC-E June 11, 2012 5 of 25 www.siemic.com

1 EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programme was to demonstrate compliance of the Ringway Tech(Jiangsu) Co.,Ltd., DIGITAL PIANO and model GRAND110 against the current Stipulated Standards. The DIGITAL PIANO has demonstrated compliance with the FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009.

EUT Information

EUT Description	:	DIGITAL PIANO
Main Model	:	GRAND110
Serial Model	:	SG110
Input Power	:	Rating: AC110V~60Hz, MAX 100W
Classification Per Stipulated Test Standard	:	FCC Part 15 Subpart B Class B: 2012

 Processing green matters

 Title:
 EMC Test Report for DIGITAL PIANO

 Main Model:
 GRAND110

 Serial Model:
 SG110

 To:
 FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009

T

Report No.: Issue Date: Page:

June 11, 2012 6 of 25

TECHNICAL DETAILS 2

Purpose	Compliance testing of DIGITAL PIANO with stipulated standard
Applicant / Client	Ringway Tech(Jiangsu) Co.,Ltd. No. 101 West Hanjiang Road, Changzhou,Jiangsu, China
Manufacturer	Ringway Tech(Jiangsu) Co.,Ltd. No. 101 West Hanjiang Road, Changzhou,Jiangsu, China
Laboratory performing the tests	SIEMIC Nanjing (China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email:info@siemic.com
Test report reference number	12020434-FCC-Е
Date EUT received	May 20, 2012
Standard applied	FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009
Dates of test (from – to)	June 07, 2012
No of Units:	#1
Equipment Category :	ITE
Trade Name :	RINGWAY
Model :	GRAND110
Highest Operated Frequency(ies)	N/A
Port/Connectors	MIDI THRU Port, MIDI Out Port, MIDI In Port, PEDAL 1 Port, PEDAL 2 Port, USB Port, Line Out Port, Line In Port, Power Port, PHONES 1 Port, PHONES 2 Port
FCC ID	OCDGRAND110

SIEMIC, INC. Accessing global markets Title: EMC Test Report for DIGITAL PIANO Main Model: GRAND110 Serial Model: SG10 To: FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009

Report No.: Issue Date: Page: 12020434-FCC-E June 11, 2012 7 of 25 www.siemic.com

3 MODIFICATION

NONE

To:

12020434-FCC-Е June 11, 2012 8 of 25

TEST SUMMARY 4

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Class B Emission Product

Test Results Summary

Emissions							
Test Standard	Product Class	Pass / Fail					
FCC Part 15 Subpart B Class B: 2012	Conducted Emissions	See Above	Pass				
FCC Part 15 Subpart B Class B: 2012	Radiated Emissions	See Above	Pass				

All measurement uncertainty is not taken into consideration for all presented test result.

50%

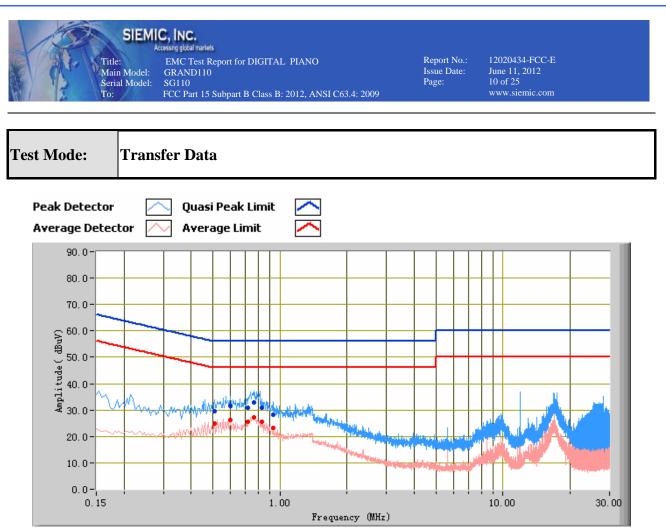
1008mbar

12020434-FCC-E June 11, 2012

MEASUREMENTS, EXAMINATION AND DERIVED 5 **RESULTS**

5.1 Conducted Emissions Test Result

Note:


- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.86dB. 25°C 4. **Environmental Conditions** Temperature

Relative Humidity Atmospheric Pressure

5. Test Date: June 07, 2012 Tested By: Emin Bao

To

Test Result: Pass

Test Data

Phase Line Plot at 120Vac, 60Hz

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Factors (dB)
0.77	32.86	56.00	-23.14	27.22	46.00	-18.78	10.15
0.60	31.69	56.00	-24.31	26.11	46.00	-19.89	10.15
0.72	30.92	56.00	-25.08	25.43	46.00	-20.57	10.13
0.83	31.03	56.00	-24.97	25.47	46.00	-20.53	10.16
0.51	29.44	56.00	-26.56	24.75	46.00	-21.25	10.17
0.93	28.10	56.00	-27.90	23.17	46.00	-22.83	10.17

Test Data

 $0.0 - \frac{1}{1}$ 0.15

20.0 10.0-

Phase Neutral Plot at 120Vac, 60Hz

Frequency (MHz)

1.00

ALC: NO ٠

1112

10.00

30.00

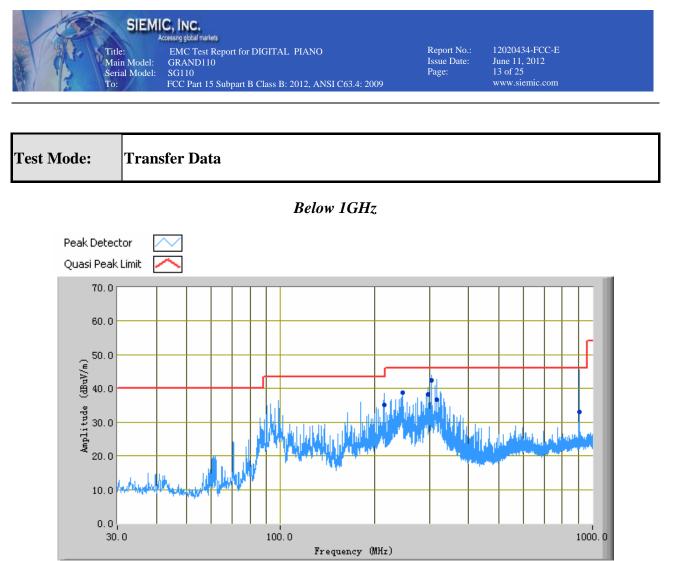
Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Factors (dB)
0.75	32.76	56.00	-23.24	27.03	46.00	-18.97	10.14
0.72	31.65	56.00	-24.35	26.74	46.00	-19.26	10.13
0.60	30.13	56.00	-25.87	25.03	46.00	-20.97	10.15
0.83	30.06	56.00	-25.94	24.60	46.00	-21.40	10.16
28.22	33.69	60.00	-26.31	33.77	50.00	-16.23	11.13
1.35	23.56	56.00	-32.44	18.80	46.00	-27.20	10.17

Report No.: Issue Date: Page:

1009mbar

12020434-FCC-E June 11, 2012 12 of 25 www.siemic.com

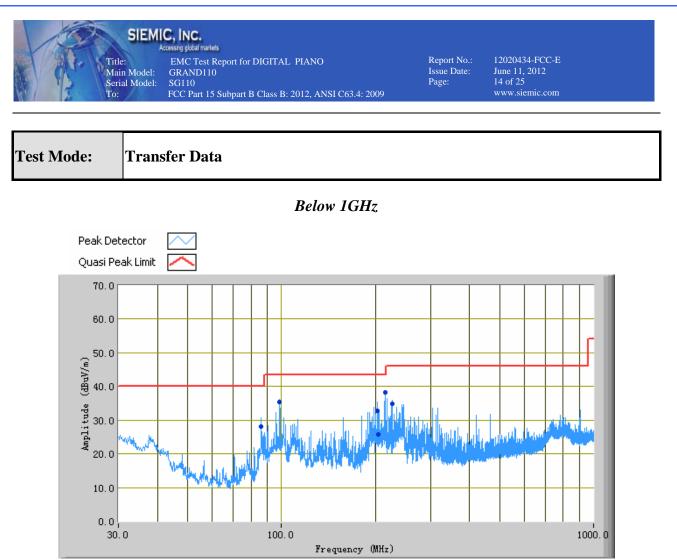
5.2 Radiated Emissions Test Result


Note:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Radiated Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz (QP only @ 3m & 10m) is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).
 4. Environmental Conditions Temperature 26°C Relative Humidity 49%

Atmospheric Pressure

5. Test date : June 07, 2012 Tested By : Emin Bao


Test Result: Pass

Test Data

Horizontal @ 3m

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
908.34	32.93	15.00	Н	174.00	-20.69	46.00	-13.07
304.81	42.52	100.00	Н	110.00	-31.18	46.00	-3.48
316.08	36.68	103.00	Н	117.00	-29.99	46.00	-9.32
214.54	35.18	248.00	Н	184.00	-34.02	43.50	-8.32
296.33	38.32	94.00	Н	109.00	-31.79	46.00	-7.68
245.55	38.90	252.00	Н	116.00	-33.20	46.00	-7.10

Test Data

Vertical @ 3m

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
214.48	38.18	356.00	V	222.00	-33.38	43.50	-5.32
98.77	35.38	323.00	V	100.00	-33.72	43.50	-8.12
203.20	32.87	197.00	V	307.00	-32.04	43.50	-10.63
86.08	27.99	356.00	V	103.00	-37.09	40.00	-12.01
225.75	34.83	358.00	V	225.00	-33.74	46.00	-11.17
204.62	25.84	220.00	V	143.00	-32.21	43.50	-17.66

Note: The highest frequency of the internal sources of the EUT is less than 108MHz, so the measurement shall only be made up to 1GHz.

Accessing global markets Title: EMC Test Report for DIGITAL PIANO Main Model: GRAND110 Serial Model: SG110 To: FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009

Report No.: Issue Date: Page: 12020434-FCC-E June 11, 2012 15 of 25

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Date	Calibration Due
Conducted Emissions				
R&S Receiver	ESPI 3	101216	08/26/2011	08/25/2012
Com-Power LISN	LI-115	241090	05/02/2012	05/01/2013
Com-Power LISN	LI-115	241091	05/25/2012	05/24/2013
Com-Power LIMITER	LIT-153	531021	05/25/2012	05/24/2013
Radiated Emissions				
R&S Receiver	ESPI 3	101216	08/26/2011	08/25/2012
Hp Spectrum Analyzer	8563E	3821A09023	01/10/2012	01/09/2013
Sunol Sciences, Inc. Antenna (30MHz~6GHz)	JB6	A112107	12/28/2011	12/27/2012
ETS-Lindgren Antenna (1 ~ 18GHz)	3115	N/A	10/04/2011	10/03/2012
HP Pre-Amplifier	8447F	1937A01160	05/25/2012	05/24/2013
MITEQ Pre-Amplifier (0.1 ~ 18GHz)	AMF-7D- 00101800-30-10P	1451710	05/25/2012	05/24/2013

Report No.: Issue Date: Page: 12020434-FCC-E June 11, 2012 16 of 25 www.siemic.com

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5 m x 1 m x 0.8 m high, non-metallic table, as shown in Annex B.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

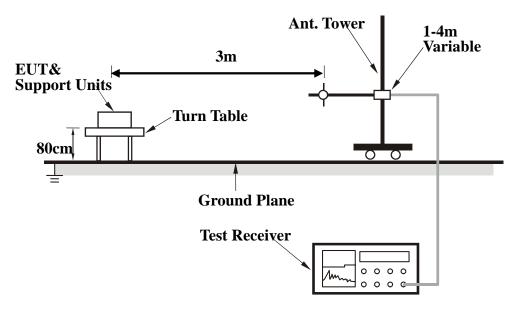
At 20 MHz	$limit = 250 \ \mu V = 47.96 \ dB \mu V$	
Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB		
Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu V$ (Calibrated for system losses)		
Therefore, Q-P margin = $47.96 - 40.00 = 7.96$	i.e. 7.96 dB below limit	

SIEMIC, INC.

EMC Test Report for DIGITAL PIANO GRAND110 FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009 Report No .: Issue Date: Page:

12020434-FCC-E June 11, 2012

RADIATED EMISSIONS TEST DESCRIPTION Annex A.iii.


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1. 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Accessing global markets EMC Test Report for DIGITAL PIANO GRAND110 SG110 FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009

Report No.: Issue Date: Page:

12020434-FCC-E June 11, 2012 18 of 25

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

Title

Lo.

Main Model:

Serial Model:

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on an open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ$ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.

5. Repeat step 4 until all frequencies need to be measured was complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows: Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009

Report No.: Issue Date: Page:

June 11, 2012 19 of 25

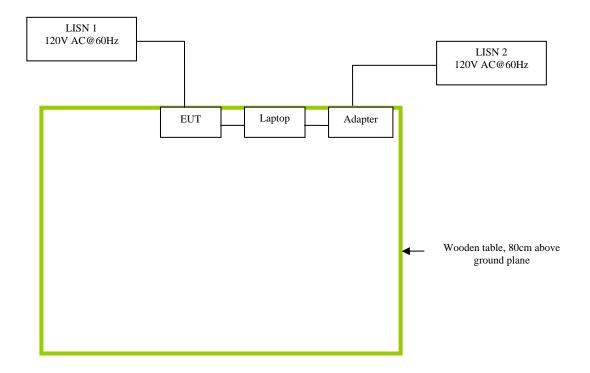
Annex B. EUT And SETUP PHOTOGRAPHS

Please see attachment

12020434-FCC-E June 11, 2012 20 of 25

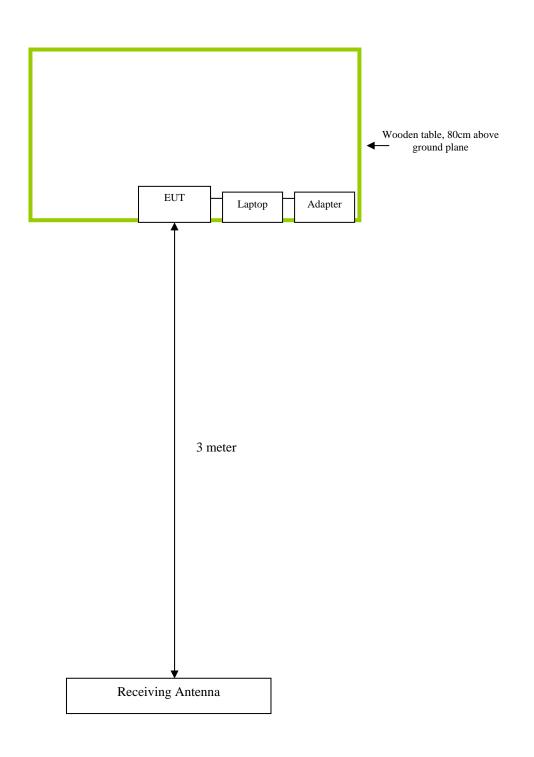
Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS


Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
Laptop Gateway	MS2288 & LXWHF02013951C3CA92200	N/A



Block Configuration Diagram for Conducted Emissions

Block Configuration Diagram for Radiated Emissions

Report No.: Issue Date: Page:

12020434-FCC-E June 11, 2012 23 of 25 www.siemic.com

Annex C.ii. DESCRIPTION OF TEST MODES

For Radiated Emission, the EUT was pre-tested under following conditions, test mode 1 is found to be the worst for the final test.

TEST MODE	TEST CONDITION
Emissions Testing	Transfer Data

Report No.: Issue Date: Page: 12020434-FCC-E June 11, 2012 24 of 25 www.siemic.com

Annex D. USER MANUAL, BLOCK DIAGRAM, CIRCUIT DIAGRAM

Please see attachment

Title:

To:

Accessing global markets EMC Test Report for DIGITAL PIANO Main Model: Serial Model: GRAND110 FCC Part 15 Subpart B Class B: 2012, ANSI C63.4: 2009

Issue Date: Page:

June 11, 2012 25 of 25

Annex E. DECLARATION OF SIMILARITY

Ringway Tech (Jiangsu) Co., Ltd.

To: SIEMIC ,2206 Ringwood Avenue, San Jose, C, USA

Declaration letter

Dear Sir,

For our business issue and marketing requirement, we would like to list different models numbers on the FCC certificates and reports, as following: Model No.: GRAND110, SG110

The Serial Model Name GRAND110 Different model name and shape only, like all the other.

Thank you!

Signature:

Printed name/title: 吟 Address: No. 101 West Hanjiang Road, Changzhou Jiangsu, China