

**TEST REPORT CONCERNING THE COMPLIANCE OF
AN ANDROID TABLET
BRAND MARQUIS MODEL MP977
FCC ID: OC5-FTC97700
IN CONFORMITY WITH SAR
(SPECIFIC ABSORPTION RATE)
REGULATORY REQUIREMENTS OF THE FCC
IEEE-1528, OET 65-C, IC RSS-102 ISSUE 4 AND
IEC 62209-2**

**12052101.s01_Rev01
July 03, 2012**

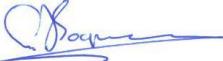
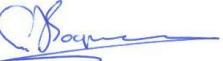
FCC listed	: 90828
Industry Canada	: 2932G-2
VCCI Registered	: R-1518, C-1598
R&TTE, LVD, EMC Notified Body	: 1856

TÜV Rheinland EPS B.V.
P.O. Box 37
9350 AA Leek (NL)
Eiberkamp 10
9351 VT Leek (NL)

Telephone: +31 594 505005
Telefax: +31 594 504804

Internet: www.tuv-eps.com
E-mail: info@tuv-eps.com

Description of test item



Test item	:	Android Tablet PC
Manufacturer	:	Matsunichi, Inc.
Brand	:	Marquis
Model	:	MP977
FCC ID	:	OC5-FTC97700
Receipt date	:	June 1, 2012

Applicant information

Applicant's representative	:	Mathew Hsu
Company	:	Matsunichi, Inc.
Address	:	47745 Fremont Blvd
Postal code	:	94538
City	:	Fremont, California
Country	:	USA
Telephone number	:	+1-510-661-9550 ext. 115
Telefax number	:	+1-510-661-9593

Test(s) performed

Location	:	Leek
Test(s) started	:	June 13, 2012
Test(s) completed	:	June 15, 2012
Purpose of test(s)	:	Conformity Testing with the Regulatory RF Exposure Requirements by the FCC.

Project leader	:	L. Koopmans	
Test engineer(s)	:	L. Koopmans	
Report written by	:	L. Koopmans	
Report approved by	:	R. van der Meer	
Report date	:	July 03, 2012	

This report shall not be reproduced, except in full, without the written permission of TÜV Rheinland EPS B.V.
The test results as indicated in this test report relate only to the item(s) tested.

Table of contents

1	General Information	5
1.1	Purpose of testing	5
1.2	Applied standards and related documents	5
2	Summary and Conclusion	6
2.1	Exposure category	6
2.2	Summary of results:	6
3	Identification of Equipment under Test (EUT)	7
3.1	General	7
3.2	Photos of the EUT	7
3.3	EUT Test description	8
3.4	Additional operating configurations	8
3.5	Test Conditions	8
3.5.1	Environmental conditions	8
4	Tests results	9
4.1	Validation and system check	9
4.2	Test results	9
4.2.1	SAR measurement execution	9
4.2.2	Interpolation and extrapolation	9
4.2.3	Validation parameters	9
4.2.4	EUT channel selection	9
4.3	Exposure limits	13
4.4	SAR, the basics	13
5	System performance check	14
5.1	System check	14
5.1.1	System check results at 2.4 GHz	14
5.2	Tissue simulating liquid dielectric parameters	16
5.2.1	Mixing procedure	16
5.2.2	Dielectric parameters for 2450 MHz head tissue	17
6	Additional information supplementary to the test report	18
6.1	Description of test system	18
6.1.1	SAR measurement system	18
6.1.2	Robot System description	18
6.1.3	Probe description	19
6.1.4	Amplifier description	19
6.1.5	Phantom description	19
6.2	Measurement Procedure	19
6.2.1	Step size and scan information	20
6.2.2	SARA2 Interpolation and Extrapolation schemes	20
6.2.3	Interpolation of 2D area scan	20
6.2.4	Extrapolation of 3D scan	20
6.2.5	Interpolation of 3D scan and volume averaging	21
7	Measurement uncertainty	22
7.1	Introduction	22
7.1.1	Uncertainty calculated for IEEE-1528: standard measurements (2.4 GHz)	23
8	Test equipment and ancillaries used for tests	24
8.1	Test Equipment	24
8.2	Test software	24
Annex A	25	
Annex B	26	
Annex C	27	

Annexes

- A: Probe Calibration Data 5mm probe
- B: System check 2.4 GHz
- C: SAR results 2.4 GHz WiFi

1 General Information

1.1 Purpose of testing

Tests described in this test report have been performed to verify compliance with the (Federal) regulated RF exposure (SAR) requirements in the USA.

1.2 Applied standards and related documents.

The Android Tablet PC, Brand Marquis, Model MP977 (hereafter mentioned EUT) has been tested in conformity with the following standards and/or publications:

Federal Communications Commission: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), FCC, 2001.

IEEE Std C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, Inst. of Electrical and Electronics Engineers, Inc.

IEEE Std 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques. Inst. of Electrical and Electronics Engineers, Inc.

KDB 248227 Federal Communications Commission, Office of Engineering and Technology: SAR Measurement Procedures for 802.11 a/b/g Transmitters, May 2007.

KDB 447498D01 Federal Communications Commission, Office of Engineering and Technology: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies, November 13, 2009.

KDB 616217D01 Federal Communications Commission, Office of Engineering and Technology: SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, Update November 2009.

KDB 616217D03 Federal Communications Commission, Office of Engineering and Technology: SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers, November 13, 2009.

ICNIRP Guidelines "GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING ELECTRIC, MAGNETIC, AND ELECTROMAGNETIC FIELDS (UP TO 300 GHz)".

IEC 62209-2 (2010) "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures. Part 2: Procedure to determine the Specific Absorption Rate (SAR) for mobile wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)."

2 Summary and Conclusion.

2.1 Exposure category

The EUT supplied for Specific Absorption Rate (SAR) testing according the standards/publications as indicated in section 1.2 is a considered to be a:

Portable Device Body Worn

According to the characteristics of the EUT and typical application and usage in accordance with the relevant product specifications of the manufacturer the EUT is identified to the exposure category:

General population/Uncontrolled exposure

2.2 Summary of results:

In the 2.4 GHz Wifi frequency range, the maximum peak spatial-average SAR measured was 0.565 W/kg averaged over 1g with an EUT power level of 17.0 dBm while the EUT was positioned such that the antenna was touching the phantom and transmitting on 2462 MHz (channel 11).

The Bluetooth's output power is $\leq 60/f(\text{GHz})$ mW which SAR evaluation is not required.

All detailed test results are available [in Annex C](#)

IEEE 802.11b g/n mode (2400 MHz – 2483.5 MHz)			
Test specification(s)	Measurement	Report clause	Compliance results
IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	SAR	Annex C	PASS
Bottom:			
Frequency	Max Spatial Peak SAR(1g)		
2412 MHz	0.554	Annex C	PASS
2437 MHz	0.564	Annex C	PASS
2462 MHz	0.565	Annex C	PASS
Edge1:			
Frequency	Max Spatial Peak SAR(1g)		
2412 MHz	0.150	Annex C	PASS
2437 MHz	0.174	Annex C	PASS
2462 MHz	0.169	Annex C	PASS
Edge2:			
Frequency	Max Spatial Peak SAR(1g)		
2412 MHz	0.048	Annex C	PASS
2437 MHz	0.042	Annex C	PASS
2462 MHz	0.045	Annex C	PASS

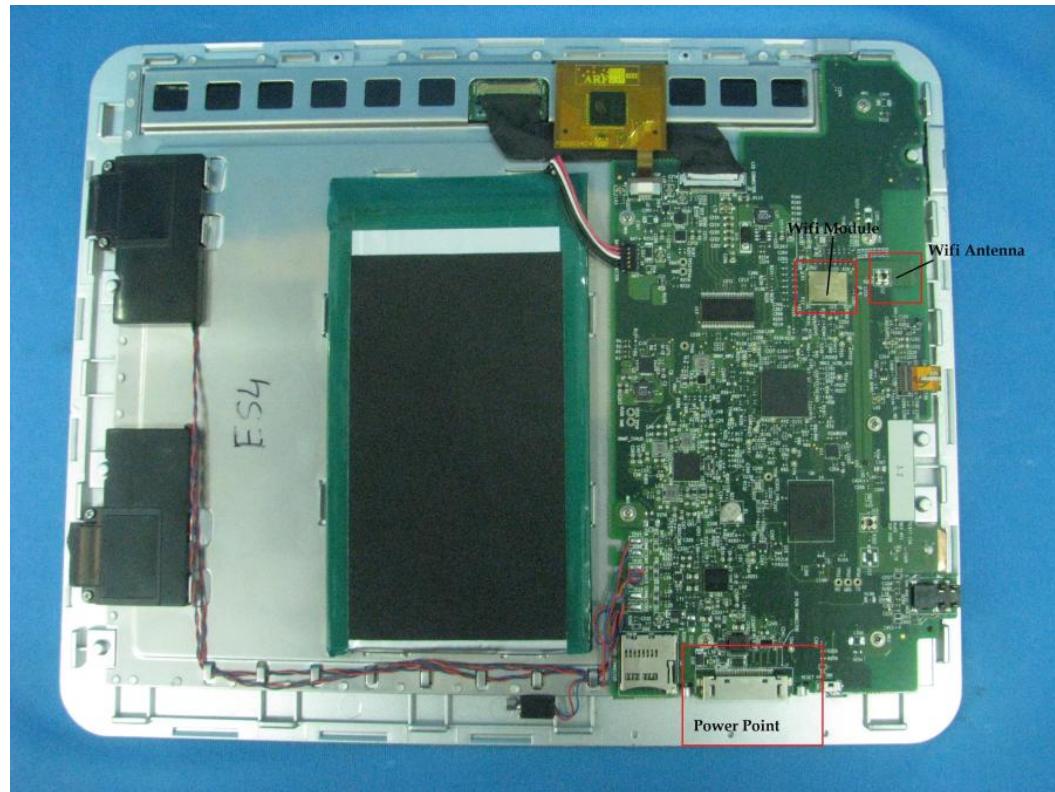
3 Identification of Equipment under Test (EUT)

3.1 General

The following information has been provided by the applicant and after verification have been used to identify the equipment under test (EUT).

Test item (EUT)	:	Andriod Tablet PC
Manufacturer	:	Matsunichi, Inc
Brand	:	Marquis
Model	:	MP977
FCC ID	:	OC5-FTC97700
Transmit output power setting	:	17 dBm
Frequency range 802.11b g/n	:	2412.0 MHz – 2462.0 MHz

3.2 Photos of the EUT


a) front view

b) rear view

Figure 1: photograph of the Andriod Tablet PC

3.3 EUT Test description.

The EUT is an Andriod Tablet PC with an embedded 802.11b g/n network adapter operating in the 2.4 GHz spectrum. The EUT is able to transmit at various transmission bitrates and utilizes DSSS and OFDM modulation techniques. BlueTooth mode and WiFi mode can not operate at the same time. The position of the antenna is shown in the photograph below.

3.4 Additional operating configurations

Power and signal distribution, grounding, interconnecting cabling and physical placement of the EUT under circumstances of testing at the test system are in accordance with the typical application and usage in so far as is practicable, and is in accordance with the relevant product specifications of the manufacturer.

3.5 Test Conditions

3.5.1 Environmental conditions

Requirement for	Specification	Determined value
Ambient temperature	+18°C to +25°C Temperature shall not exceed ± 2 °C during the test	+23 °C at start to +24 °C at end of test
Ambient humidity	20% RH to 75% RH	48% RH
Electro Magnetic environment	the ambient interference power shall be less than 0.012 W/kg	below the required lower detection limit of 0.012 W/kg, checked before and after test

4 Tests results

4.1 Validation and system check

Before tests on the EUT can take place the following checks need to be done first:

System check at 2450 MHz, see section 5.1.1 and Annex B for data.
Liquid validation, see section 5.2.

4.2 Test results

4.2.1 SAR measurement execution

The EUT's antenna position is perpendicular with respect to the SAR flat phantom bottom shell with 0 mm separation distance (antenna directly against phantom's surface). From quick scans of the possible placement of the antenna, placing the antenna perpendicular prove to be the worst case situation.

The liquid level in the phantom all cases was 15 cm.

See Annex C and D for SAR results.

4.2.2 Interpolation and extrapolation

The SAR system uses "cubic B-spline" for interpolation and "4th-order polynomial fitting" for extrapolation.

4.2.3 Validation parameters

The system(s) and materials used for testing are validated as per the relevant standards.

4.2.4 EUT channel selection

The EUT is evaluated at low, mid and high band frequencies at each frequency band according to default channel list mentioned in KDB 248227.

4.2.4.1 EUT position(s)

The EUT, was placed with its bottom and the two edges closest to the antenna directly placed against the flat phantom bottom shell with 0 mm separation distance. This is illustrated with the photo's in the Test setup photographs report.

Figure 2: Test setup Bottom measurement (distance EUT-phantom = 0mm).

Figure 3: Test setup Edge1 measurement (distance antenna phantom = 10mm).

Figure 4: Test setup Edge2 measurement (distance antenna phantom = 60mm).

4.3 Exposure limits

Limit value for General population / Uncontrolled exposure as mentioned in the references mentioned in section 1.2:

**Spatial Peak SAR shall not exceed 1.6 W/kg,
which is averaged over any one gram of tissue defined as a tissue volume in the shape of a cube.**

4.4 SAR, the basics

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of given mass density (ρ), as given below.

Definition

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho \cdot dV} \right)$$

calculated from electric field strength conductivity and mass density

$$SAR = \sigma \cdot \frac{E_i^2}{\rho}$$

It has units of watts per kilograms. It can be calculated by means shown above, where E_i is the rms value of the electric field strength in the tissue in V/m, σ is the conductivity of head or body tissue in S/m, ρ is the density of head or body tissue in kg/m³. This method, measuring the electric field, is generally the most convenient and is the method used by the SARA2 system of TR-EPS. The SAR at a point in space is not particularly relevant in assessing biological effects; rather, the SAR should be averaged over a given volume. The SAR standards define the volume to be used for averaging as either a 1g (US) or a 10g (EU) cube. SAR measurements are carried out by scanning a tissue simulating medium along the interior of a phantom shell, using a multi-axis robot to position a miniature E-field probe. Once the region of highest SAR is identified, post-processing algorithms can be used to average the local SAR over this prescribed volume to determine the peak spatial average SAR.

5 System performance check

5.1 System check

The purpose of the system performance check (system check) is to verify that the system operates within its specifications at the device test frequency. The system check is to make sure that the system works correctly at the time of the compliance test. The system check has been performed using the specified tissue-equivalent liquid and at a chosen fixed frequency that is within $\pm 10\%$ of the compliance test mid-band frequency. The system check is performed prior to compliance tests and the result must always be within $\pm 10\%$ of the target value corresponding to the test frequency, liquid and the source used.

The system check detects possible short-term drift and uncertainties in the system, such as:

- a) changes in the liquid parameters (e.g., due to water evaporation or temperature change),
- b) test system component failures,
- c) test system component drift,
- d) operator errors in the set-up or software parameters,
- e) other possible adverse conditions in the system configuration, e.g., RF interference.

The results show that this system check is within 10% of the expected values.

5.1.1 System check results at 2.4 GHz

At 2450 MHz a system check was executed according IEEE 1528-2003. The setup used is shown in figure 5. The following system performance check results were obtained (referenced to 1W):

Frequency = 2450 MHz	Target value	Measured value	Deviation from Target value	Permissible Deviation from Target value
Peak Spatial-Average SAR 1g	52.4 W/kg	50.528 W/kg	-3.6 %	$\pm 10\%$

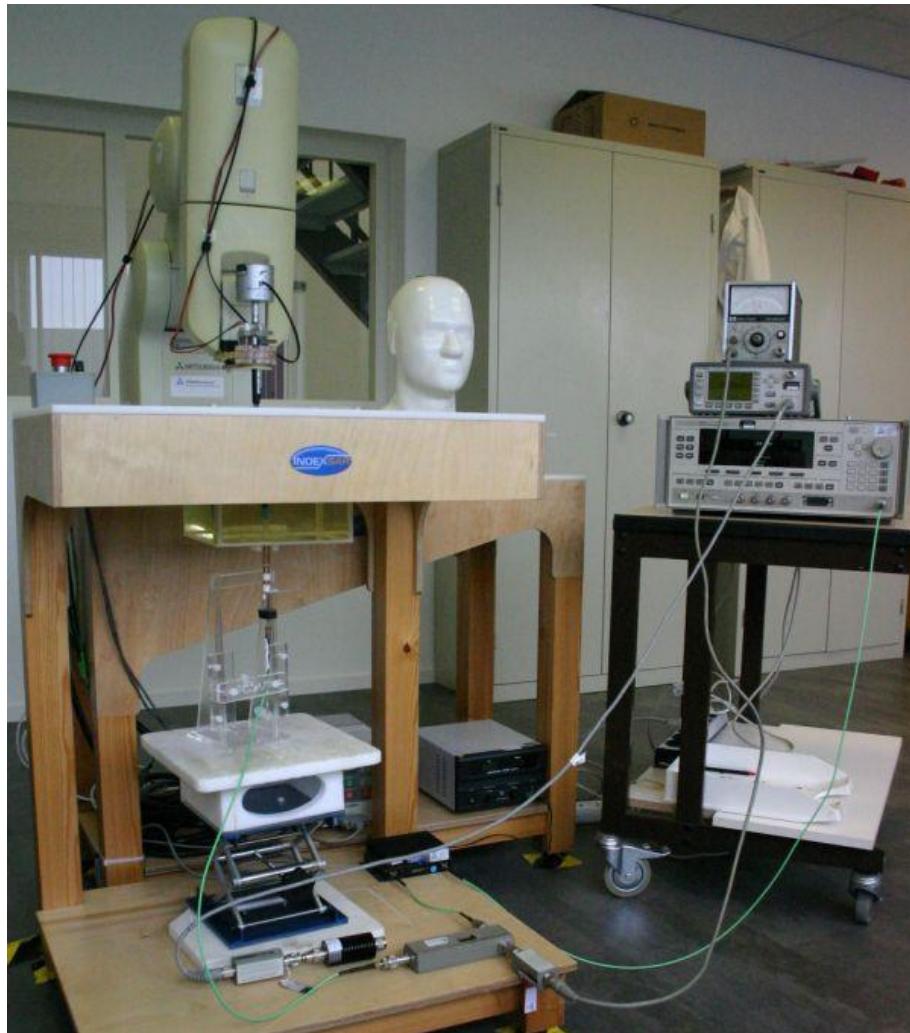


Figure 5: 2.4 GHz System check setup

5.2 Tissue simulating liquid dielectric parameters

For the purpose of the tests as described in this report the following tissue dielectric parameters have been determined by use of a Vector Network Analyzer (VNA). The tables indicate the dielectric parameters of the liquids used during the tests. The indicated required values are derived from IEEE-1528 and of IEC-62209-2.

TÜV Rheinland EPS has chosen the IEC-62209-2 for guidance in the procedure for SAR testing at frequencies above 3 GHz, there in that head liquids are used instead of body liquids. TÜV Rheinland EPS believes that this will be the international standard for SAR testing. (Statement from IEC-62209-2 page 57): At close distances, a conservative exposure estimate can be achieved using the parameters for head tissue equivalent liquids as proposed in study by Drossos in the IEEE Trans. Microwave Theory Tech., Nov.2000, vol.48, no.11, pp. 1988-1995.

Deviation of the actual parameters versus the prescribed parameters is calculated according: $D = \left(\frac{A}{T} - 1 \right) \cdot 100\%$
 where D is deviation in %, A is the actual value and T is the target value.

5.2.1 Mixing procedure

All Tissue Equivalent Liquids are obtained from Bristol University.

Contact details:

Medical Physics Department
 University of Bristol, Bristol Haematology & Oncology Centre
 Horfield road, Bristol BS2 8 ED
 United Kingdom
 Tel. 44 117 928 2469.

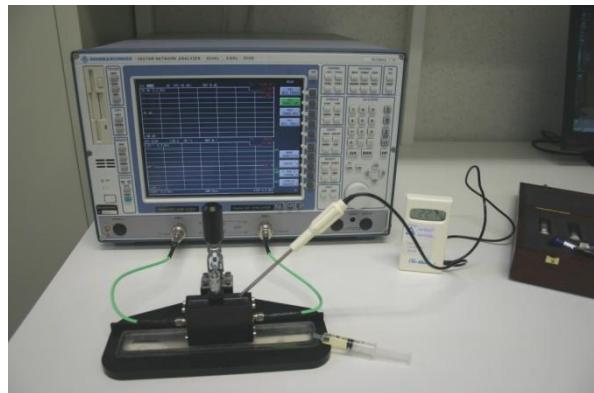


Figure 6: Liquid validation setup

5.2.2 Dielectric parameters for 2450 MHz head tissue

The 2450 MHz head liquid is used for all tests in the EUT's 2.4 GHz band.

The following liquid validation results were obtained.

Results for 2.4 GHz:

Liquid type	Frequency (MHz)	Measured Liquid temperature (°C)	Measured Relative Permittivity	Measured Conductivity (S/m)	Relative Permittivity Standard	Conductivity Standard (S/m)	Relative Permittivity Deviation from standard (%)	Conductivity Deviation from standard (%)
Head	2412	23.0	38.38	1.89	39.27	1.77	-2.27	6.78
Head	2437	23.0	38.25	1.92	39.22	1.79	-2.74	7.26
Head	2450	23.0	38.23	1.93	39.20	1.80	-2.73	7.22
Head	2462	23.0	38.19	1.94	39.18	1.81	-2.53	7.18

Table 4: liquid validation results for 2.4 GHz

Allowable deviation according to IEEE 1528-2003 is for conductivity $\pm 5\%$ and for relative permittivity $\pm 10\%$. Both liquids are within these standard values.

6 Additional information supplementary to the test report

6.1 Description of test system

6.1.1 SAR measurement system

The TÜV Rheinland EPS SAR system is accredited according ISO/IEC 17025:2005 (expiration date of the accreditation is 26 July 2012, accreditation number: L385).

6.1.2 Robot System description

The SAR measurement system used by TR EPS is the IndexSAR SARA2 system, which consists of a Mitsubishi RV-2A six-axis robot-arm and controller, IndexSAR probe and amplifier and an appropriate phantom as required and considered appropriate for the applied test. The robot is used to move and manipulate the probe to programmed positions inside the phantom to obtain the SAR readings from the EUT.

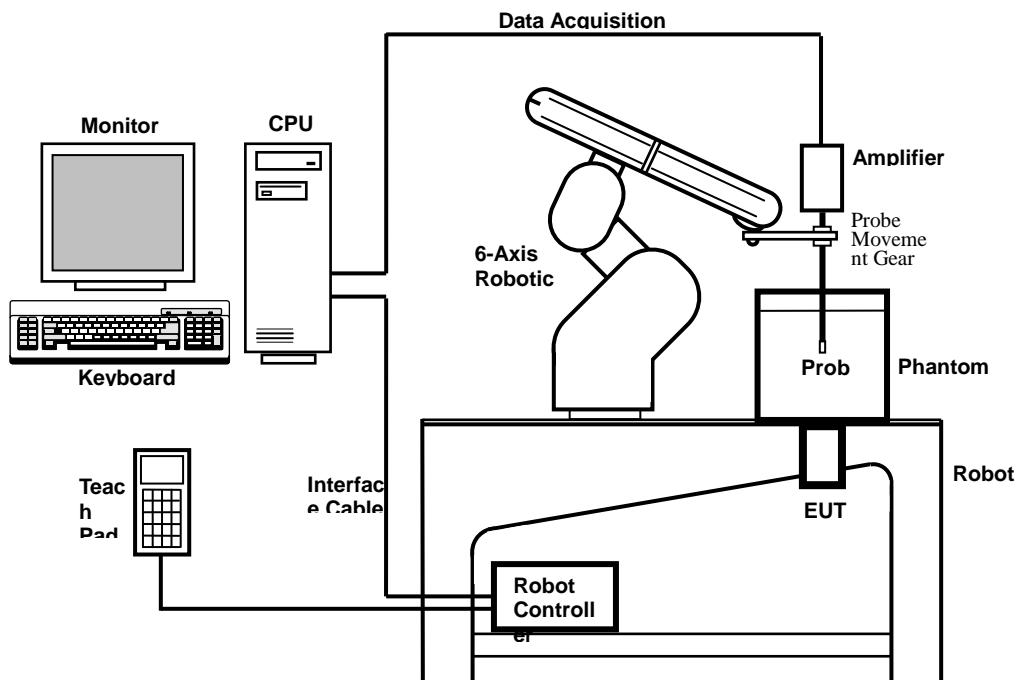


Figure 7: Overview of the SARA2 measurement system

The system is remote controlled by a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans by calculating the measured values into corresponding SAR values based on the currently acceptable calculation methods.

The position and digitized shape of the phantom are made available to the software for accurate positioning of the probe and reduction of set-up time.

E.g. the SAM phantom heads are individually digitized using a Mitutoyo CMM machine to a precision of 0.001mm. The data is then converted into a shape format for the software, providing an accurate description of the phantom shell.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centered at that point to determine volume averaged SAR level.

6.1.3 Probe description

The probes are constructed using three orthogonal dipole sensors arranged on an interlocking, triangular prism core. The probes have built-in shielding against static charges and are contained within a PEEK cylindrical enclosure material at the tip.

Probe calibration is described in the Probe Calibration Document in Annex A.

6.1.4 Amplifier description

The amplifier unit has a multi-pole connector to connect to the probe and a multiplexer selects between the 3-channel single-ended inputs. A 16-bit A-to-D converter with programmable gain is used along with an on-board micro-controller with non-volatile firmware. Battery life is around 150 hours and data are transferred to the PC via 3m of duplex optical fiber and a self-powered RS232 to optical converter.

6.1.5 Phantom description

Body-worn operating configurations are tested using a flat phantom. The body phantom shell is made of a low-loss dielectric material with dielectric constant and loss tangent less than 5.0 and 0.05 respectively. The shell thickness for all regions coupled to the test device and its antenna are within 2.0 ± 0.2 mm. The phantom was filled with the required head equivalent tissue medium to a depth of 15.0 ± 0.5 cm.

For the EUT a flat phantom of dimensions 20 x 20 x 20 cm with a base plate thickness of 2 mm is used.

6.2 Measurement Procedure

During the SAR measurement, the positioning of the probe is performed with sufficient accuracy to obtain repeatable measurements in the presence of rapid spatial attenuation phenomena. The accurate positioning of the E-field probe is accomplished by using the high precision robot. The robot can be taught to position the probe sensor following a specific pattern of points.

After an area scan has been done a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power (SAR) drift during measurement to be assessed.

6.2.1 Step size and scan information

For the EUT's 2.4 GHz band a 30 x 30 mm area is scanned centered around the hotspot using 6 steps of 3 mm in the x-y plane and 10 steps of 3 mm in the z plane. The first area scan is performed with the probe tip 5 mm above the phantom bottom shell. For the EUT's 5 GHz band a 30 x 30 mm area is scanned centered around the hotspot using 10 steps in the x-y plane and 13 steps of 2 mm in the z plane. The first area scan is performed with the probe tip 3 mm above the phantom bottom shell.

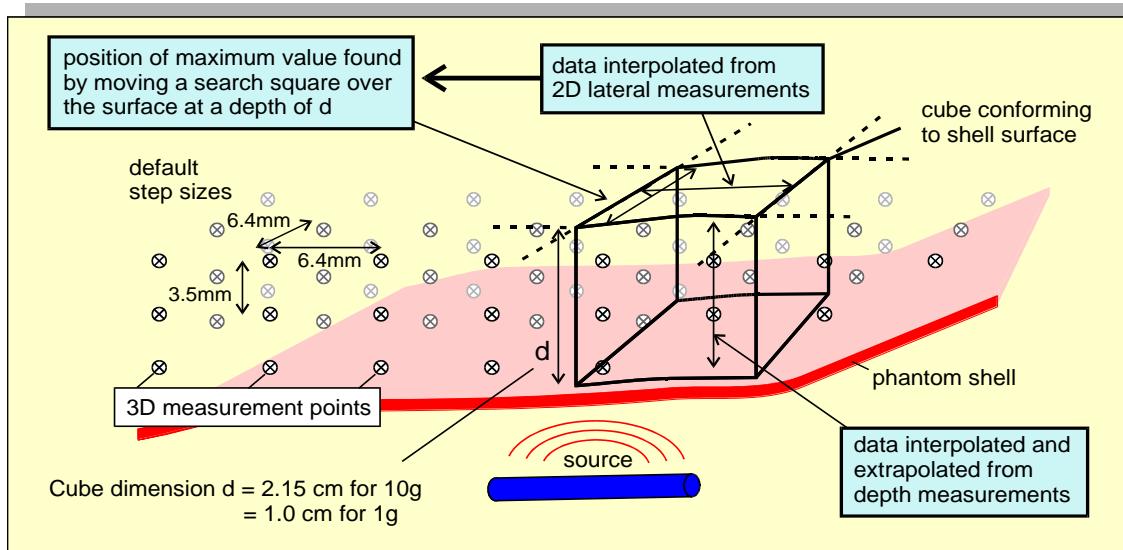


Figure 8: SAR is averaged over a volume of 1g (1.0 cm cube)

6.2.2 SARA2 Interpolation and Extrapolation schemes

SARA2 software contains support for both 2D cubic B-spline interpolation as well as 3D cubic B-spline interpolation. In addition, for extrapolation purposes, a general n^{th} order polynomial fitting routine is implemented following a singular value decomposition algorithm. A 4th order polynomial fit is used by default for data extrapolation.

6.2.3 Interpolation of 2D area scan

The 2D cubic B-spline interpolation is used after the initial area scan at fixed distance from the phantom shell wall. The initial scan data are collected with approximately 10 mm spatial resolution and spline interpolation is used to find the location of the local maximum to within a 1mm resolution for positioning the subsequent 3D scanning.

6.2.4 Extrapolation of 3D scan

For the 3D scan, data are collected on a spatially regular 3D grid having (by default) 6.4 mm steps in the lateral dimensions and 3.5 mm steps in the depth direction (away from the source). SARA2 enables full control over the selection of alternative step sizes in all directions. The digitized shape of the Flat Phantom is available to the SARA2 software, which decides which points in the 3D array are sufficiently well within the shell wall to be 'visited' by the SAR probe. After the data collection, the data are extrapolated in the depth direction to assign values to points in the 3D array closer to the shell wall. A notional extrapolation value is also assigned to the first point outside the shell wall so that subsequent interpolation schemes will be applicable right up to the shell wall boundary.

6.2.5 Interpolation of 3D scan and volume averaging

The procedure used for defining the shape of the volumes used for SAR averaging in the SARA2 software follow the method of adapting the surface of the 'cube' to conform with the surface of the phantom. This is called, here, the conformal scheme.

For each row of data in the depth direction, the data are extrapolated and interpolated to less than 1 mm spacing and average values are calculated from the phantom surface for the row of data over distances corresponding to the requisite depth for 10g and 1g cubes. This results in two 2D arrays of data, which are then cubic B-spline interpolated to sub mm lateral resolution. A search routine then moves an averaging square around through the 2D array and records the maximum value of the corresponding 1g and 10g volume averages. For measurements in rectangular, box phantoms, the distance between the phantom wall and the closest set of gridded data points is entered into the software.

For measurements in box-shaped phantoms, this distance is under the control of the user. The effective distance must be greater than 2.7mm as this is the tip-sensor distance and to avoid interface proximity effects, it should be at least 3 mm. This distance is called dbe.

The default step size (dstep) used is 3.5 mm, but this is under user-control. The compromise is with time of scan, so it is not practical to make it much smaller or scan times become long and power-drop influences become larger. The robot positioning system specification for the repeatability of the positioning (dss) is \pm 0.04 mm.

The flat phantom is made from Polymethylmethacrylate (PMMA), a low-loss dielectric material with dielectric constant and loss tangent less than 5.0 and 0.05 respectively. The shell thickness for all regions coupled to the test device and its antenna are within 2.0 ± 0.2 mm.

For the upright phantom, the alignment is based upon registration of the rotation axis of the phantom on its 253 mm-diameter base plate bearing and the position of the probe axis when commanded to go to the axial position. A laser alignment tool is provided. This enables the registration of the phantom tip (dmis) to be assured to within approx. 0.2 mm. This alignment is done with reference to the actual probe tip after installation and probe alignment.

7 Measurement uncertainty

7.1 Introduction

A measurement uncertainty assessment has been undertaken following guidance given in IEEE-1528. IndexSAR Ltd has supplied a generic uncertainty analysis for the SARA2 system in the form of a spreadsheet and the supporting assessments are documented in an IndexSAR document IXS-2028 (available on request).

Some of the uncertainty contributions are site-specific and, for these, TUV Rheinland EPS has assessed the uncertainty contributions arising from local environmental and procedural factors.

The resultant uncertainty budget is shown on the next pages.

7.1.1 Uncertainty calculated for IEEE-1528: standard measurements (2.4 GHz)

Uncertainty Component	Sec.	Tol. (+/-)		Prob. Dist.	Divisor (descrip)	Divisor (value)	c1 (1g)	Standard Uncertainty (%) 1g
		(dB)	(%)					
Measurement System								
Probe Calibration	7.2.1			8.729	N	1 or k	1	8.73
Axial Isotropy (Cal data SN:168)	7.2.1.2	0.07	1.62	1.62	R	$\sqrt{3}$	1.73	0.00
Boundary effect	7.2.1.5		1.7	1.70	R	$\sqrt{3}$	1.73	1
Linearity	7.2.1.3	0.04	0.93	0.93	R	$\sqrt{3}$	1.73	1
System Detection Limits	7.2.1.4	NA	0	0.00	R	$\sqrt{3}$	1.73	1
Readout Electronics	7.2.1.6	NA	0	0.00	N	1 or k	1.00	1
Response time	7.2.1.7		0	0.00	R	$\sqrt{3}$	1.73	1
Measurement drift	7.2.1.9				R	1	1.00	1
Integration time	7.2.1.8		0	0.00	R	$\sqrt{3}$	1.73	1
Measurement drift	7.2.1.9			0.00	R	1	1.00	1
RF Ambient Conditions (noise and reflections)	7.2.3.4		3	3.00	R	$\sqrt{3}$	1.73	1
Probe Positioner Mechanical Tolerance	7.2.2.1		0.57	0.57	R	$\sqrt{3}$	1.73	1
Probe Position wrt. Phantom Shell	7.2.2.3		2.86	2.86	R	$\sqrt{3}$	1.73	1
SAR Evaluation Algorithms	7.2.4		2.5	2.50	R	$\sqrt{3}$	1.73	1
Test Sample Related								
Test Sample Positioning	7.2.5		2	2.00	N	1	1.00	1
Device Holder Uncertainty	7.2.2.4.2	NA	0	0.00	N	1	1.00	1
Drift of Output Power	7.2.1.9		5	5.00	R	$\sqrt{3}$	1.73	1
Phantom and Setup								
Phantom Uncertainty (shape and thickness)	7.2.2.2		4	4.00	R	$\sqrt{3}$	1.73	1
Algorithm for correcting SAR for deviations in permittivity and conductivity	7.2.3.3				N	1	1.00	1
Liquid conductivity (measurement uncert.)	7.2.3.3		2	2.00	N	1	1.00	0.64
Liquid permittivity (measurement uncert.)	7.2.3.3		2	2.00	N	1	1.00	0.6
Combined standard uncertainty	7.3.1				RSS			10.3
Expanded uncertainty (95% Confidence Level)	7.3.2				k=2			20.2

Table 6: Measurement uncertainty at 2.4 GHz

8 Test equipment and ancillaries used for tests

8.1 Test Equipment

To facilitate inclusion of the test equipment, used for performing the tests, on each page of this test report, each item of test equipment and ancillaries, such as cables, must be identified (numbered) by the test laboratory.

Number	Description	Brand	Model	Serial No.	Cal. date	Cal. Due date
12612	Power sensor 2GHz-26GHz	Hewlett Packard	8485A	2942A11287	10/2011	10/2012
12608	Power meter	Hewlett Packard	435B	2732U04656	07/2011	07/2012
12609	Power sensor	Hewlett Packard	8481A	2702A60807	10/2011	10/2012
13526	Signal generator	Hewlett Packard	83620A	3420A01924	04/2012	04/2013
99106	Attenuator 20 dB, 8 GHz	Lucas Weinschel	24-20-43	AW1972	12/2011	12/2012
99540	Directional Coupler (2G4)	Hewlett Packard	779D	1144A02686	NA	NA
99553	Network Analyzer (VNA)	Rohde & Schwarz	ZVCE	100028	02/2012	02/2014
99554	VNA TOSM Calibration Kit	Rohde & Schwarz	ZV-Z21	1085.7099.02	02/2012	02/2014
99555	RF Amplifier (1 Watt)	IndexSAR	VBM-256	0301	12/2011	12/2012
99556	Bench-top Robot	Mitsubishi	RV-2A-S11	AN303007	NA	NA
99557	Calibration dipole 2400	IndexSAR	IXD-245	44	NA	NA
99559	SAR Probe	IndexSAR	IXP-50	0168	01/2012	01/2013
99589	Validation dipole	IndexSAR	IDX-180	101	NA	NA
99610	SAR Fast Probe amplifier	IndexSAR	IXA-020 Rev.02	0046	NA	NA
99671	Temperatuurmeter SAR, range 15 - 25C	Checktemp 1	--	--	05/2012	05/2013
99856	Hygrometer/room temperature meter	Extech	SD500	n.a.	02/2012	02/2013
99569	TEM line liquid measurement kit	IndexSAR	DiLine	n.a.	12/2011	12/2012
99574	Power meter	Hewlett Packard	E4418B	GB43316552	09/2011	09/2012
99585	Waveguide with matching slab	IndexSAR	WR-137 (WG13)	4434	NA	NA
99576	Power meter	Agilent	N1911A	GB44460144	10/2011	10/2012
99577	Power Sensor	Agilent	N1921A	US44510189	10/2011	10/2012

Table 8: List of used test equipment and ancillaries.

8.2 Test software

During the tests as indicated in this test report the TR-EPS SARA2 system was operated with:

SARA2 system v.2.54
 Mitsubishi robot controller firmware revision RV-E2 Version C9a
 DiLine Dielectric Kit Software v 0.109 (12/6/2003)

Annex A

Probe calibration data 5 mm probe (7 pages)

Annex B

System check data 2.4 GHz (2 pages)

Annex C

Measurement results 2.4 GHz WiFi (18 pages)

NATIONAL PHYSICAL LABORATORY

Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration

SAR PROBE

IndexSAR

Model: IXP-050

Serial number: 0168

This certificate provides traceability of measurement to recognised national standards, and to the units of measurement realised at the National Physical Laboratory or other recognised national standards laboratories. This certificate may not be reproduced other than in full, unless permission for the publication of an approved extract has been obtained in writing from the Managing Director. It does not of itself impute to the subject of calibration any attributes beyond those shown by the data contained herein.

FOR: TÜV Rheinland EPS BV
Smidshornerweg 18
9822 TL
P.O. Box 15
Niekirk
9822 ZG
Netherlands

DESCRIPTION: An IndexSAR isotropic electric field probe for determining specific absorption rates (SAR) in dielectric liquids. The probe has three orthogonal sensors, and the output voltage of the sensors is converted to an optical signal by a meter unit containing an analogue to digital (AD) converter. Probe readings are obtained using software via the RS232 port. The probe was calibrated with IndexSAR amplifier model IXA-010 S/N 036 belonging to NPL.

IDENTIFICATION: The probe is marked with the manufacturer's serial number 0168

MEASUREMENTS COMPLETED ON: 20 December 2011

RECALIBRATION DUE: 20 December 2012

Earlier recalibration should be considered where the device usage increases or if the device is damaged, modified or exposed to harsher than normal environments.

PREVIOUS NPL CERTIFICATE: 2010110446-1 dated: 12 January 2011

The reported uncertainty is based on a coverage factor $k = 2$, providing a level of confidence of approximately 95%

Reference : 2011110355-1

Page 1 of 7

Date of Issue : 20 December 2011

Signed : *B. Loader* (Authorised Signatory)

Checked by : *BGL*

Name : Mr B G Loader on behalf of NPLML

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

MEASUREMENT PROCEDURE

For frequencies at or above 835 MHz, the calibration method is based on establishing a calculable specific absorption rate (SAR) using a matched waveguide cell [1]. The cell has a feed-section and a liquid-filled section separated by a matching window that is designed to minimise reflections at the interface. A TE₀₁ mode is launched into the waveguide by means of a N-type-to-waveguide adapter. The power delivered to the liquid is calculated from the forward power and reflection coefficient measured at the input to the cell. At the centre of the cross-section of the waveguide cell, the volume specific absorption rate (SAR^V) in the liquid as a function of distance from the window is given by

$$SAR^V = \frac{4(P_w)}{ab\delta} e^{-2Z/\delta} \quad (1)$$

where

- a = the larger cross-sectional dimension of the waveguide.
- b = the smaller cross-sectional dimension of the waveguide.
- δ = the skin depth for the liquid in the waveguide.
- Z = the distance of the probe's sensors from the liquid to matching window boundary.
- P_w = the power delivered to the liquid.

For frequencies below 835 MHz, the SAR in the liquid is established by measuring the rate of temperature rise in the liquid at the calibration point. In this case the SAR in the liquid is related to the temperature rise by

$$SAR = c \frac{dT}{dt} \quad (2)$$

where c is the specific heat of the liquid.

Liquids having the properties specified by SAR measurement standards [2, 3, 4] were used for the calibration. The value of δ for the liquid was obtained by measuring the electric field (E) at a number of distances from the matching window. The calibration was for continuous wave (CW) signals, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The probe was rotated about its axis in 15-degree steps, and the ratio of the calibration factors for the three probe sensors X, Y, & Z were optimized to give the best axial isotropy.

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

The probe was calibrated with the linearisation and air-correction factors enabled. Comparing the measured values of E^2 in the liquid to those calculated for the waveguide cell allows the ratio, $ConvF$, of sensitivity for $(E^2_{LIQUID}) / (E^2_{AIR})$ to be determined, as required by the probe software.

ENVIRONMENT

Measurements were made in a temperature-controlled laboratory at $22 \pm 2^\circ\text{C}$. The temperature of the liquid used was measured at the beginning and end of each measurement.

UNCERTAINTIES

The estimated uncertainty in calibration for SAR (W kg^{-1}) is $\pm 10\%$. The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95%.

This uncertainty is valid when the probe is used in a liquid with the same dielectric properties as those used for the calibration. No estimate is made for the long-term stability of the device calibrated or of the fluids used in the calibration.

When using the probe for SAR testing, additional uncertainties should be added to account for the spherical isotropy of the probe, proximity effects, linearity, and response to pulsed fields. There will be additional uncertainty if the probe is used in liquids having significantly different electrical properties to those used for the calibration. The electrical properties of the liquids will be related to temperature.

RESULTS

Tables 1 and 2 give the results for calibration in liquid.

These calibration factors are only correct when the values for sensitivity in free-space, diode compression and sensor offset from the tip of the probe, as set in the probe software, are the same as those given in Table 1 and 2.

Table 3 contains the values of the boundary correction factors $f(0)$ and d .

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

REFERENCES:

- [1] Pokovic, KT, T.Schmid and N.Kuster, "Robust set-up for Precise Calibration of E-field probes in Tissue Simulating Liquids at Mobile Phone Frequencies", Proceedings ICECOM 1997, pp 120 – 124, Dubrovnik, Croatia Oct 12-17, 1997.
- [2] British Standard BS EN 503361:2001. "Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz)".
- [3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".
- [4] Federal Communications Commission, FCC OET Bulletin 65, Supplement C, June 2001, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", David L. Means, Kwok W. Chan.

Reference : 2011110355-1

Page 4 of 7

Date of Issue : 20 December 2011

Checked by : *BCd*

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 1
Sensitivity in Head Simulating Liquids.
SAR probe: IXP-050
S/N 0168

Probe settings for calibration									
Sensitivity in free-space ⁽¹⁾		Diode Compression ⁽¹⁾		Sensor offset from tip of probe ⁽¹⁾					
Lin X = 435 (V/m) ² /(V*200)		DCP X = 20 (V*200)		2.7 mm					
Lin Y = 325 (V/m) ² /(V*200)		DCP Y = 20 (V*200)							
Lin Z = 440 (V/m) ² /(V*200)		DCP Z = 20 (V*200)							
Sensitivity in Head Simulating Liquid.									
Calibration frequency	Liquid Phantom ⁽²⁾		Calibration Factors for $E^2_{\text{Liquid}} / E^2_{\text{Air}}$			Axial Isotropy			
(MHz)	ϵ' ⁽²⁾	σ ⁽²⁾ (Sm ⁻¹)	ConvF _X	ConvF _Y	ConvF _Z	(dB)			
450	41.8	0.85	0.31	0.30	0.28	±0.09			
835	40.6	0.93	0.30	0.28	0.29	±0.02			
900	40.2	0.97	0.30	0.28	0.29	±0.01			
1800	40.1	1.33	0.35	0.35	0.36	±0.01			
1900	39.6	1.44	0.37	0.36	0.37	±0.01			
2100	38.9	1.50	0.41	0.41	0.38	±0.02			
2450	37.4	1.86	0.39	0.40	0.38	±0.04			
3500	36.2	2.93	0.48	0.46	0.45	±0.03			

Reference : 2011110355-1

Page 5 of 7

Date of Issue : 20 December 2011

Checked by : *BCD*

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 2
Sensitivity in Body Simulating Liquids.
SAR probe: IXP-050
S/N 0168

Probe settings for calibration								
Sensitivity in free-space ⁽¹⁾		Diode Compression ⁽¹⁾		Sensor offset from tip of probe ⁽¹⁾				
Lin X = 435 (V/m) ² /(V*200)		DCP X = 20 (V*200)			2.7 mm			
Lin Y = 325 (V/m) ² /(V*200)		DCP Y = 20 (V*200)						
Lin Z = 440 (V/m) ² /(V*200)		DCP Z = 20 (V*200)						
Sensitivity in Body Simulating Liquid.								
Calibration frequency	Liquid Phantom ⁽³⁾		Calibration Factors for $E^2_{\text{Liquid}} / E^2_{\text{Air}}$			Axial Isotropy		
(MHz)	ϵ' ⁽³⁾	σ ⁽³⁾ (Sm ⁻¹)	$ConvF_X$	$ConvF_Y$	$ConvF_Z$	(dB)		
450	55.6	0.95	0.29	0.28	0.27	± 0.10		
835	57.3	0.92	0.32	0.30	0.32	± 0.01		
900	55.9	1.05	0.33	0.32	0.32	± 0.01		
1800	52.8	1.51	0.41	0.39	0.38	± 0.01		
1900	52.6	1.45	0.41	0.41	0.39	± 0.01		
2100	51.8	1.65	0.44	0.44	0.41	± 0.02		
2450	50.8	2.00	0.46	0.44	0.44	± 0.02		
3500	50.7	3.34	0.61	0.58	0.57	± 0.06		

Notes.

⁽¹⁾ The manufacturer supplied these figures.

⁽²⁾ Measured at a temperature of $22 \pm 2^{\circ}\text{C}$.

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 3
Boundary Correction Factors
SAR probe: IXP-050
S/N 0168

Frequency (MHz)	Head Simulating Liquid $f(0)$	d	Body Simulating Liquid $f(0)$	d
450	0.39	1.53	0.58	1.45
835	1.03	1.36	0.53	2.37
900	2.28	0.97	1.47	1.19
1800	0.63	1.79	0.72	1.76
1900	0.64	1.79	0.75	1.76
2100	0.72	1.68	0.78	1.69
2450	1.21	1.27	1.10	1.33
3500	1.05	1.51	1.36	1.37

Reference : 2011110355-1

Page 7 of 7

Date of Issue : 20 December 2011

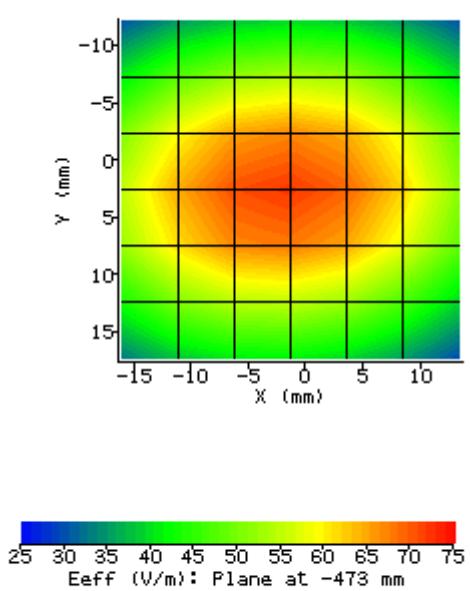
Checked by : *BCL*

Type	: System check 2450MHz	Regnr.	: 12052101
Antenna	: Dipole 2400 MHz		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.5 °C 48 % RH	Test engineer	: L. Koopmans

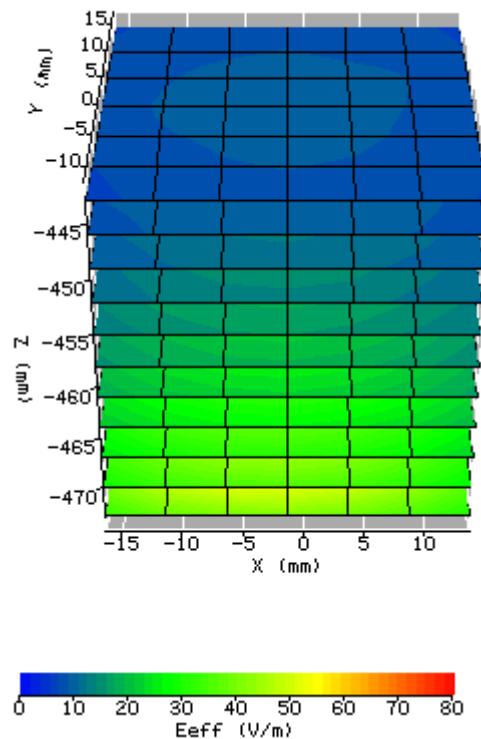
Used test equipment and ancillaries:

99610	99856	99553	99554	99559	99671	13526
99106		99555	99589	12609	12608	12612

 Concerning measurement: **System check 2450 MHz**


System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2450	No of steps z	10
Position / Channel:	Perpendicular	Stepsize z [mm]	3
Antenna Configuration:	External	Dist probe tip – phantom shell [mm]	5
Power level: [W]	0.25 (=+24 dBm)	Probe conversion factor	0.383
Probe Serial Number:	168		
Liquid Simulant:	Head	Max E-field [V/m in liquid]	69.91
Permittivity / Conductivity [S/m]	38.23 / 1.93	Location of max X= [mm]	-2.33
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	2.17
SAR Drift: [dB]	-0.06 (-1.32%)	Location of max Z= [mm]	-473.00

Results:


SAR 1g [W/kg]:	12.632
-----------------------	--------

*power drift during validation: 0.0 dB

	Corrected to 1W (W/kg)	Target value (W/kg)	Deviation from target (%)	Permissible Deviation from target (%)
SAR 1g:	50.528	52.40	-3.6	±10

2d contour plot of scan closest to EUT.

3d representation of entire scan

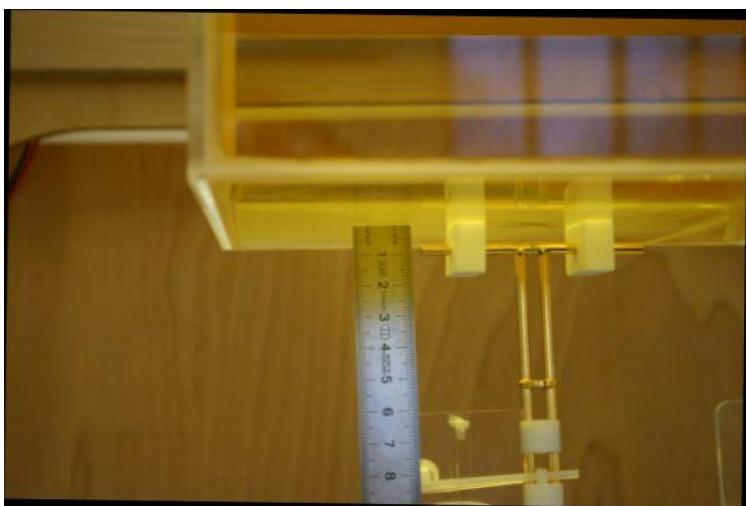


Photo A-2-1: 2450MHz dipole antenna as spaced 10mm from liquid (equals: 8mm between dipole central axis and bottom phantombox+2mm of phantombox bottom thickness)

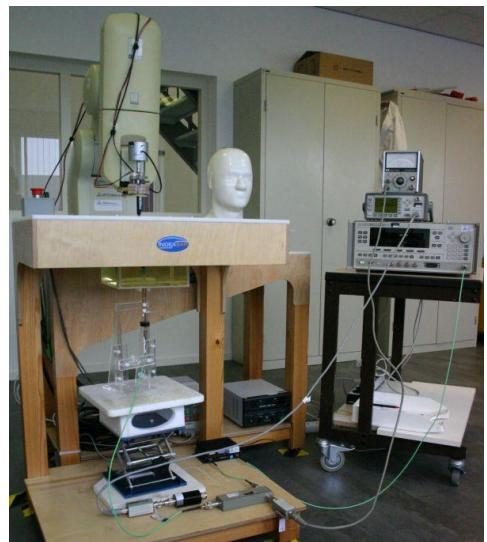
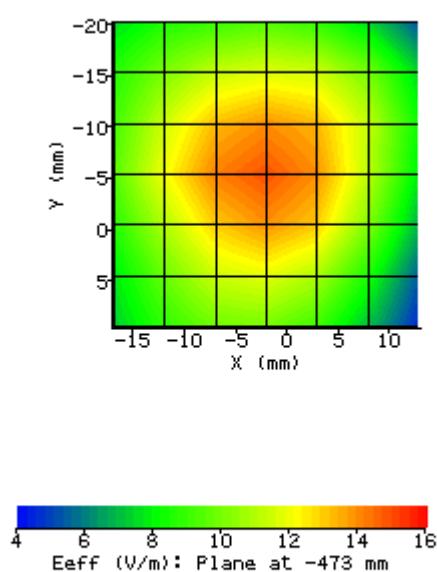


Photo A-2-2: System validation setup for 2450MHz

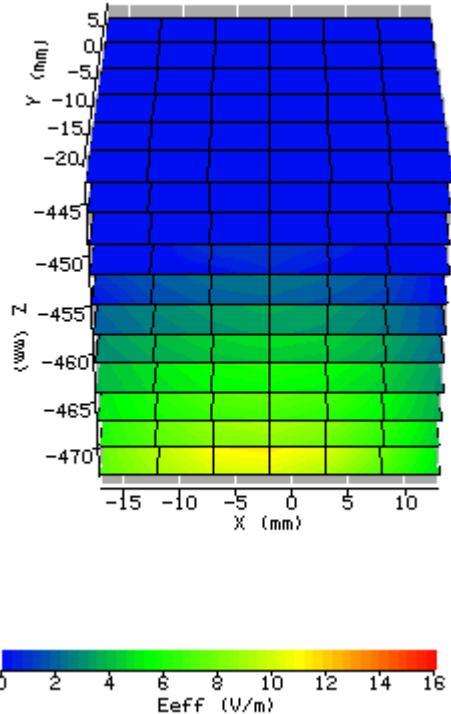
Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:

99610	99856	99553	99554	99559	99671	


 Concerning measurement: **SAR Bottom**

Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11Mb DSSS	Duty Cycle / Mode	: 99% / Cont. TX


System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2412	No of steps z	10
Position / Channel:	Perpendicular / ch 1	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2011
Liquid Simulant:	Head	Max E-field [V/m in liquid]	14.31
Permittivity / Conductivity [S/m]	38.38 / 1.89	Location of max X= [mm]	-2.00
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	-5.33
SAR Drift: [dB]	0.05 (1.22 %)	Location of max Z= [mm]	-473.0

Results:

 SAR 1g [W/kg]: **0.554**

2d contour plot of scan closest to EUT.

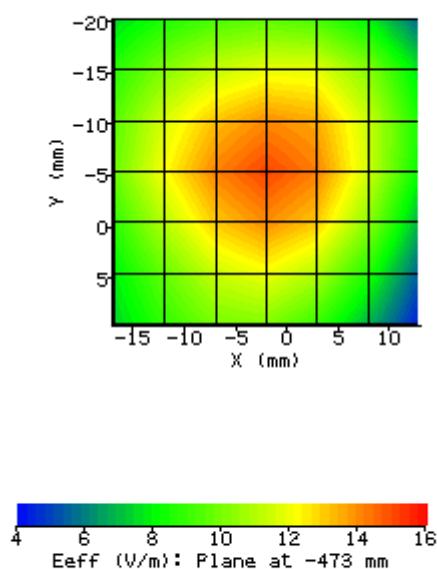
Limits.

Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES

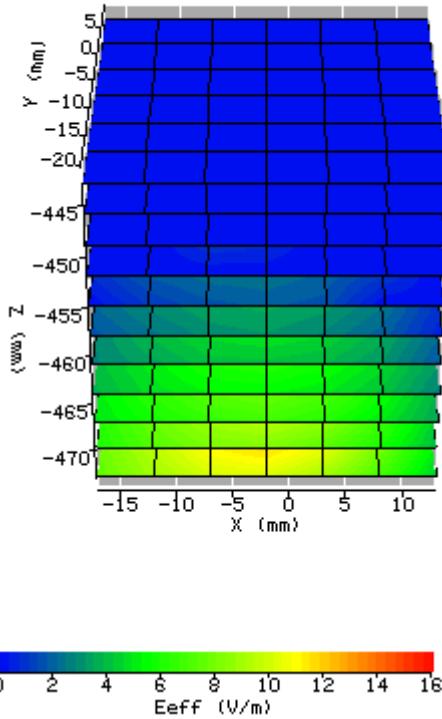
Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:

99610	99856	99553	99554	99559	99671	


 Concerning measurement: **SAR Bottom**

Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11 Mb DSSS	Duty Cycle / Mode	: 99% / Cont.TX


System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2437	No of steps z	10
Position / Channel:	Perpendicular / ch 6	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2012
Liquid Simulant:	Head	Max E-field [V/m in liquid]	14.45
Permittivity / Conductivity [S/m]	38.25 / 1.92	Location of max X= [mm]	-2.00
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	-5.33
SAR Drift: [dB]	-0.08 (-1.91 %)	Location of max Z= [mm]	-473.0

Results:

SAR 1g [W/kg]:	0.564
-----------------------	--------------

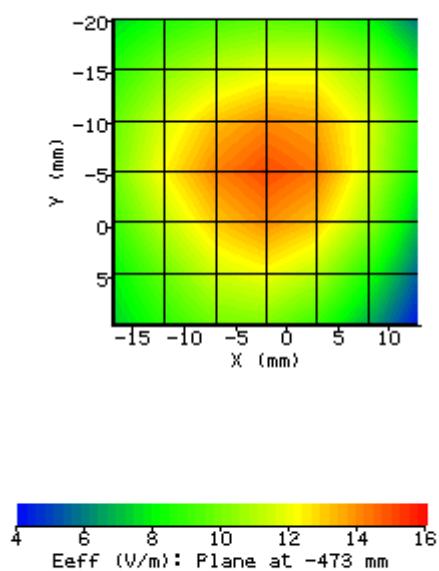
2d contour plot of scan closest to EUT.

Limits.

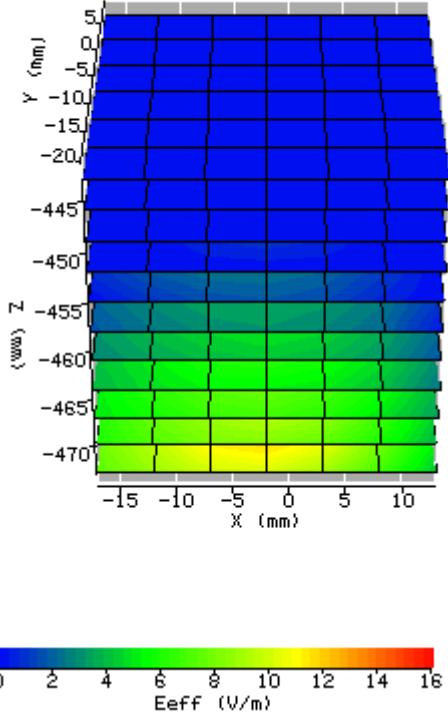
Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES

Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:


99610	99856	99553	99554	99559	99671	

 Concerning measurement: **SAR Bottom**


Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11 Mb DSSS	Duty Cycle / Mode	: 99% / Cont. TX

System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2462	No of steps z	10
Position / Channel:	Perpendicular / ch 11	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2011
Liquid Simulant:	Head	Max E-field [V/m in liquid]	14.43
Permittivity / Conductivity [S/m]	38.19 / 1.94	Location of max X= [mm]	-2.00
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	-5.33
SAR Drift: [dB]	0.00 (0.03%)	Location of max Z= [mm]	-473.0

Results:
SAR 1g [W/kg]: **0.565**

2d contour plot of scan closest to EUT.

3d representation of entire scan

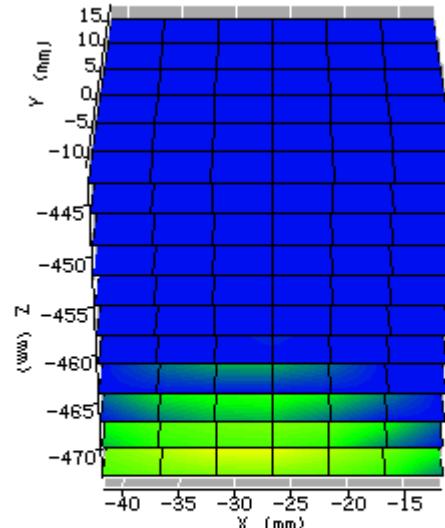
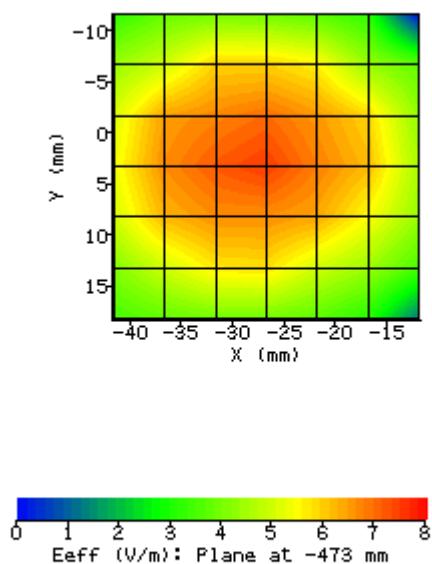
Limits.

Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES

Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:

99610	99856	99553	99554	99559	99671	



 Concerning measurement: **SAR Edge1**

Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11Mb DSSS	Duty Cycle / Mode	: 99% / Cont. TX

System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2412	No of steps z	10
Position / Channel:	Perpendicular / ch 1	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2011
Liquid Simulant:	Head	Max E-field [V/m in liquid]	7.15
Permittivity / Conductivity [S/m]	38.38 / 1.89	Location of max X= [mm]	-27.67
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	3.83
SAR Drift: [dB]	0.00 (0.02%)	Location of max Z= [mm]	-473.0

Results:

SAR 1g [W/kg]:	0.150
-----------------------	--------------

2d contour plot of scan closest to EUT.

3d representation of entire scan

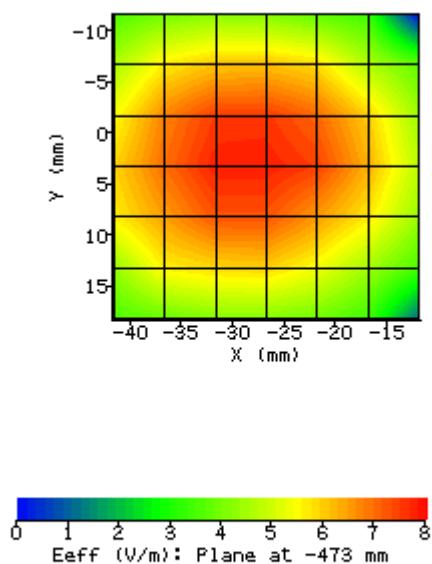
Limits.

Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES

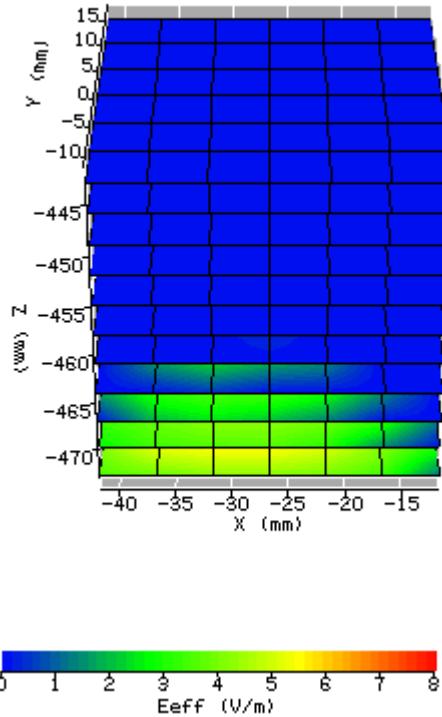
Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:

99610	99856	99553	99554	99559	99671	


 Concerning measurement: **SAR Edge1**

Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11 Mb DSSS	Duty Cycle / Mode	: 99% / Cont.TX


System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2437	No of steps z	10
Position / Channel:	Perpendicular / ch 6	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2012
Liquid Simulant:	Head	Max E-field [V/m in liquid]	7.64
Permittivity / Conductivity [S/m]	38.25 / 1.92	Location of max X= [mm]	-28.67
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	4.33
SAR Drift: [dB]	0.00 (0.02%)	Location of max Z= [mm]	-473.0

Results:

SAR 1g [W/kg]:	0.174
-----------------------	--------------

2d contour plot of scan closest to EUT.

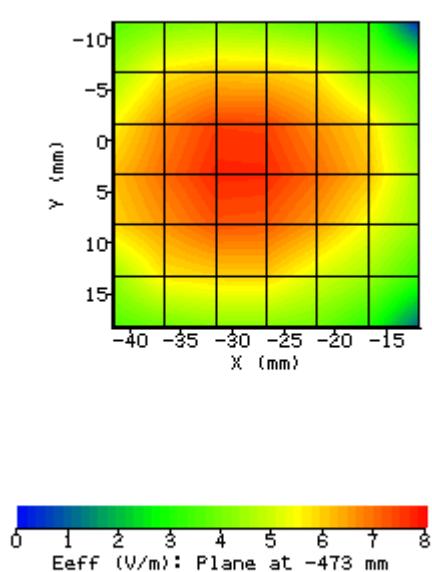
3d representation of entire scan

Limits.

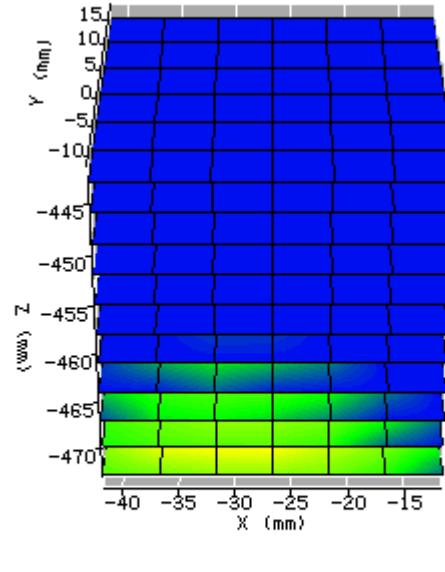
Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES

Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:


99610	99856	99553	99554	99559	99671	

 Concerning measurement: **SAR Edge1**


Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11 Mb DSSS	Duty Cycle / Mode	: 99% / Cont. TX

System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2462	No of steps z	10
Position / Channel:	Perpendicular / ch 11	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2011
Liquid Simulant:	Head	Max E-field [V/m in liquid]	7.56
Permittivity / Conductivity [S/m]	38.19 / 1.94	Location of max X= [mm]	-29.67
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	3.83
SAR Drift: [dB]	0.00 (-0.04%)	Location of max Z= [mm]	-473.0

Results:
SAR 1g [W/kg]: **0.169**

2d contour plot of scan closest to EUT.

3d representation of entire scan

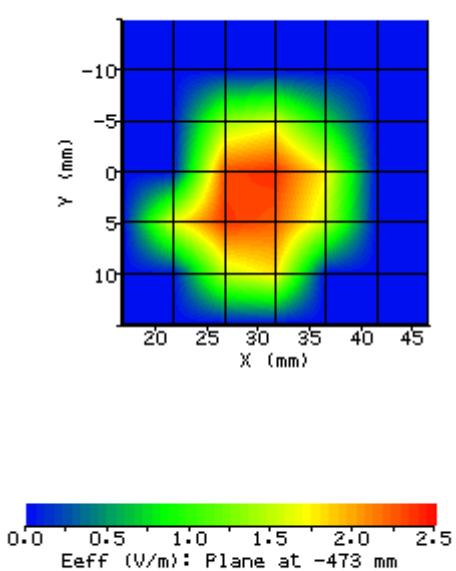
Limits.

Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES

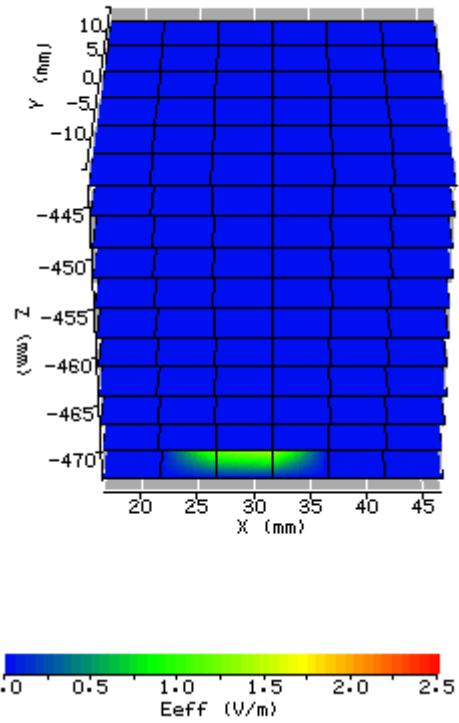
Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:

99610	99856	99553	99554	99559	99671	


 Concerning measurement: **SAR Edge2**

Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11Mb DSSS	Duty Cycle / Mode	: 99% / Cont. TX


System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2412	No of steps z	10
Position / Channel:	Perpendicular / ch 1	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2011
Liquid Simulant:	Head	Max E-field [V/m in liquid]	2.25
Permittivity / Conductivity [S/m]	38.38 / 1.89	Location of max X= [mm]	29.67
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	-2.50
SAR Drift: [dB]	0.00 (-0.04%)	Location of max Z= [mm]	-473.0

Results:

SAR 1g [W/kg]:	0.048
-----------------------	--------------

2d contour plot of scan closest to EUT.

3d representation of entire scan

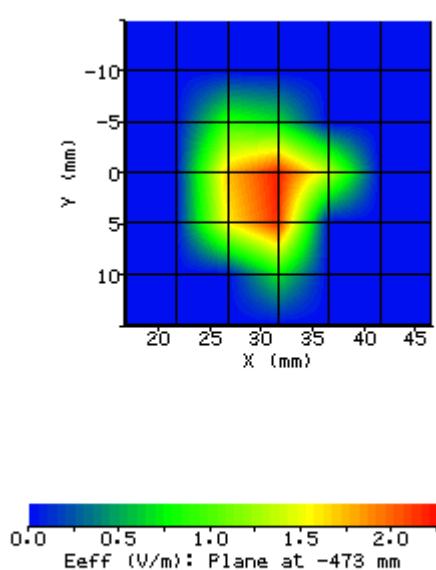
Limits.

Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES

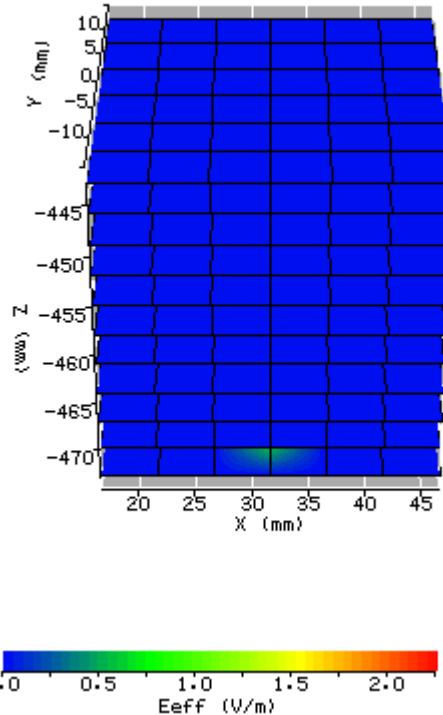
Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:

99610	99856	99553	99554	99559	99671	


 Concerning measurement: **SAR Edge2**

Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11 Mb DSSS	Duty Cycle / Mode	: 99% / Cont.TX


System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2437	No of steps z	10
Position / Channel:	Perpendicular / ch 6	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2012
Liquid Simulant:	Head	Max E-field [V/m in liquid]	1.85
Permittivity / Conductivity [S/m]	38.25 / 1.92	Location of max X= [mm]	30.67
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	-2.00
SAR Drift: [dB]	0.00 (0.01%)	Location of max Z= [mm]	-473.0

Results:

SAR 1g [W/kg]:	0.042
-----------------------	--------------

2d contour plot of scan closest to EUT.

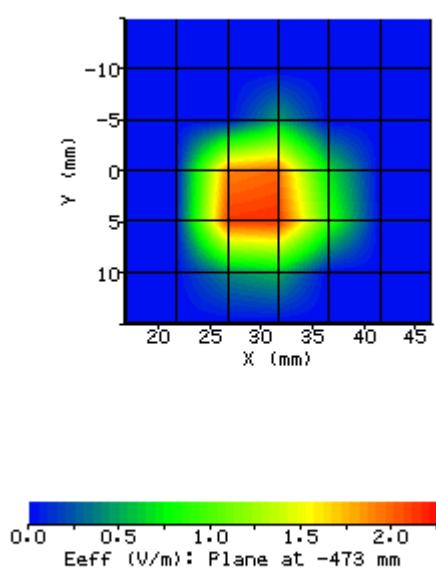
3d representation of entire scan

Limits.

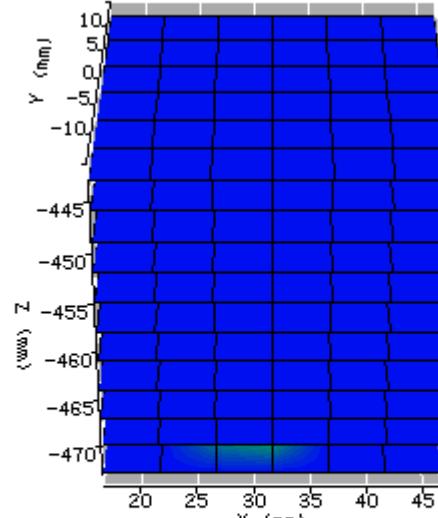
Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES

Type	: Marquis MP977 Android Tablet	Regnr.	: 12052101
Antenna	: Internal		
Standard(s)	: IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2		
TSD	: SAR_01 v1.4	Date	: 14-06-2012
Ambient Conditions	: 23.4 °C 48 % RH	Test engineer	: L. Koopmans

Used test equipment and ancillaries:


99610	99856	99553	99554	99559	99671	

 Concerning measurement: **SAR Edge2**


Antenna Port	: -	Power Control	: 17.0 dBm
Bitrate	: 11 Mb DSSS	Duty Cycle / Mode	: 99% / Cont. TX

System / software:	SARA v2.54	No. of steps x and y	6
Phantom S/No:	Box phantom	Stepsize x and y [mm]	5
Test Frequency [MHz]	2462	No of steps z	10
Position / Channel:	Perpendicular / ch 11	Stepsize z [mm]	3
		Dist probe tip – phantom shell [mm]	5
		Probe conversion factor	0.383
Probe Serial Number:	168	Probe battery check [d/m/y]	14-06-2011
Liquid Simulant:	Head	Max E-field [V/m in liquid]	1.91
Permittivity / Conductivity [S/m]	38.19 / 1.94	Location of max X= [mm]	29.67
Liquid Temperature [°C]	23.0	Location of max Y= [mm]	-3.00
SAR Drift: [dB]	0.00 (-0.01%)	Location of max Z= [mm]	-473.0

Results:
SAR 1g [W/kg]: **0.045**

2d contour plot of scan closest to EUT.

3d representation of entire scan

Limits.

Exposure Category and SAR limits	Test Requirements	Compliance (Yes/No/Not Applicable)
Limit for General Public: 1.6 W/kg (averaged over 1g of tissue)	IEEE-1528, OET 65-C, IC RSS-102 Issue 4, IEC 62209-2	YES