#### **Table of Contents**

| Section    | <b>Description</b>                             | rage |
|------------|------------------------------------------------|------|
| 1.0        | General Information                            | 3    |
| 1.1        | Product Description                            | 3    |
| 1.2        | Related Submittals/Grants                      | 4    |
| 1.3        | Tested System Details                          | 4    |
| 1.4        | Test Methodology                               | 6    |
| 1.5        | Test Facility                                  | 6    |
| 2.0        | Product Labeling                               | 7    |
| 2.1        | Figure 2.1: ID Label                           | 7    |
| 2.2        | Figure 2.2: Location of Label on EUT           | 8    |
| 3.0        | System Test Configuration                      | 9    |
| 3.1        | Justification                                  | 9    |
| 3.2        | EUT Exercise Software                          | 9    |
| 3.3        | Special Accessories                            | 9    |
| 3.4        | Equipment Modifications                        | 9    |
| Figure 3.1 | Configuration of Tested System                 | 10   |
| 4.0        | Block Diagram of EUT                           | 11   |
| 5.0        | Conducted and Radiated Measurement Photographs | 13   |
| 6.0        | Conducted Emissions Data                       | 15   |
| 7.0        | Radiated Emissions Data                        | 18   |
| 7.2        | Out of Band Harmonics                          | 22   |
| 7.3        | Occupied (6 dB) Bandwidth                      | 25   |
| 7.4        | Power Output                                   | 28   |
| 7.5        | Antenna Conducted Emissions                    | 31   |
| 7.6        | Power Spectral Density                         | 42   |
| 7.7        | Processing Gain                                | 45   |
| 7.8        | Field Strength Calculations                    | 48   |
| 7.9        | Measurement Bandwidths                         | 48   |
| 8.0        | Measurement Equipment                          | 49   |
| Appendix I | Measurement Procedures                         | 50   |

## 1.0 General Information

## 1.1 Product Description

| Manufactured By    | Elektrobit, Inc.                          |
|--------------------|-------------------------------------------|
| Address            | 13606 NE 20th St. #201 Bellevue, WA 98005 |
| Test Requested By: | Tim Stewart                               |
| Model              | Sequence DT10                             |
| FCC ID             | xxxDT101                                  |
| Serial Number(s)   |                                           |
| Date of Test       | October 7, 1998 through October 16, 1998  |
| Job Number         | ELEK0001                                  |

The Equipment Under Test (EUT) is the Elektrobit, Inc. Sequence DT10, Serial No. 9824001, a High Data Rate Radio Modem designed for reliable wireless high speed data links in either point-to-point or point-to-multipoint configurations. The modem is the answer for numerous data transmission needs ranging from intelligent transportation systems to surveillance applications in industrial sites, from process control to automatically guided vehicles. The Sequence DT10 is the best solution in any difficult or mobile environment where the use of cables is not possible or is impractical.

The transceiver operates on the 2.4 GHz ISM band ((ETS 300 328) and uses direct sequence spread spectrum technology. The use of the ISM band is license free in Europe, North America, Australia, and most of the Asian states, which allows introducing the wireless data link as simple as possible.

The typical range of the modem with the omnidirectional vertical antenna is up to several hundred meters in line of sight. The modem communicates with the host (terminal) equipment through an RS-485 asynchronous serial interface (up to 115 kb/s) using a modified set of standard AT commands. With these commands the host is able to change communication parameters, send broadcast messages and make calls to a remote modem.

The communication between radio modems is packet based with a data rate of up to 2 Mb/s. The physical layer of the communication protocol is compatible with the IEEE 802.11 draft standard for wireless LANs.

#### Hardware Description:

Clocks/Oscillators Frequencies: 18.432 MHz

## 1.2 Related Submittals/Grants

None

## 1.3 Tested System Details

## **EUT and Peripherals**

| Item (Diagram #)     | FCC ID   | Description and Serial No.                                 |
|----------------------|----------|------------------------------------------------------------|
| EUT (A)              | xxxDT101 | Elektrobit, Inc. Sequence DT10, Serial No. 9824001.        |
| 485 PTBR Converter ( | (B)      | B & B Electronics Model 485 PTBR Converter.                |
| Monitor (C)          |          | Mag. Technology Model DX15FG,<br>Serial No.MA3344000797.   |
| Keyboard (F)         |          | NMB Technologies Model RT 2258TWR,<br>Serial No. C2364258. |
| Mouse (G)            |          | Logitech Model M-S35, Serial No. LZA74452200.              |
| Parallel Printer (E) |          | Epson Model P12PB, Serial No. OE11343090.                  |
| PC (D)               |          | Intel.                                                     |
| DC Power Supply (H   | )        | Instek, Model PC3030D, Serial No. 9565963.                 |

## Cables:

| Cables:<br>ttem (Diagram #) | Descriptions                                                                                                                                                              |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mouse (3)                   | 1.8 meters in length. Unshielded and no ferrites attached.<br>PS/2 style connectors. Permanently attached to the mouse<br>and connected to the mouse port of the PC.      |
| Keyboard (4)                | 1.5 meters in length. Unshielded and no ferrites attached.<br>PS/2 style connectors. Permanently attached to the<br>keyboard and connected the keyboard port of the PC.   |
| Video (2)                   | 1.3 meters in length. Shielded and no ferrites attached.<br>Metal connector backshells. Permanently attached to the<br>monitor and connected to the video port of the PC. |
| Serial Cable (9)            | 1.2 meter in length. Unshielded and no ferrites attached.<br>Plactic connector backshells. Connected from the EUT to<br>the PC.                                           |
| Parallel Cable (5)          | 1.8 meters in length. Shielded and no ferrites attached.<br>Plastic connector backshells. Connected from the parallel<br>printer to the PC.                               |
| Monitor Power (1)           | 1.8 meters in length. Shielded and no ferrites attached. AC connector. Connected from the monitor to the AC Mains.                                                        |
| Printer Power (6)           | 1.9 meters in length. Unshielded and no ferrites attached.<br>AC connector. Connected from the printer to the AC<br>Mains.                                                |
| PC Power (7)                | 1.8 meters in length. Unshielded and no ferrites attached.<br>AC connector. Connected from the PC to the AC Mains.                                                        |
| DC Pwr Supply (8)           | 1.8 meters in length. Unshielded and no ferrites attached.<br>AC connector. Connected from the power supply to the<br>AC Mains.                                           |
| DC Power Leads (10)         | 0.5 meters in length. Unshielded and no ferrites attached.<br>AC connector. Connected from the power supply to the<br>converter.                                          |
| EUT Power/Data (11)         | 1.2 meters in length. Unshielded and no ferrites attached. Plastic connector. Connected from the converter to the EUT.                                                    |

Report No. ELEK0001

## 1.4 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4 (1992). Radiated testing was performed at an antenna to EUT distance of 3 meters. Please reference Appendix I for further detail on Test Methodology.

### 1.5 Test Facility

The Open Area Test Site and conducted measurement facility used to collect the radiated and conducted data is located at

Northwest EMC, Inc. 30475 NE Trails End Ln Newberg, OR 97132 (503) 537-5566 Fax: 537-5562

The Open Area Test Site, and conducted measurement facility is located in Newberg, OR, at the address shown above. These sites have been fully described in reports filed with the FCC (Federal Communications Commission), and accepted by the FCC in letters maintained in our files.

Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations. These criteria encompass the requirements of ISO/IEC Guide 25 and the relevant requirements of ISO 9002 (ANSI/ASQC Q92-1987) as suppliers of calibration or test results. NVLAP Lab Code: 200059-0.

Northwest EMC, Inc. has been assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

# 3.0 System Test Configuration

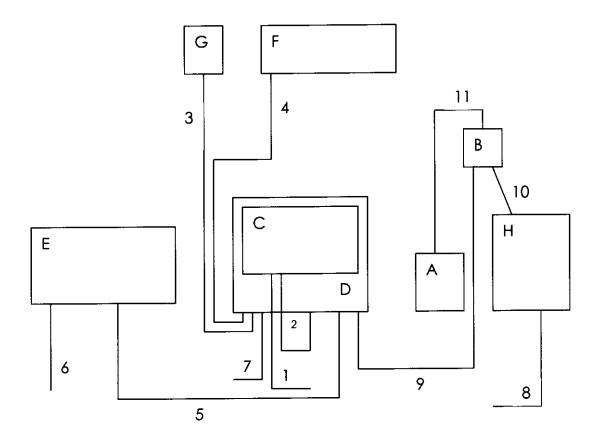
### 3.1 Justification

All operating modes of the EUT were investigated. Data was taken with the EUT configured for low, mid, and high XMIT frequencies.

Radiated emissions were measured with the antenna connected.

## 3.2 EUT Exercise Software

The Sequence DT10 Modern hardware and software (firmware) versions may be interrogated from the device by using the command "AT17". The latest versions are; Hardware Ver. 1.2 and Software Ver. 1.4f1.


# 3.3 Special Accessories

None

# 3.4 Equipment Modifications

None.

Figure 3.1: Configuration of Tested System



## 4.0 Block Diagram

#### 1. RF BOARD

The block diagram of the RF board is shown in Figure 1.

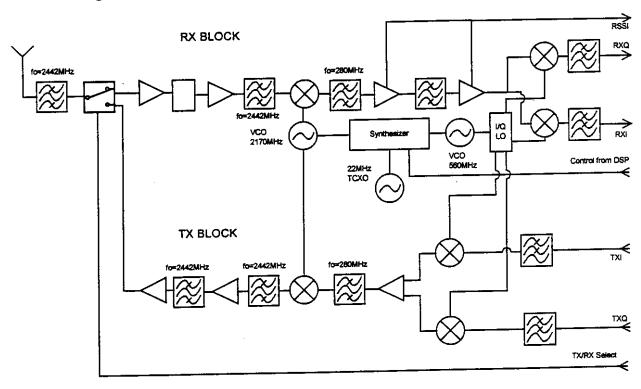



Figure 1. The RF block diagram.

The reference frequency for the RF parts is 22MHz, which is produced by a temperature compensated crystal oscillator. A double synthesizer is used to control two VCO's. The first VCO generates the frequency which is 280 MHz below the center frequency of the RF channel. The center frequency can be selected from 2422 MHz to 2462 MHz. The second VCO generates a fixed frequency of 560 MHz, which is divided by two when generating the 280 MHz IF signals for I and Q.

Page - 12

## 4.0 Block Diagram

#### 2. BASEBAND BOARD

The block diagram of the baseband board is shown in Figure 2.

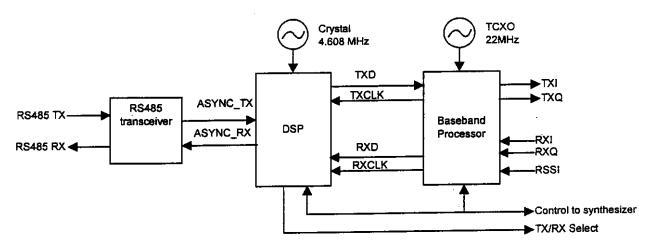



Figure 2. The Baseband block diagram

The baseband board contains two frequency generators: A 22 MHz TCXO is used as a master clock for the baseband processor. All the clocks used in DSSS signal processing are derived from this clock. The DSP uses a crystal of 4.608 MHz as its clock source. This clock is multiplied by 4 internally in the DSP to produce the operating clock of 18.432 MHz.

### **6.0 Conducted Emissions Data**

**6.1** The initial step in collecting conducted data is a spectrum analyzer, peak scan of the entire measurement range. All signals with less than 3 dB margin are then measured using a quasipeak detector. Complete graphs and data sheets may be referenced on the following page. Minimum margins are listed below:

FCC Part 15 Specification Limits

| Frequency<br>(MHz) | Detector | Measured Level<br>(dBuV) | Adjusted Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB)* | Lead |
|--------------------|----------|--------------------------|--------------------------|-----------------|-----------------|------|
| 0.477              | QP       | 29.9                     | 36.9                     | 48.0            | 11.1            | High |
| 0.454              | QP       | 30.0                     | 37.0                     | 48.0            | 11.0            | High |
| 0.484              | QP       | 28.7                     | 35.7                     | 48.0            | 12.3            | High |
| 0.519              | QP       | 27.5                     | 34.5                     | 48.0            | 13.5            | High |
| 0.583              | QP       | 24.2                     | 31.2                     | 48.0            | 16.8            | High |
| 0.630              | QP       | 23.4                     | 30.4                     | 48.0            | 17.6            | High |
| Frequency<br>(MHz) | Detector | Measured Level<br>(dBuV) | Adjusted Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB)* | Lead |
| 0.450              | QP       | 36.2                     | 43.2                     | 48.0            | 4.8             | Low  |
| 0.487              | QP       | 30.9                     | 37.9                     | 48.0            | 10.1            | Low  |
| 0.508              | QP       | 30.3                     | 37.3                     | 48.0            | 10.7            | Low  |
| 0.530              | QP       | 29.2                     | 36.2                     | 48.0            | 11.8            | Low  |
| 0.554              | QP       | 27.5                     | 34.5                     | 48.0            | 13.5            | Low  |
| 0.477              | QP       | 29.9                     | 36.9                     | 48.0            | 11.1            | Low  |

The emission levels shown above were made using a Quasi-Peak detector. Measurements were also made using an average detector. Since the difference in those measurements was greater than 6 dB, a 13 dB relaxation was applied to the Quasi-Peak measurements. (Reference 15.107 (3d)).

All readings listed above are Quasi-Peak, using an IF Bandwidth of 9 kHz, a video filter was not used.

Judgment: Passed, minimum margin of 4.8 dB.

#### **Test Personnel:**

Typed/Printed Name: Daniel Haas

David Glas

## Northwest EMC, Inc.

Ver 5.4, Dec 1997

**Equipment Tested: Sequence DT10** 

Serial Number:

9824001

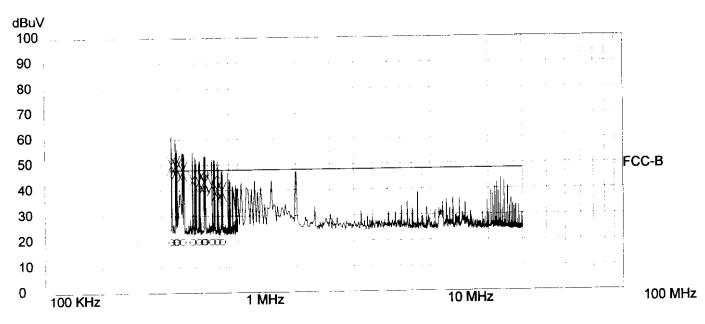
Manufacturer:

Elektrobit, Inc.

Job Number:

**ELEK0001** 

Date/Time: Tested By:


10-16-1998 07:38 Daniel Haas, TE01

Comments:

Modem transmitting test data. Whip antenna. Mid frequency.

Run #1.

## FCC Part 15 Class B Conducted Emissions Limits HIGH LINE



| Frequency (MHz) | Meter<br>Reading<br>(dBuV) | Detector<br>Function | Correction<br>Factor<br>(dB) | Line<br>Tested | Adjusted<br>Level<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Compared<br>To Limit<br>(dB) |
|-----------------|----------------------------|----------------------|------------------------------|----------------|-----------------------------|--------------------------|------------------------------|
|                 |                            |                      |                              |                | '-                          | 40.0                     | 20.0                         |
| 0.830           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.783           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.736           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.677           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.669           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.630           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.583           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.519           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.484           | 0.0                        | ÁV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.477           | 0.0                        | AV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.454           | 0.0                        | ÄV                   | 20.0                         | High           | 20.0                        | 48.0                     | -28.0                        |
| 0.477           | 29.9                       | QP                   | 20.0                         | High           | 49.9                        | 48.0                     | 1.9                          |
| 0.454           | 30.0                       | QP                   | 20.0                         | High           | 50.0                        | 48.0                     | 2.0                          |
|                 | 28.7                       | QP                   | 20.0                         | High           | 48.7                        | 48.0                     | 0.7                          |
| 0.484           | 27.5                       | QP                   | 20.0                         | High           | 47.5                        | 48.0                     | -0.5                         |
| 0.519           | 27.5<br>24.2               | QP                   | 20.0                         | High           | 44.2                        | 48.0                     | -3.8                         |
| 0.583           |                            | QP                   | 20.0                         | High           | 43.4                        | 48.0                     | -4.6                         |
| 0.630           | 23.4                       | QP                   | 20.0                         | High           | 43.5                        | 48.0                     | -4.5                         |
| 0.669           | 23.5                       | QP<br>QP             | 20.0                         | High           | 43.1                        | 48.0                     | <b>-4</b> .9                 |
| 0.677           | 23.1                       |                      | 20.0                         | High           | 42.0                        | 48.0                     | <b>-6</b> .0                 |
| 0.736           | 22.0                       | QP<br>OB             | 20.0                         | High           | 40.2                        | 48.0                     | -7.8                         |
| 0.783           | 20.2                       | QP                   | 20.0                         | High           | 39.7                        | 48.0                     | -8.3                         |
| 0.830           | 19.7                       | QP                   | 20.0                         | ı ngı          | 55.7                        |                          |                              |

### Ver 5.4, Dec 1997

Northwest EMC, Inc. **Equipment Tested: Sequence DT10** 

Serial Number:

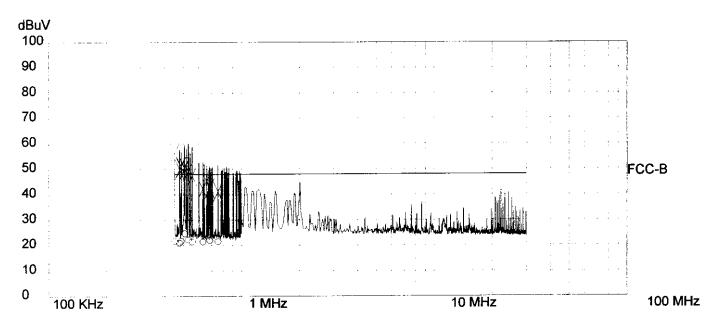
9824001

Manufacturer:

Elektrobit, Inc.

Job Number:

**ELEK0001** 


Date/Time: Tested By: 10-16-1998 07:20:53 Daniel Haas, TE01

Comments:

Modem transmitting test data. Whip antenna. Mid frequency.

Run #1.

LOW LINE FCC Part 15 Class B Conducted Emissions Limits



| Frequency (MHz) | Meter<br>Reading<br>(dBuV) | Detector<br>Function | Correction<br>Factor<br>(dB) | Line<br>Tested | Adjusted<br>Level<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Compared<br>To Limit<br>(dB) |
|-----------------|----------------------------|----------------------|------------------------------|----------------|-----------------------------|--------------------------|------------------------------|
|                 |                            |                      |                              |                |                             | 40.0                     | 00.5                         |
| 0.554           | 1.5                        | AV                   | 20.0                         | High           | 21.5                        | 48.0                     | -26.5                        |
| 0.530           | 2.3                        | AV                   | 20.0                         | High           | 22.3                        | 48.0                     | -25.7                        |
| 0.508           | 4.8                        | AV                   | 20.0                         | High           | 24.8                        | 48.0                     | -23.2                        |
| 0.487           | 1.8                        | AV                   | 20.0                         | High           | 21.8                        | 48.0                     | -26.2                        |
| 0.450           | 1.7                        | AV                   | 20.0                         | High           | 21.7                        | 48.0                     | -26.3                        |
| 0.477           | 1.0                        | AV                   | 20.0                         | High           | 21.0                        | 48.0                     | -27.0                        |
| 0.754           | 1.6                        | ÁV                   | 20.0                         | High           | 21.6                        | 48.0                     | -26.4                        |
| 0.684           | 2.1                        | ÁV                   | 20.0                         | High           | 22.1                        | 48.0                     | -25.9                        |
| 0.630           | 1.5                        | ÄV                   | 20.0                         | High           | 21.5                        | 48.0                     | -26.5                        |
| 0.450           | 36.2                       | QP                   | 20.0                         | High           | 56.2                        | 48.0                     | 8.2                          |
| 0.487           | 30.9                       | QP<br>QP             | 20.0                         | High           | 50.9                        | 48.0                     | 2.9                          |
|                 | 30.3                       | QP<br>QP             | 20.0                         | High           | 50.3                        | 48.0                     | 2.3                          |
| 0.508           |                            |                      |                              |                | 49.2                        | 48.0                     | 1.2                          |
| 0.530           | 29.2                       | QP                   | 20.0                         | High           |                             |                          | -0.5                         |
| 0.554           | 27.5                       | QP                   | 20.0                         | High           | 47.5                        | 48.0                     |                              |
| 0.477           | 29.9                       | QP                   | 20.0                         | High           | 49.9                        | 48.0                     | 1.9                          |
| 0.684           | 22.6                       | QP                   | 20.0                         | High           | 42.6                        | 48.0                     | -5.4                         |
| 0.754           | 21.2                       | QP                   | 20.0                         | High           | 41.2                        | 48.0                     | -6.8                         |
| 0.630           | 22.3                       | QP                   | 20.0                         | High           | 42.3                        | 48.0                     | -5.7                         |

## 7.0 Radiated Emissions Data

**7.1** The following data lists the six most significant emission frequencies, total (corrected) levels, and specification margins. Correction factors, antenna height, table azimuth, etc., are contained in the data sheets immediately following. Explanation of the correction factors is given in paragraph 7.2 of this report. Complete graphs and data sheets may be referenced on the following pages. Minimum margins are listed below:

FCC Part 15 Specification Limits

| Frequency<br>(MHz) | Detection | Total Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB)* | Polarization_ |
|--------------------|-----------|-------------------------|-------------------|--------------|---------------|
| 154.015            | QP        | 34.2                    | 43.5              | 9.3          | Vertical      |
| 220.016            | QP        | 35.3                    | 46.0              | 10.7         | Vertical      |
| 601.363            | QP        | 33.6                    | 46.0              | 12.4         | Vertical      |
| 544.092            | QP        | 33.5                    | 46.0              | 12.5         | Vertical      |
| 66.000             | QP        | 27.4                    | 40.0              | 12.6         | Vertical      |
| 152.002            | QP        | 30.5                    | 43.5              | 13.0         | Vertical      |

Judgment: Passed, minimum margin of 9.3 dB.

**Test Personnel:** 

Typed/Printed Name: Daniel Haas

## Northwest EMC, inc.

Version 5.3, April 1998

**EUT Name:** Serial Number: Sequence DT10

Horizontal= X Vertical = 0

Manufacturer: Job Number:

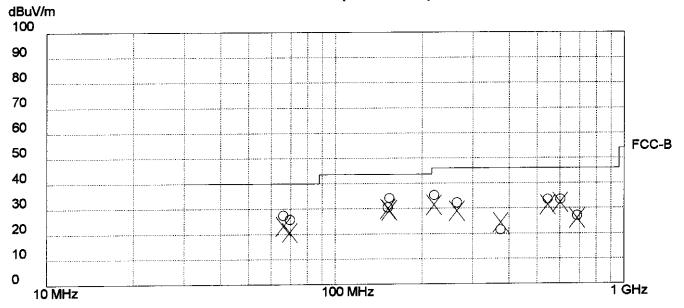
9824001 Electrobit, Inc. **ELEK0001** 10-07-1998

Tested By:

Daniel Haas. TE04

Test Distance:

3 meters.


Comments:

Test Date:

Modem transmitting test data. Whip antenna

Set to Channel 8

#### FCC Class B (3 Meter Limit)



| Frequency  | Meter   | Detector | Antenna  | Antenna    | Preamp | Cable | Adjusted | Spec     | Table    | Antenna  | Compared   |
|------------|---------|----------|----------|------------|--------|-------|----------|----------|----------|----------|------------|
| 1 Toquoney | Reading |          |          | Horizontal |        | Loss  | Level    | Limit    | Azimuth  | Height   | (To Limit) |
| (MHz)      | (dBuV)  | ,        | (dB/m)   | Vertical   | (dB)   | (dB)  | (dBuV/m) | (dBuV/m) | (degree) | (meters) | (dB)       |
|            |         |          | <u> </u> |            |        |       |          |          |          |          |            |
| 154.015    | 49.3    | QP       | 14.4     | VBIC       | 31.8   | 2.3   | 34.2     | 43.5     | 331.0    | 1.0      | -9.3       |
| 220.016    | 52.0    | QP       | 12.3     | VLPA       | 31.7   | 2.7   | 35.3     | 46.0     | 80.0     | 1.0      | -10.7      |
| 601.363    | 41.8    | QP       | 19.7     | VLPA       | 32.3   | 4.4   | 33.6     | 46.0     | 318.0    | 1.1      | -12.4      |
| 544.092    | 42.6    | QP       | 18.9     | VLPA       | 32.2   | 4.2   | 33.5     | 46.0     | 289.0    | 1.0      | -12.5      |
| 66.000     | 48.6    | QP       | 9.1      | VBIC       | 31.8   | 1.5   | 27.4     | 40.0     | 148.0    | 1.0      | -12.6      |
| 152.002    | 46.3    | QP       | 13.7     | VBIC       | 31.8   | 2.3   | 30.5     | 43.5     | 0.0      | 1.0      | -13.0      |
| 152.002    | 45.7    | QP       | 13.7     | HBIC       | 31.8   | 2.3   | 29.9     | 43.5     | 55.0     | 2.2      | -13.6      |
| 601.365    | 40.5    | QP       | 19.7     | HLPA       | 32.3   | 4.4   | 32.3     | 46.0     | 96.0     | 1.8      | -13.7      |
| 264.016    | 47.3    | QP       | 13.9     | VLPA       | 31.8   | 2.9   | 32.3     | 46.0     | 178.0    | 1.0      | -13.7      |
| 153.999    | 44.5    | QP       | 14.4     | HBIC       | 31.8   | 2.3   | 29.4     | 43.5     | 247.0    | 1.4      | -14.1      |
| 69.585     | 46.8    | QP       | 9.4      | VBIC       | 31.8   | 1.5   | 25.9     | 40.0     | 88.0     | 1.0      | -14.1      |
| 220.017    | 48.1    | QP       | 12.3     | HLPA       | 31.7   | 2.7   | 31.4     | 46.0     | 295.0    | 1.7      | -14.6      |
| 544.092    | 40.5    | QP       | 18.9     | HLPA       | 32.2   | 4.2   | 31.4     | 46.0     | 212.0    | 2.0      | -14.6      |
| 264.014    | 43.9    | QP       | 13.9     | HLPA       | 31.8   | 2.9   | 28.9     | 46.0     | 164.0    | 1.3      | -17.1      |
| 687.274    | 33.7    | QP       | 21.0     | VLPA       | 32.4   | 4.8   | 27.1     | 46.0     | 0.0      | 1.0      | -18.9      |
| 687.278    | 32.6    | QP       | 21.0     | HLPA       | 32.4   | 4.8   | 26.0     | 46.0     | 112.0    | 1.6      | -20.0      |
| 374.016    | 36.8    | QP       | 16.3     | HLPA       | 32.1   | 3.4   | 24.4     | 46.0     | 300.0    | 1.5      | -21.6      |
| 374.016    | 33.9    | QP       | 16.3     | VLPA       | 32.1   | 3.4   | 21.5     | 46.0     | 342.0    | 1.0      | -24.5      |

Temperature 65F 75% Humidity

## Northwest EMC, Inc.

Version 5.3, April 1998 Margin Sort

**Equipment Tested:** 

**Sequence DT10** 

Serial Number:

9824001

Manufacturer: Job Number: Electrobit, Inc. ELEK0001

Test Date:

10-07-1998

Tested By:

Daniel Haas, TE04

Test Distance:

3 meters.

Comments:

Modem transmitting test data. Whip antenna

**Set to Channel 8** 

#### FCC Class B (3 Meter Limit)

| Frequency          | Meter   |    |        | Antenna    |      | Cable | Adjusted         | Spec     | Table    | Antenna  | Compared   |
|--------------------|---------|----|--------|------------|------|-------|------------------|----------|----------|----------|------------|
|                    | Reading |    | Factor | Horizontal |      | Loss  | Level            | Limit    | Azimuth  | Height   | (To Limit) |
| (MHz)              | (dBuV)  |    | (dB/m) | Vertical   | (dB) | (dB)  | (dBuV/m)         | (dBuV/m) | (degree) | (meters) | (dB)       |
|                    |         |    |        |            |      |       |                  |          |          |          |            |
| 154.015            | 49.3    | QP | 14.4   | VBIC       | 31.8 | 2.3   | 34.2             | 43.5     | 331.0    | 1.0      | -9.3       |
| 220.016            | 52.0    | QP | 12.3   | VLPA       | 31.7 | 2.7   | 35.3             | 46.0     | 80.0     | 1.0      | -10.7      |
| 601.363            | 41.8    | QP | 19.7   | VLPA       | 32.3 | 4.4   | 33.6             | 46.0     | 318.0    | 1.1      | -12.4      |
| 544.092            | 42.6    | QP | 18.9   | VLPA       | 32.2 | 4.2   | 33.5             | 46.0     | 289.0    | 1.0      | -12.5      |
| 66.000             | 48.6    | QP | 9.1    | VBIC       | 31.8 | 1.5   | 27.4             | 40.0     | 148.0    | 1.0      | -12.6      |
| 152.002            | 46.3    | QP | 13.7   | VBIC       | 31.8 | 2.3   | 30.5             | 43.5     | 0.0      | 1.0      | -13.0      |
| 152.002            | 45.7    | QP | 13.7   | HBIC       | 31.8 | 2.3   | 29.9             | 43.5     | 55.0     | 2.2      | -13.6      |
| 601.365            | 40.5    | QP | 19.7   | HLPA       | 32.3 | 4.4   | 32.3             | 46.0     | 96.0     | 1.8      | -13.7      |
| 264.016            | 47.3    | QP | 13.9   | VLPA       | 31.8 | 2.9   | 32.3             | 46.0     | 178.0    | 1.0      | -13.7      |
| 153.999            | 44.5    | QP | 14.4   | HBIC       | 31.8 | 2.3   | 29.4             | 43.5     | 247.0    | 1.4      | -14.1      |
| 69.585             | 46.8    | QP | 9.4    | VBIC       | 31.8 | 1.5   | 25. <del>9</del> | 40.0     | 88.0     | 1.0      | -14.1      |
| 220.017            | 48.1    | QP | 12.3   | HLPA       | 31.7 | 2.7   | 31.4             | 46.0     | 295.0    | 1.7      | -14.6      |
| 544.092            | 40.5    | QP | 18.9   | HLPA       | 32.2 | 4.2   | 31.4             | 46.0     | 212.0    | 2.0      | -14.6      |
| 66.000             | 44.4    | QP | 9.1    | HBIC       | 31.8 | 1.5   | 23.2             | 40.0     | 204.0    | 3.6      | -16.8      |
| 264.014            | 43.9    | QP | 13.9   | HLPA       | 31.8 | 2.9   | 28.9             | 46.0     | 164.0    | 1.3      | -17.1      |
| 687.274            | 33.7    | QP | 21.0   | VLPA       | 32.4 | 4.8   | 27.1             | 46.0     | 0.0      | 1.0      | -18.9      |
| 69.585             | 41.5    | QP | 9.4    | HBIC       | 31.8 | 1.5   | 20.6             | 40.0     | 91.0     | 3.2      | -19.4      |
| 687.278            | 32.6    | QP | 21.0   | HLPA       | 32.4 | 4.8   | 26.0             | 46.0     | 112.0    | 1.6      | -20.0      |
| 374.016            | 36.8    | QP | 16.3   | HLPA       | 32.1 | 3.4   | 24.4             | 46.0     | 300.0    | 1.5      | -21.6      |
| 374.016<br>374.016 | 33.9    | QP | 16.3   | VLPA       | 32.1 | 3.4   | 21.5             | 46.0     | 342.0    | 1.0      | -24.5      |

Signature

Temperature 65F 75% Humidity

Northwest EMC, Inc.

Report No. ELEK0001

Page - 20

## Northwest EMC, Inc.

Version 5.3, April 1998 Freq. Sort

Equipment Tested:

Sequence DT10

Serial Number:

9824001

Manufacturer: Job Number:

Electrobit, Inc. **ELEK0001** 

Test Date:

Tested By:

10-07-1998

Daniel Haas. TE04

Test Distance:

3 meters.

Comments:

Modem transmitting test data. Whip antenna

Set to Channel 8

#### FCC Class B (3 Meter Limit)

| Frequency (MHz)                                                                                                                                                                                                      | Meter<br>Reading<br>(dBuV)                                                                                                                                   | l |                                                                                                                           | Antenna<br>Horizontal<br>Vertical         |                                                                                                                                              | Cable<br>Loss<br>(dB)                                                                                        | Adjusted<br>Level<br>(dBuV/m)                                                                                                                                | Spec<br>Limit<br>(dBuV/m)                                                                                    | Table<br>Azimuth<br>(degree)                                                                                                                                   | Antenna<br>Height<br>(meters)                                                                                       | Compared<br>(To Limit)<br>(dB)                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 66.000<br>66.000<br>69.585<br>69.585<br>152.002<br>152.002<br>153.999<br>154.015<br>220.016<br>220.017<br>264.014<br>264.016<br>374.016<br>374.016<br>544.092<br>544.092<br>601.363<br>601.365<br>687.274<br>687.278 | 44.4<br>48.6<br>41.5<br>46.8<br>46.3<br>45.7<br>44.5<br>49.3<br>52.0<br>48.1<br>43.9<br>47.3<br>33.9<br>36.8<br>42.6<br>40.5<br>41.8<br>40.5<br>33.7<br>32.6 |   | 9.1<br>9.4<br>9.4<br>13.7<br>13.7<br>14.4<br>12.3<br>12.3<br>13.9<br>16.3<br>16.3<br>18.9<br>19.7<br>19.7<br>21.0<br>21.0 | HBIC VBIC VBIC VBIC VBIC VBIC VBIC VBIC V | 31.8<br>31.8<br>31.8<br>31.8<br>31.8<br>31.8<br>31.7<br>31.7<br>31.7<br>31.8<br>32.1<br>32.1<br>32.2<br>32.2<br>32.3<br>32.3<br>32.4<br>32.4 | 1.5<br>1.5<br>1.5<br>2.3<br>2.3<br>2.3<br>2.7<br>2.7<br>2.9<br>2.9<br>3.4<br>4.2<br>4.4<br>4.4<br>4.8<br>4.8 | 23.2<br>27.4<br>20.6<br>25.9<br>30.5<br>29.9<br>29.4<br>34.2<br>35.3<br>31.4<br>28.9<br>32.3<br>21.5<br>24.4<br>33.5<br>31.4<br>33.6<br>32.3<br>27.1<br>26.0 | 40.0<br>40.0<br>40.0<br>43.5<br>43.5<br>43.5<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0 | 204.0<br>148.0<br>91.0<br>88.0<br>0.0<br>55.0<br>247.0<br>331.0<br>80.0<br>295.0<br>164.0<br>178.0<br>342.0<br>300.0<br>289.0<br>212.0<br>318.0<br>96.0<br>0.0 | 3.6<br>1.0<br>3.2<br>1.0<br>1.0<br>2.2<br>1.4<br>1.0<br>1.7<br>1.3<br>1.0<br>1.5<br>1.0<br>2.0<br>1.1<br>1.8<br>1.0 | -16.8<br>-12.6<br>-19.4<br>-14.1<br>-13.0<br>-13.6<br>-14.1<br>-9.3<br>-10.7<br>-14.6<br>-17.1<br>-24.5<br>-21.6<br>-12.5<br>-14.6<br>-12.4<br>-13.7<br>-18.9<br>-20.0 |

Temperature 65F 75% Humidity

### 7.2 Out of Band Harmonics Data

**7.2.1** The following data lists the six most significant emission frequencies, total (corrected) levels, and specification margins. Correction factors, antenna height, table azimuth, etc., are contained in the data sheets immediately following. Explanation of the correction factors is given in paragraph 7.2 of this report. Complete graphs and data sheets may be referenced on the following pages. Minimum margins are listed below:

#### FCC Part 15 Specification Limits

| Frequency<br>(MHz) | Detection | Total Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB)* | Polarization |
|--------------------|-----------|-------------------------|-------------------|--------------|--------------|
| 4893.900           | AV        | 52.3                    | 54.0              | 1.7          | Vertical     |
| 7266.970           | AV        | 52.3                    | 54.0              | 1.7          | Vertical     |
| 4923.900           | AV        | 50.8                    | 54.0              | 3.2          | Vertical     |
| 4844.100           | AV        | 49.4                    | 54.0              | 4.6          | Vertical     |
| 2487.960           | AV        | 30.4                    | 54.0              | 5.2          | Vertical     |
| 2487.960           | AV        | 44.7                    | 54.0              | 9.3          | Horizontal   |

Judgment: Passed, minimum margin of 1.7 dB.

#### **Test Personnel:**

Typed/Printed Name: Daniel Haas

David Star

## Northwest EMC, Inc.

Version 5.3, April 1998 Margin Sort

Equipment Tested:

Sequence DT10

Serial Number:

9824001

Manufacturer:

Electrobit, Inc.

Job Number: Test Date:

ELEK0001

Tested By:

10-07-1998

Daniel Haas. TE04

Test Distance:

3 meters.

Comments:

Modem transmitting test data. Whip antenna

### FCC Class B (3 Meter Limit)

| Frequency<br>(MHz)    | Meter<br>Reading<br>(dBuV) | Detector          | Factor             | Antenna<br>Horizontal<br>Vertical | Preamp<br>Gain<br>(dB) | Loss | Adjusted<br>Level<br>(dBuV/m) | Spec<br>Limit<br>(dBuV/m) | Table<br>Azimuth<br>(degree) | Antenna<br>Height<br>(meters) | Compared<br>(To Limit)<br>(dB) |
|-----------------------|----------------------------|-------------------|--------------------|-----------------------------------|------------------------|------|-------------------------------|---------------------------|------------------------------|-------------------------------|--------------------------------|
| 2487 960              | 63.7                       | PK<br>d level in  | 30.4<br>restricted | VHRN                              | 34.4                   | 2.7  | 62.4                          | 54.0                      | 220.0                        | 1.0                           | 8.4                            |
| 2487.960<br>Highest r | 61.2<br>neasured           | PK<br>d level in  | 30.4<br>restricted | HHRN<br>band.                     | 34.4                   | 2.7  | 59.9                          | 54.0                      | 180.0                        | 1.0                           | 5.9                            |
| 7266.970<br>Low Leve  | 49.3                       | PK                | 38.5               | VHRN                              | 32.9                   | 4.6  | 59.5                          | 54.0                      | 230.0                        | 1.1                           | 5.5                            |
| 4893.900<br>Mid Leve  | 50.6                       | PK                | 35.7               | VHRN                              | 35.0                   | 3.0  | 54.3                          | 54.0                      | 230.0                        | 1.0                           | 0.3                            |
| 7266.970<br>Low Leve  | 43.8                       | PK                | 38.5               | HHRN                              | 32.9                   | 4.6  | 54.0                          | 54.0                      | 230.0                        | 1.0                           | 0.0                            |
| 4923.900              | 49.4                       | PK                | 35.7               | VHRN                              | 35.0                   | 3.0  | 53.1                          | 54.0                      | 270.0                        | 1.0                           | -0.9                           |
| High Lev<br>4893.900  | 48.6                       | ۸V                | 35.7               | VHRN                              | 35.0                   | 3.0  | 52.3                          | 54.0                      | 230.0                        | 1.0                           | -1.7                           |
| Mid Leve<br>7266.970  | 42.1                       | AV                | 38.5               | VHRN                              | 32.9                   | 4.6  | 52.3                          | 54.0                      | 230.0                        | 1.1                           | -1.7                           |
| Low Lev<br>4844.100   | 48.2                       | PK                | 35.5               | VHRN                              | 35.0                   | 3.0  | 51.7                          | 54.0                      | 280.0                        | 1.0                           | -2.3                           |
| Low Lev<br>4923.900   | el, Ch.3<br>47.1           | AV                | 35.7               | VHRN                              | 35.0                   | 3.0  | 50.8                          | 54.0                      | 270.0                        | 1.0                           | -3.2                           |
| High Lev              | /el, Ch.1<br>45.9          | 1<br>AV           | 35.5               | VHRN                              | 35.0                   | 3.0  | 49.4                          | 54.0                      | 280.0                        | 1.0                           | -4.6                           |
| 4844.100<br>Low Lev   |                            |                   |                    |                                   |                        | 0.7  | 48.8                          | 54.0                      | 220.0                        | 1.0                           | -5.2                           |
| 2487.960<br>Highest   | 50.1<br>measure            | AV<br>ed level in | 30.4<br>restricted | VHRN<br>d band.                   | 34.4                   | 2.7  | 40.0                          | 54.0                      | 220.0                        |                               |                                |

Temperature 65F 75% Humidity

page 2

## Northwest EMC, Inc.

Version 5.3, April 1998 Margin Sort

**Equipment Tested:** 

Sequence DT10

Serial Number:

9824001

Manufacturer:

Electrobit, Inc.

Job Number:

ELEK0001

Test Date:

10-07-1998

Tested By:

Daniel Haas. TE04

Test Distance:

3 meters.

Comments:

Modem transmitting test data. Whip antenna

#### FCC Class B (3 Meter Limit)

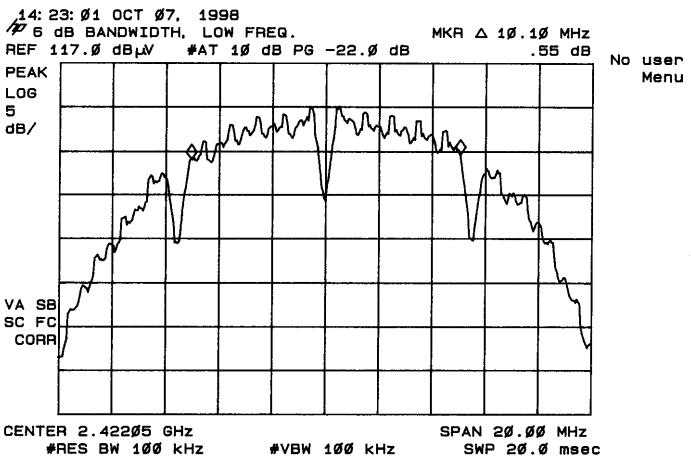
| Frequency<br>(MHz)   | Meter<br>Reading<br>(dBuV) |                  |                    | Antenna<br>Horizontal<br>Vertical |      | Cable<br>Loss<br>(dB) | Adjusted<br>Level<br>(dBuV/m) | Spec<br>Limit<br>(dBuV/m) | Table<br>Azimuth<br>(degree) | Antenna<br>Height<br>(meters) | Compared<br>(To Limit)<br>(dB) |
|----------------------|----------------------------|------------------|--------------------|-----------------------------------|------|-----------------------|-------------------------------|---------------------------|------------------------------|-------------------------------|--------------------------------|
| 4893.900<br>Mid Leve | 42.2<br>el, Ch.8           | PK               | 35.7               | HHRN                              | 35.0 | 3.0                   | 45.9                          | 54.0                      | 270.0                        | 1.0                           | <b>-8</b> .1                   |
| 4923.900<br>High Lev | 42.0<br>vel, Ch.11         | PK<br>I          | 35.7               | HHRN                              | 35.0 | 3.0                   | 45.7                          | 54.0                      | 320.0                        | 1.0                           | -8.3                           |
| 4844.100<br>Low Lev  | 41.7<br>/el, Ch.3          | PK               | 35.5               | HHRN                              | 35.0 | 3.0                   | 45.2                          | 54.0                      | 85.0                         | 1.0                           | -8.8                           |
| 2487.960<br>Highest  | 46.0<br>measure            | AV<br>d level in | 30.4<br>restricted | HHRN<br>band.                     | 34.4 | 2.7                   | 44.7                          | 54.0                      | 180.0                        | 1.0                           | -9.3                           |
| 7266.970<br>Low Lev  | 33.4<br>/el, Ch.3          | AV               | 38.5               | HHRN                              | 32.9 | 4.6                   | 43.6                          | 54.0                      | 230.0                        | 1.0                           | -10.4                          |
| 4893.900<br>Mid Lev  | 35.7                       | AV               | 35.7               | HHRN                              | 35.0 | 3.0                   | 39.4                          | 54.0                      | 270.0                        | 1.0                           | -14.6                          |
| 4923.900             | 35.4<br>vel, Ch.1          | AV<br>1          | 35.7               | HHRN                              | 35.0 | 3.0                   | 39.1                          | 54.0                      | 320.0                        | 1.0                           | -14.9                          |
| 4844.100             |                            | AV               | 35.5               | HHRN                              | 35.0 | 3.0                   | 38.5                          | 54.0                      | 85.0                         | 1.0                           | -15.5                          |

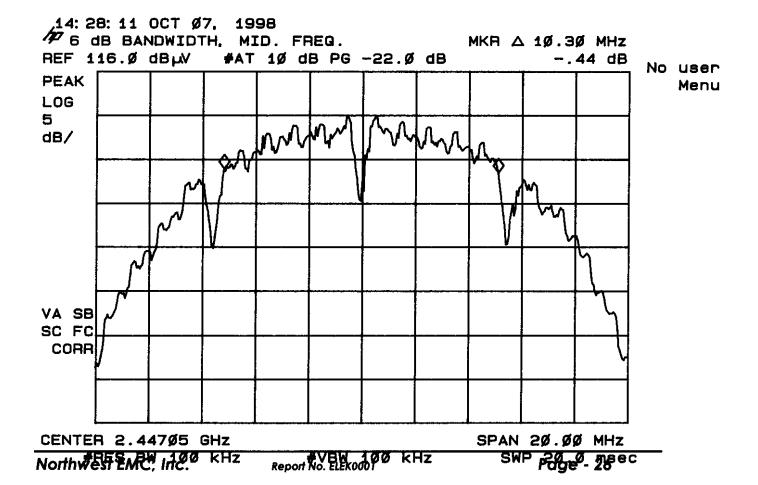
Signature

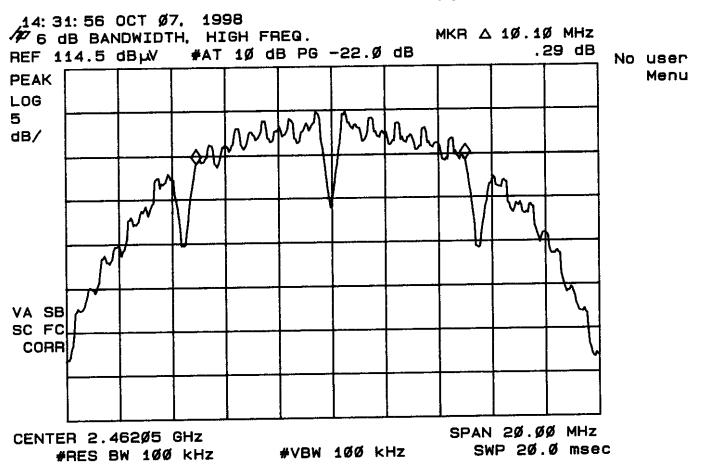
Temperature 65F 75% Humidity

## 7.3 Occupied (6dB) Bandwidth

As per Section 15.247 (a2), the following graphs show that the minimum 6dB bandwidth is greater 500 kHz. The bandwidth was measured with the EUT set to low, mid, and high band frequencies. The measurement was made with the spectrum analyzer's resolution bandwidth = 100 kHz. The span was set to 20 MHz.


| Band | Bandwidth (kHz) |
|------|-----------------|
| Low  | 10.1 MHz        |
| Mid  | 10.3 MHz        |
| High | 10.1 MHz        |


Additional high and low band plots show the direct sequence emission is greater than 20 dB down at the band edges.


#### **Test Personnel:**

Typed/Printed Name: Daniel Haas

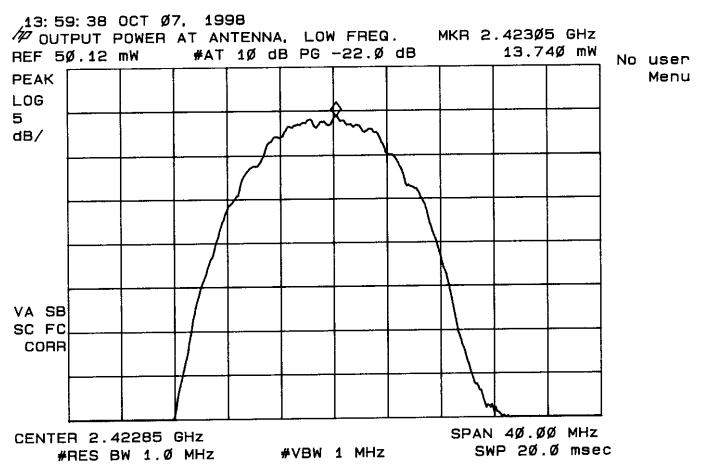
David Star

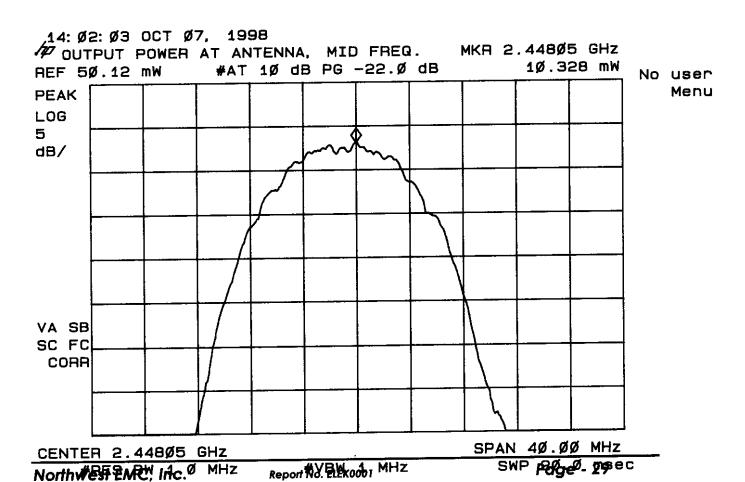


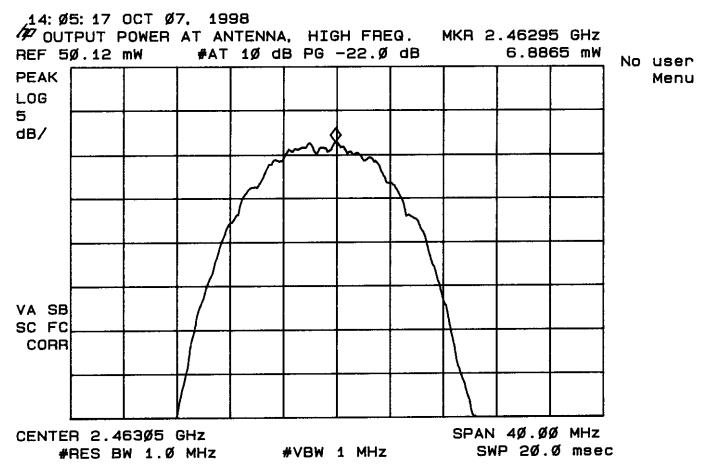




## 7.4 Power Output


As per Section 15.247 (b), the following graphs show that the maximum peak output power of the EUT does not exceed 1 watt. The output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the antenna port of the EUT and the spectrum analyzer. The resolution bandwidth was set to 1 MHz. The data below also includes the cable loss of 2.0 dB and a 20 dB attenuator.


| Frequency(GHz) | Power Output(dBm) |
|----------------|-------------------|
| Low            | 13.740 mW         |
| Mid            | 10.328 mW         |
| High           | 6.8865 mW         |


**Test Personnel:** 

Typed/Printed Name: Daniel Haas

David Star



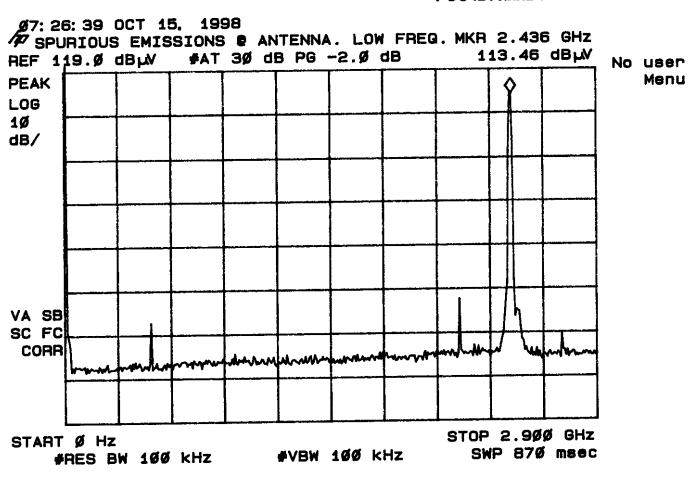


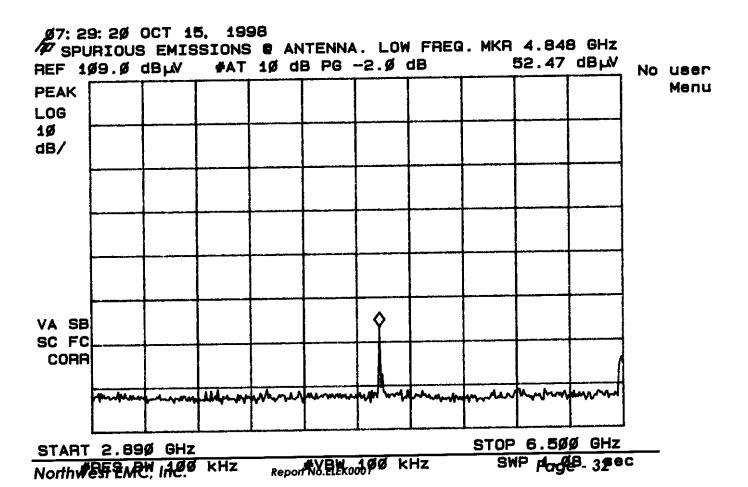


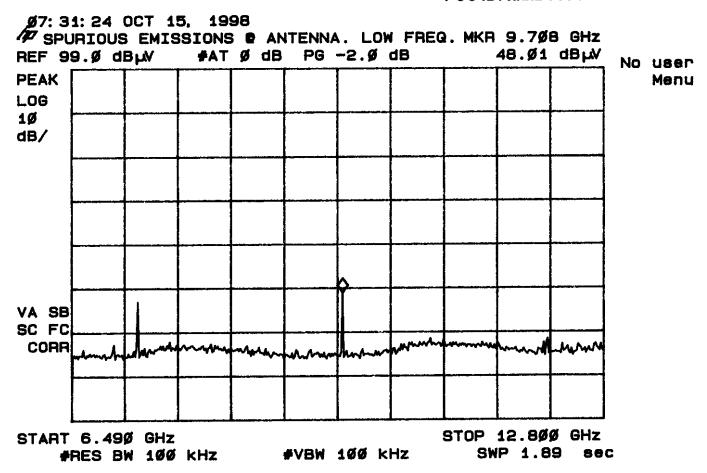
## 7.5 Antenna Conducted Emissions

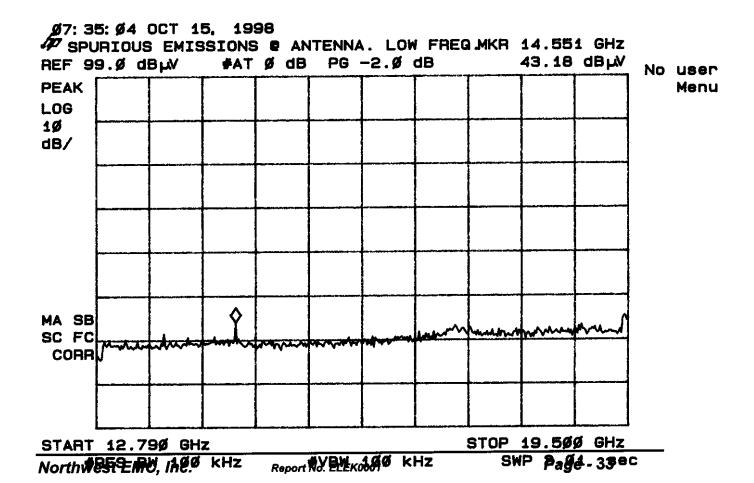
As per Section 15.247 (c), the following graphs show that the maximum level of harmonics/spurs are at least 20dB down from the highest emission level within the authorized band. The conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the antenna port of the EUT and the spectrum analyzer. The resolution bandwidth was set to 100 kHz and the video bandwidth was set to 100 kHz. The EUT was scanned up to 25 GHz.

Results:

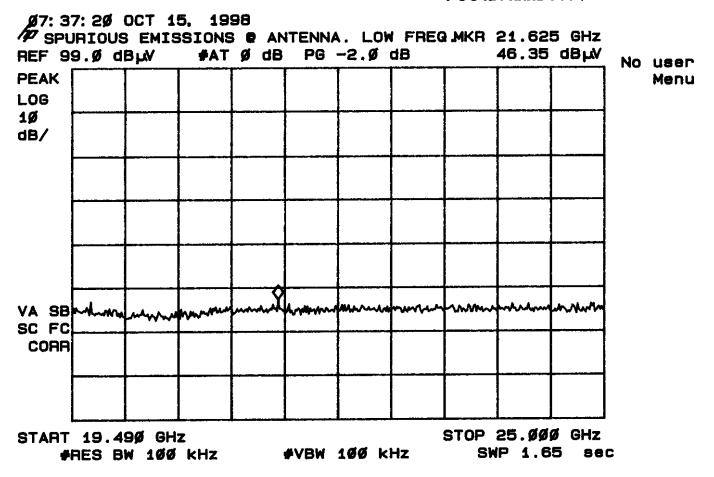

All Harmonics or spurs are greater than 20dB below the level of the transmit

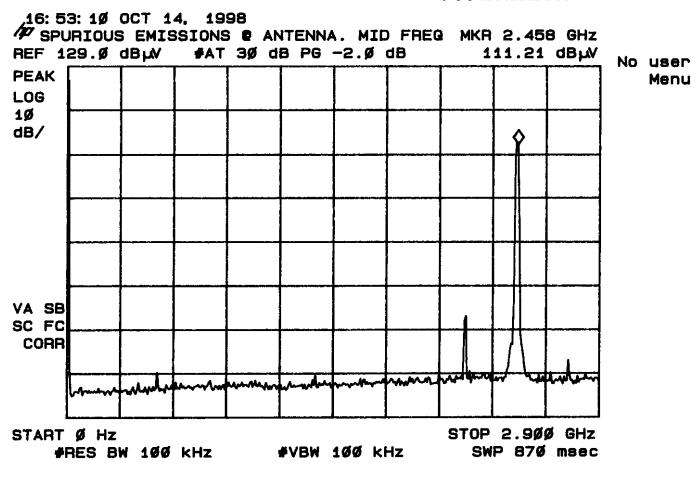

frequency.

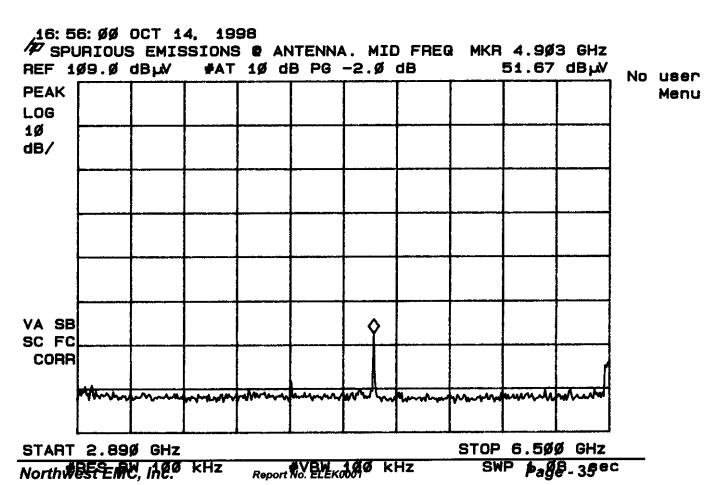

**Test Personnel:** 

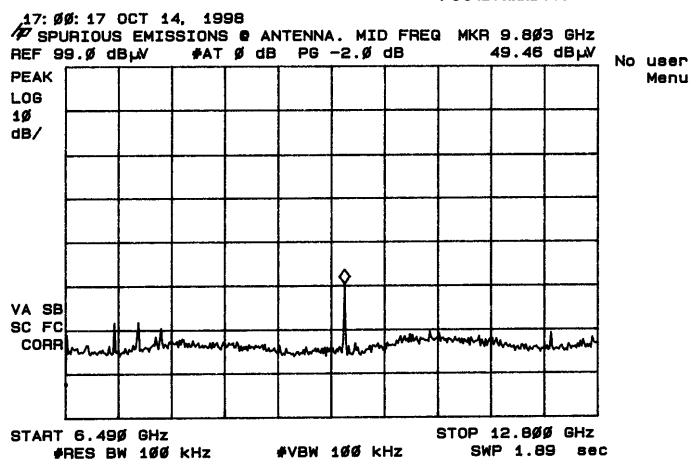

Typed/Printed Name: <u>Daniel Haas</u>

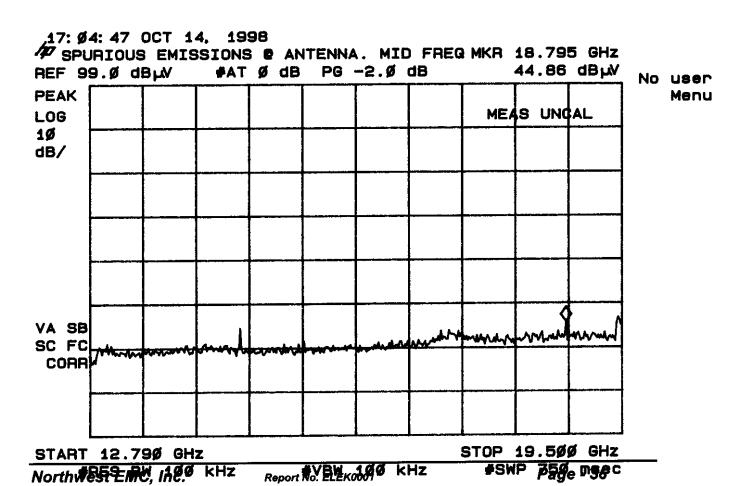
Jamil Office

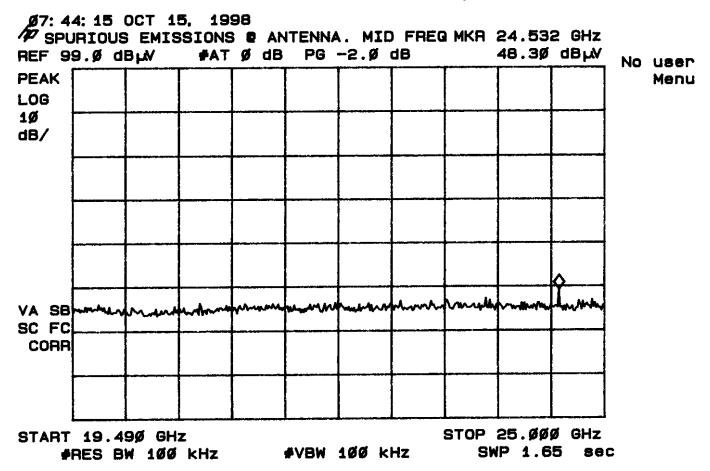


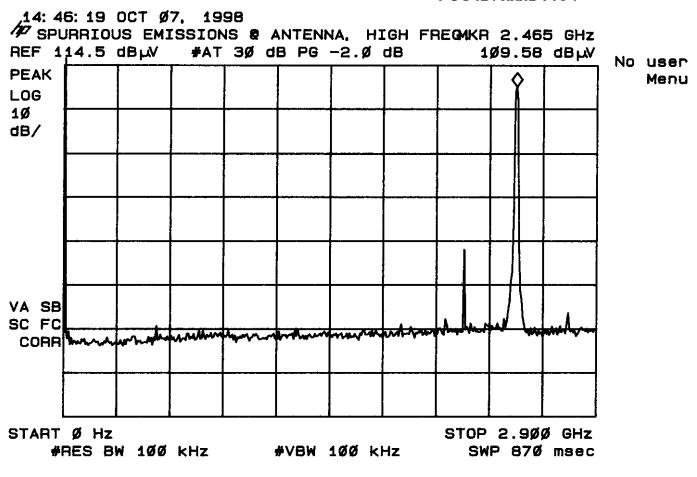



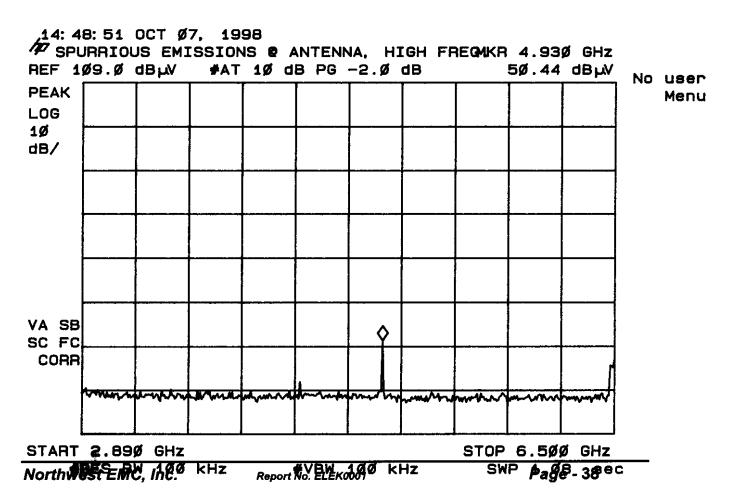



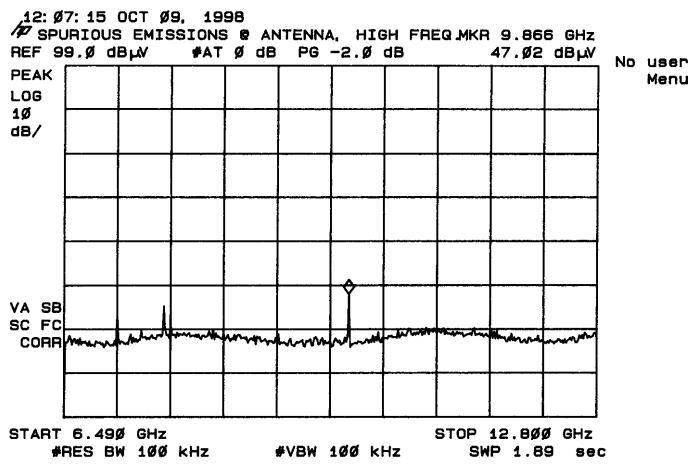



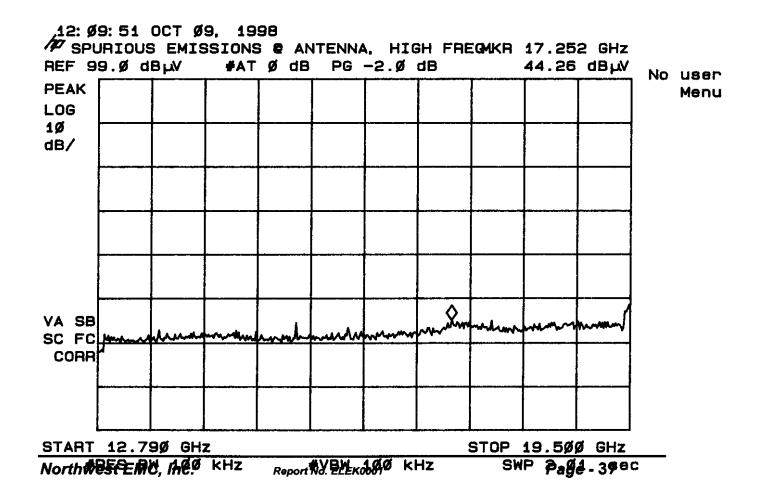


FCC ID: xxxDT10.1

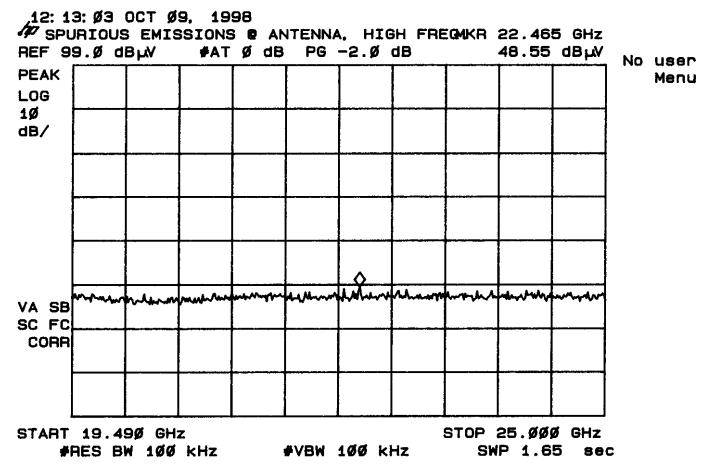


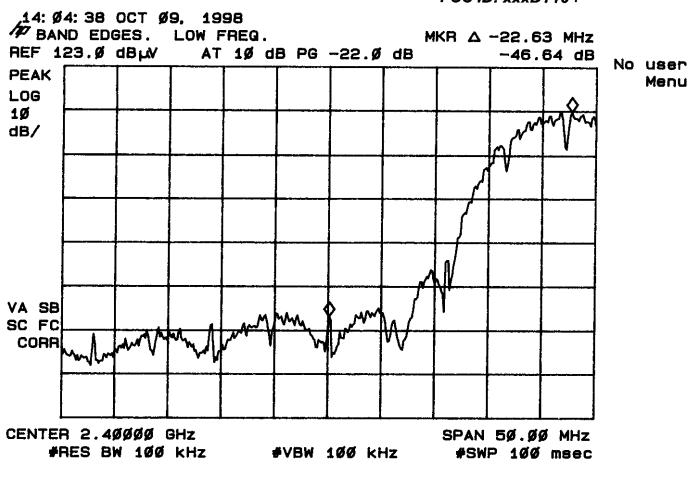



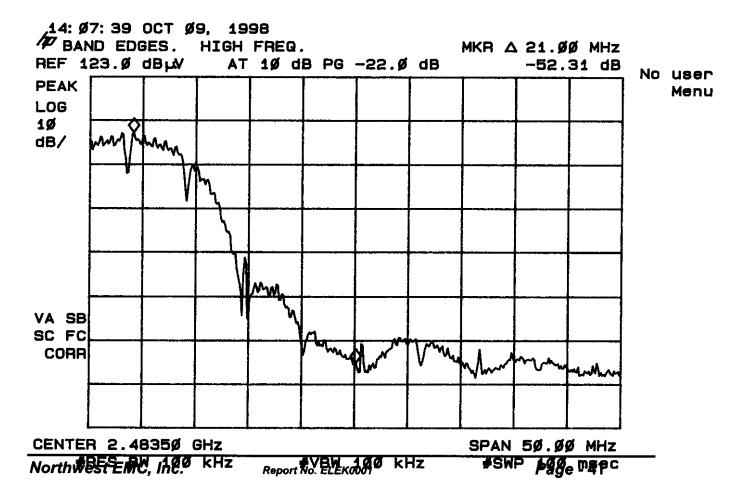











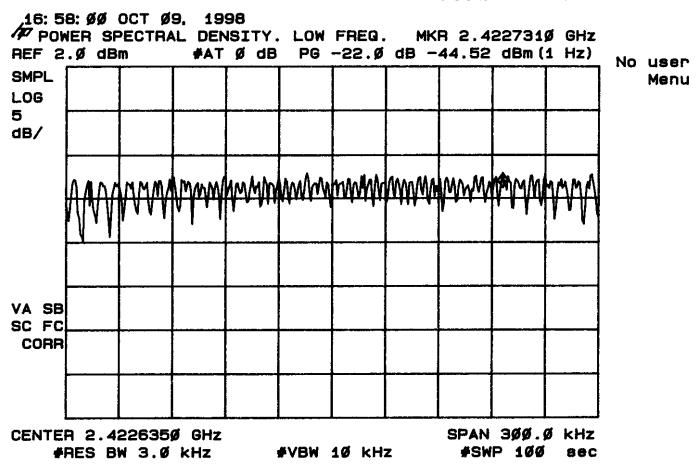


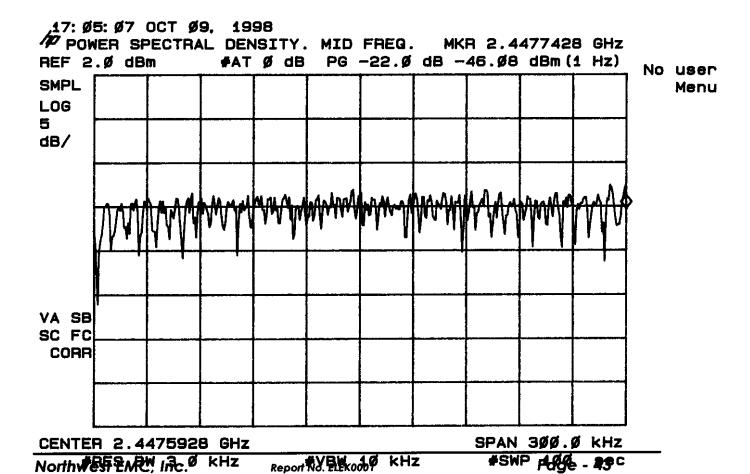

## 7.6 Power Spectral Density

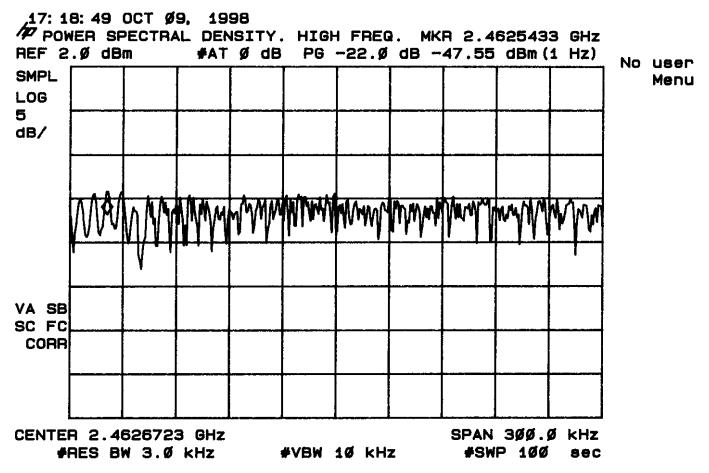
As per Section 15.247(d): Power spectral density, locate and zoom in on emission peak(s) within the passband. Set RBW = 3 kHz, VBW>RBW, sweep = (SPAN/3 kHz) e.g., for a span of 1.5 MHz, the sweep should be  $1.5 \times 10^6 \div 3 \times 10^3 = 500$  seconds. The peak level measured must be no greater than +8 dBm. External attenuation is used and added to the reading. If necessary, the following FCC procedure is used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.7 dB for correction to 3 kHz."

Data was taken using the 1 Hz noise power bandwidth on an HP spectrum analyzer. The data summary shown below includes the 34.7 dB correction to 3 kHz and the cable loss and external attenuation of 22 dB.


Low -9.82dBm Mid -11.38dBm High -12.85dBm


**Test Personnel:** 


Typed/Printed Name: Daniel Haas

David Offer

FCC ID: xxxDT10.1







# 7.7 Processing Gain

Processing gain measurements were performed in accordance with the definitions, calculations, and explanation provided by Elektrobit Inc., and described on the following pages.

Description of the modem processing gain:

#### **Definitions:**

C is the carrier (or, in general, the signal); I is the interference (or noise).

 $E_b$  is the energy per bit;  $I_o$  is the interference per Hertz.

C/I can be expressed as follows:

$$\frac{C}{I} = \frac{\frac{E_b}{I_o}}{\frac{B}{R}}, \text{ where B is the spread spectrum bandwidth, and R is the symbol rate;}$$

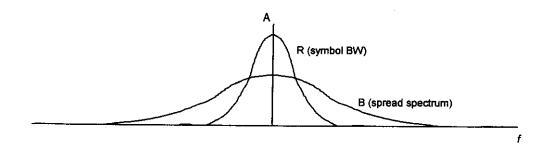
(therefore, B/R is the processing gain).

#### Calculations:

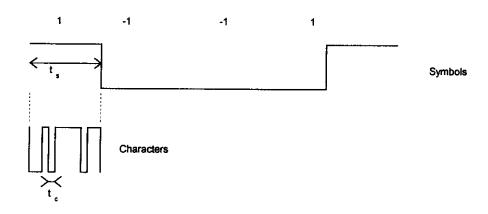
i. With spreading code turned off:

$$\left(\frac{C}{I}\right)_{\rm off} = \frac{E_b/I_o}{R/R} = \frac{E_b/I_o}{I_o}.$$

ii. With spreading code turned on:


Therefore,

$$\frac{\left(\frac{C}{I}\right)_{\text{off}}}{\left(\frac{C}{I}\right)_{\text{on}}} = \frac{\frac{E_b}{I_o}}{\left(\frac{E_b}{I_o}\right)_{\text{on}}} = \frac{B}{R} = \text{processing gain (PG)}.$$


The processing gain can thus be measured by SNR ( $\triangleq$  C/I) measurements for the FCC. (Note that  $E_b/I_o$  is assumed to be identical in cases i and ii.)

### Explanation of the processing gain:

Bandwidth expression:



Time expression:



The processing gain (PG) is given by

$$PG = \frac{B}{R} = \frac{t_s}{t_c}.$$

In the Sequence DT10 modem, R = 1 Mbps and B = 11 Mcps. Therefore, this calculation results in the following processing gain figure:

$$PG = \frac{11}{1} = 11,$$

giving  $10 \log (11) = 10.4 \text{ dB}$ .

# 7.8 Field Strength Calculations

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured level. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

where:

FS = Field Strength

RA = Measured Level

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

Assume a receiver reading of 52.5 dBuV is obtained. The Antenna Factor of 7.4 and a Cable Factor of 1.1 is added. The Amplifier Gain of 29 dB is subtracted, giving a field strength of 32 dBuV/meter.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dBuV/meter$ Level in  $uV/m = Common \, Antilogarithm [(32 \, dBuV/m)/20] = 39.8 \, uV/m$ 

### 7.9 Measurement Bandwidths

#### Peak Data

| 150 kHz - 30 MHz | 100 kHz |
|------------------|---------|
| Quasi-peak Data  |         |
| 150 kHz - 30 MHz | 9 kHz   |

All radiated measurements are quasi-peak unless otherwise stated. A video filter was not used. All conducted measurements are peak unless otherwise stated. A video filter was not used.

# 8.0 Measurement Equipment

| Instrument        | Model     | Serial No. | Freq Range        | Last Cal | Cal Due  |
|-------------------|-----------|------------|-------------------|----------|----------|
| Log Periodic Ant  | EMCO 3146 | 4693       | 200 MHz - 1 GHz   | 01/31/98 | 01/31/99 |
| Bicon Antenna     | EMCO 3104 | 3600       | 30 MHz - 200 MHz  | 01/31/98 | 01/31/99 |
| Spectrum Analyzer | HP 8568B  | 2601A02125 | 100 Hz - 1.5 GHz  | 09/01/98 | 09/01/99 |
| Q-peak Adapter    | HP 85650A | 2043A00214 | 10 kHz - 1000 MHz | 09/01/98 | 09/01/99 |
| Pre-Amplifier     | AR LN1000 | 15224      | 100 kHz-1300 MHz  | 07/20/98 | 07/20/99 |
| Spectrum Analyzer | HP 8593E  | 3543A02557 | 9 kHz – 2.9 GHz   | 04/03/98 | 04/03/99 |
| Horn Antenna      | EMCO 3115 | 4074       | 100 Hz - 1.5 GHz  | 10/03/97 | 10/03/99 |
| Pre-Amplifier     | Miteq     | 565125     | 0.5 GHz – 18 GHz  | 06/15/98 | 06/15/99 |

## **Appendix I: Measurement Procedures**

Each frequency was measured in both the horizontal and vertical antenna polarization's.

The EUT position was maximized for each frequency, for both the horizontal and vertical antenna polarization's, using a remotely controlled turntable.

The antenna height was varied from 1 - 4 meters at each frequency, for both the horizontal and vertical positions to maximize the emission level.

The cable and peripheral positions were manipulated to ensure maximum levels at each frequency for both horizontal and vertical antenna polarization's.

Measurements are made at an antenna to EUT distance of 3 meters.