

FCC requirements § 2.1033 (b)(6)

**TEST MEASUREMENT REPORT**

Contains 24 pages and follows this page.



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

Total 24 pages

## **ELECTROMAGNETIC EMISSIONS TEST REPORT**

ACCORDING TO FCC PART 15, SUBPART C, §15.209

FOR  
**Hi-G-Tek Ltd.**

**EQUIPMENT UNDER TEST**  
**Electronic Seal (Active HI-G-SEAL)**  
**model IG-SA-21**  
**FCC ID:OB6-IGSA21-01**

Prepared by: Cherniavsky  
Mrs. M. Cherniavsky, certif. engineer  
Hermon Labs

Approved by: Usoskin  
Mr. A. Usoskin, QA manager  
Hermon Labs

Approved by: Haimovich  
Mr. Y. Haimovich, Vice President R&D  
Hi-G-Tek Ltd.

Hermon Laboratories Ltd.  
P.O.Box 23  
Binyamina 30550, Israel  
Tel.+972-6628-8001  
Fax.+972-6628-8277  
Email:hermon@Netvision.net.il





HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

***This test report must not be reproduced  
in any form except in full with the approval  
of Hermon Laboratories Ltd.***



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

### Description of equipment under test

|              |                                                            |
|--------------|------------------------------------------------------------|
| Test items   | Electronic seal, FCC ID:OB6-IGSA21-01                      |
| Manufacturer | Hi-G-Tek Ltd. Microelectronics & Asset Tracking Technology |
| Brand Mark   | Hi-G-Tek                                                   |
| Type (Model) | IG-SA-21, P/N TA3157                                       |
| Trade Mark   | Hi-G-Seal                                                  |

### Applicant information

|                                |                                                            |
|--------------------------------|------------------------------------------------------------|
| Applicant's representative     | Mr. Rony Cohen, chief engineer                             |
| Applicant's responsible person | Mr. Yossi Haimovich, VP R&D                                |
| Company                        | Hi-G-Tek Ltd. Microelectronics & Asset Tracking Technology |
| Address                        | 16 Hacharoshet St.                                         |
| P.O. Box                       | NA                                                         |
| Postal code                    | 60375                                                      |
| City                           | Or-Yehuda                                                  |
| Country                        | Israel                                                     |
| Telephone number               | 011-972-3533 9359                                          |
| Telefax number                 | 011-972-3533 9225                                          |

### Test performance

|                       |                                                                  |
|-----------------------|------------------------------------------------------------------|
| Project Number        | 13066                                                            |
| Location of the test  | Hermon Laboratories, Binyamina, Israel                           |
| Test started          | December 3, 1998                                                 |
| Test completed        | December 6, 1998                                                 |
| Purpose of test       | The EUT certification in accordance with CFR 47, part 2, §2.1033 |
| Test specification(s) | FCC part 15, subpart C, §15.209                                  |

Through this report a point is used as the decimal separator and the thousands are counted with a comma.  
This report is in conformity with EN 45001 and ISO GUIDE 25.  
The test results relate only to the items tested.



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

## Table of Contents

|           |                                                                         |           |
|-----------|-------------------------------------------------------------------------|-----------|
| <b>1</b>  | <b>GENERAL INFORMATION</b>                                              | <b>5</b>  |
| 1.1       | ABBREVIATIONS AND ACRONYMS .....                                        | 5         |
| 1.2       | SPECIFICATION REFERENCES .....                                          | 6         |
| 1.3       | EUT DESCRIPTION .....                                                   | 6         |
| 1.4       | STATEMENT OF MANUFACTURER.....                                          | 7         |
| <b>2</b>  | <b>TEST FACILITY DESCRIPTION .....</b>                                  | <b>8</b>  |
| 2.1       | GENERAL.....                                                            | 8         |
| 2.2       | EQUIPMENT CALIBRATION .....                                             | 8         |
| 2.2.1     | <i>Uncertainty in Hermon Labs Measurements.</i> .....                   | 8         |
| 2.3       | LABORATORY PERSONNEL.....                                               | 9         |
| 2.4       | STATEMENT OF QUALIFICATION.....                                         | 9         |
| <b>3</b>  | <b>RADIATED EMISSION MEASUREMENTS .....</b>                             | <b>10</b> |
| 3.1       | FIELD STRENGTH OF EMISSIONS ACCORDING TO § 15.209 (A) .....             | 10        |
| 3.1.1     | <i>Specified limit .....</i>                                            | 10        |
| 3.1.2     | <i>Extrapolation (distance correction) factor .....</i>                 | 10        |
| 3.1.3     | <i>Test Procedure and Results .....</i>                                 | 10        |
| 3.2       | UNINTENTIONAL RADIATED EMISSIONS TEST .....                             | 16        |
| 3.2.1     | <i>Definition of the test.....</i>                                      | 16        |
| 3.2.2     | <i>The test set-up configuration, Test Procedure and Results.....</i>   | 16        |
| <b>4.</b> | <b>SUMMARY AND SIGNATURES.....</b>                                      | <b>19</b> |
|           | <b>APPENDIX A – TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS .....</b> | <b>20</b> |
|           | <b>APPENDIX B-TEST EQUIPMENT CORRECTION FACTORS.....</b>                | <b>21</b> |
|           | <b>APPENDIX C- A2LA ACCREDITATION .....</b>                             | <b>23</b> |



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

# 1 General Information

## 1.1 Abbreviations and Acronyms

The following abbreviations and acronyms are applicable to this test report:

|          |                                                                      |
|----------|----------------------------------------------------------------------|
| AC       | alternating current                                                  |
| BW       | bandwidth                                                            |
| dB       | decibel                                                              |
| dBm      | decibel referred to one milliwatt                                    |
| dB(µV)   | decibel referred to one microvolt                                    |
| dB(µV/m) | decibel referred to one microvolt per meter                          |
| DC       | direct current                                                       |
| EUT      | Equipment Under Test                                                 |
| GHz      | gigahertz                                                            |
| H        | height                                                               |
| HL       | Hermon Laboratories                                                  |
| HP       | Hewlett Packard                                                      |
| Hz       | hertz                                                                |
| IF       | intermediate frequency                                               |
| kHz      | kilohertz                                                            |
| L        | length                                                               |
| m        | meter                                                                |
| mm       | millimeter                                                           |
| MHz      | megahertz                                                            |
| msec     | millisecond                                                          |
| mW       | milliwatt                                                            |
| NA       | Not Applicable                                                       |
| NARTE    | National Association of Radio and Telecommunications Engineers, Inc. |
| QP       | quasi-peak (detector)                                                |
| RBW      | resolution bandwidth                                                 |
| RF       | Radio Frequency                                                      |
| RE       | radiated emission                                                    |
| RMS      | root-mean-square                                                     |
| sec      | second                                                               |
| V        | volt                                                                 |



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

## 1.2 Specification References

|                                 |                                                                                                                                                                      |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CFR 47 part 15:<br>October 1997 | Radio Frequency Devices.                                                                                                                                             |
| ANSI C63.2:06/1987              | American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.                                            |
| ANSI C63.4:1992                 | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. |

## 1.3 EUT Description

The EUT, electronic active seal Hi-G-Seal, model IG-SA-21, is a part of Hi-G-Seal system, that enables sealing of containers and verifying of assets that need to be sealed against and monitored for any trail to tamper with them. The seal enables remote reading of recorded data. The seal is monitored by radio terminal that is a part of the Hi-G-Seal system. Every opening or closing of the seal is logged and can be remotely read. The data is read by using an RF communication link at a distance of up to 1 meter. Once the Hi-G-Seal is activated the seal generates a unique sealing stamp with date and time details. The sealing stamp with all details is saved in the seal memory, logged in the seal reader and stored in the database.

The seal contains a transceiver with a permanently attached antenna. Transmitted frequency is  $250 \pm 1.5\%$  kHz, maximum transmitted power is 40 mW. The EUT is powered by 3.6 V battery.



HERMON LABORATORIES

Test Report:HGTFC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

## 1.4 Statement of Manufacturer

I, Yossi Haimovich, Vice President R&D of Hi-G-Tek Ltd. Microelectronics & Asset Tracking Technology, declare that active electronic Hi-G-Seal, model IG-SA-21, was tested on December 3, 6, 1998 by Hermon Laboratories and which this test report applies to, is identical of the equipment that will be marketed.

The term identical means identical within the variations that can be expected to arise as a result of quantity production technique.

Yossi Haimovich, Vice President R&D  
Hi-G-Tek Ltd. Microelectronics & Asset Tracking Technology

Signature: Haimovich

Date: Jan. 5, 1999



## 2 Test Facility Description

### 2.1 General

Tests were performed at Hermon Laboratories, which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), listed by Industry Canada for radiated measurements (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), recognized by VDE (Germany) for witness test, certified by VCCI (Japan), assessed by NMi Certin B.V. (Netherlands) for a number of EMC, Telecommunications and Safety standards, recognized by TUV Sudwest (Germany) for Safety testing, and Accredited by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO GUIDE 25/EN 45001 for EMC, Telecommunications and Product Safety Information Technology Equipment (Certificate No. 839.01).

Address: PO Box 23, Binyamina 30550, Israel.  
Telephone: +972-6-628-8001  
Fax: +972-6-628-8277

Person for contact: Mr. Alex Usoskin, testing and QA manager.

### 2.2 Equipment Calibration

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of MIL-STD-45662A.

The laboratory standards are calibrated by the third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements.

#### 2.2.1 Uncertainty in Hermon Labs Measurements.

|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radiated Emissions<br>(95% Confidence) | <p>Biconical Antenna:</p> <p>3m measuring distance : + 4.06 dB Expanded uncertainty<br/>: - 3.98 dB Expanded uncertainty<br/>: + 2.032 dB Combined standard uncertainty<br/>: - 1.99 dB Combined standard uncertainty</p> <p>10m measuring distance : + 3.98 dB Expanded uncertainty<br/>: - 4.08 dB Expanded uncertainty<br/>: + 1.99 dB Combined standard uncertainty<br/>: - 2.04 dB Combined standard uncertainty</p> <p>Log periodic Antenna:</p> <p>3m measuring distance : + 4.74 dB Expanded uncertainty<br/>: - 3.26 dB Expanded uncertainty<br/>: + 2.37 dB Combined standard uncertainty<br/>: - 1.63 dB Combined standard uncertainty</p> <p>10m measuring distance : + 3.06 dB Expanded uncertainty<br/>: - 3.00 dB Expanded uncertainty</p> |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



HERMON LABORATORIES

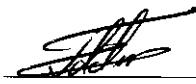
Test Report:HGTFC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

### **2.3 Laboratory Personnel**

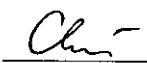
The two people of Hermon Laboratories that have participated in measurements and documentation preparation are: Mr. Michael Feldman, test technician and Mrs. Marina Cherniavsky - certification engineer.


M. Cherniavsky is a telecommunication engineer certified by the National Association of Radio and Telecommunications Engineers (NARTE, USA).

The Hermon Laboratories' personnel that participated in this project have more than 50 years combined experience time in EMC measurements and electronic products design.

### **2.4 Statement of Qualification**

The test measurement data supplied in this test measurement report having been received by me, is hereby duly certified. The following is a statement of my qualifications: I am a technician, have obtained 29 years experience in electronics and measurements. I have been with Hermon Laboratories since 1995.


Name: Mr. Michael Feldman  
Position: test technician

Signature:   
Date: December 29, 1998

I hereby certify that this test measurement report was prepared by me and is hereby duly certified. The following is a statement of my qualifications.

I am an engineer, graduated from University in 1971, with an MScEE degree, have obtained 25 years experience in electronic products design and development and have been with Hermon Laboratories since 1991. Also, I am a Telecommunication Class II engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA.), the certificate no. is E2-03410.

Name: Mrs. Marina Cherniavsky  
Position: certification engineer

Signature:   
Date: December 29, 1998



HERMON LABORATORIES

Test Report:HGTFC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

### 3 Radiated Emission Measurements

#### 3.1 Field Strength of Emissions according to § 15.209 (a)

##### 3.1.1 Specified limit

| Frequency,<br>MHz | Field strength,<br>microvolts/meter | Measurement distance,<br>meters |
|-------------------|-------------------------------------|---------------------------------|
| 0.009 – 0.490     | 2400/F(kHz)                         | 300                             |

##### 3.1.2 Extrapolation (distance correction) factor

The test was performed in the anechoic chamber at 3 meter test distance, i.e. the distance between measuring antenna and EUT boundary. The results were extrapolated by using the square of an inverse linear distance factor DF:

$$DF = 40 \log (D_1/D_2) = 80 \text{ dB, where}$$

$D_1$  is the 300 meters specified measurement distance

$D_2$  is the 3 meters test measurement distance.

The DF=80 dB was applied for limit calculation at 3 m test distance measurements.

For 248 kHz frequency the calculated limit is:

$$\text{Limit}_{3m} = \text{Limit}_{300m} + DF = 19.6 \text{ dB}(\mu\text{V/m}) + 80 \text{ dB} = 99.6 \text{ dB}(\mu\text{V/m}).$$

##### 3.1.3 Test Procedure and Results

The EUT was placed on the wooden turntable, as shown in Figure 3.1.1, Photographs 3.1.1, 3.1.2 and was operated in continuous modulated transmitting mode. During testing the EUT was positioned in three orthogonal axes and the measurements were performed with loop antenna. The center of the loop was 1 m above the ground. The frequency range from the lowest generated signal frequency up to 10<sup>th</sup> harmonic was investigated. To find maximum radiation the turntable was rotated 360°, the antenna was rotated about its vertical axis and the antenna polarization was changed from vertical to horizontal. The average detector was used. The test measurement results were recorded into Table 3.1.1 and are shown in Plot 3.1.1.

##### Reference numbers of test equipment used

|         |         |         |         |         |         |         |
|---------|---------|---------|---------|---------|---------|---------|
| HL 0275 | HL 0446 | HL 0465 | HL 0521 | HL 0593 | HL 0594 | HL 0815 |
| HL 0816 |         |         |         |         |         |         |

Full description is given in Appendix A.



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

**Table 3.1.1**

**Radiated Emission Measurements – Test Results**

TEST SPECIFICATION: FCC part 15 subpart C § 15.209  
COMPANY: Hi-G-Tek Ltd.  
EUT: Hi-G-Seal, IG-SA-21  
DATE: December 3, 1998  
RELATIVE HUMIDITY: 67%  
AMBIENT TEMPERATURE: 21°C

**MEASUREMENTS PERFORMED AT 3 METRES DISTANCE**

| Frequency<br>kHz | Resolution<br>Bandwidth<br>kHz | Measured<br>Result<br>dB (μV) | Correction<br>Factor<br>dB | Calculated<br>Limit<br>dB (μV/m) | Specified<br>Margin<br>dB | Pass/<br>Fail |
|------------------|--------------------------------|-------------------------------|----------------------------|----------------------------------|---------------------------|---------------|
| 248.25           | 9                              | 69.1                          | 80                         | 99.6                             | 30.5                      | Pass          |

**Notes to Table:**

Average detector and Loop antenna were used.  
Calculated Limit is in accordance with section 3.1.2 of this test report.

Test Performed by:  
Mr. Michael Feldman, test technician

  
Hermon Labs



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

**Plot 3.1.1  
Radiated Emission Test Results**

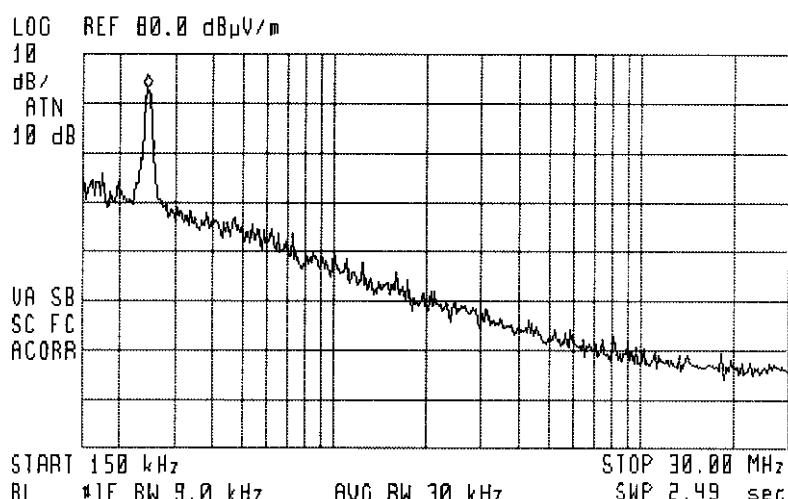
08:50:39 DEC 03 1998 FCC p 15.231  
HI-G-TEK EUT-10-SA-21 Pr.13066

ACTV DET: PEAK  
MEAS DET: PEAK OP AVG  
MKR 250 kHz  
73.11 dB $\mu$ V/m

MEASURE  
AT MKR

ADD TO  
LIST

CLEAR  
WRITE A


MAX  
HOLD A

VIEW A

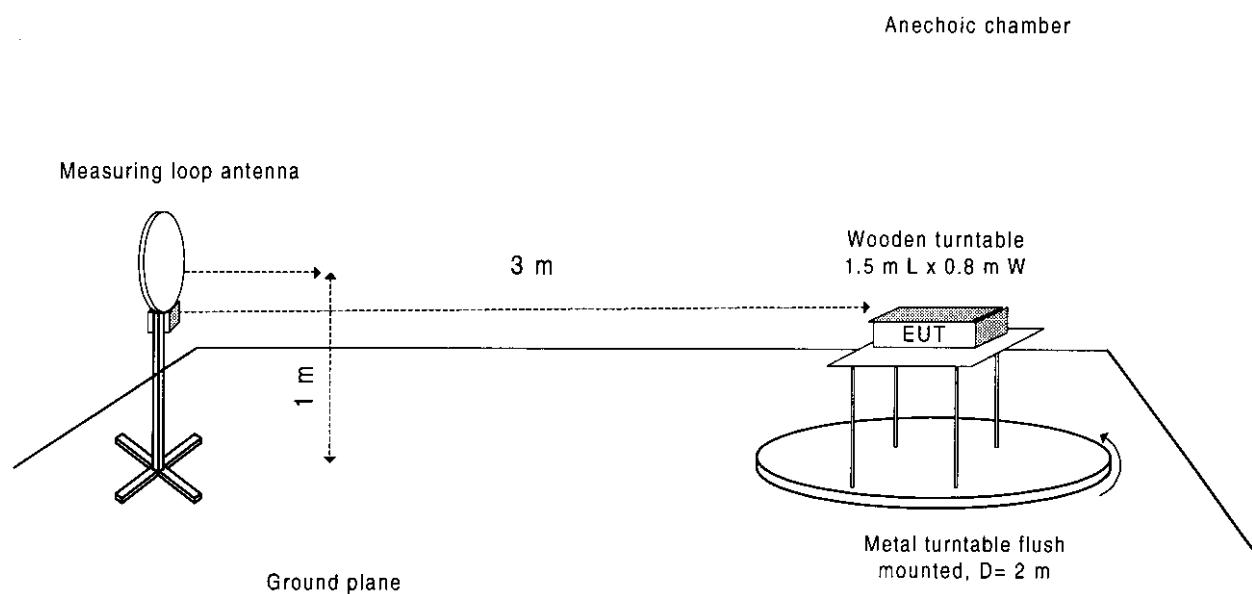
BLANK A

Trace  
A B C

More  
1 of 3






HERMON LABORATORIES

Test Report:HGTFC.C.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

**Figure 3.1.1**  
**Radiated Emission Test Setup**



## 3.2 Unintentional Radiated emissions test

### 3.2.1 Definition of the test

This test was performed to measure radiated emissions from the receiver and incorporated digital device of the EUT and also to verify the EUT full compliance with §15.109, §15.209.

### 3.2.2 The test set-up configuration, Test Procedure and Results

The radiated emissions measurements of the EUT in receive mode and incorporated digital device were performed in the anechoic chamber at 3 meter measuring distance in the frequency range from 30 MHz to 1 GHz. The EUT was placed on the wooden table as shown in Figure 3.2.1. The biconilog antenna was used. To find maximum radiation the turntable was rotated 360°, the measuring antenna height changed from 1 to 4 m, and the antenna polarization was changed from vertical to horizontal.

The measurements were performed with the EMI receiver settings: RBW=120 kHz, peak and quasi peak detectors.

All the measured emissions were found at least 20 dB below Class A specified limit. The test measurement results are shown in Plot 3.2.1.

### Reference numbers of test equipment used

|         |         |         |         |         |         |         |
|---------|---------|---------|---------|---------|---------|---------|
| HL 0275 | HL 0465 | HL 0521 | HL 0593 | HL 0594 | HL 0604 | HL 0815 |
| HL 0816 |         |         |         |         |         |         |

Full description is given in Appendix A.



HERMON LABORATORIES

Test Report:HGTFC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

**Plot 3.2.1**  
**Radiated Emission Test Results**

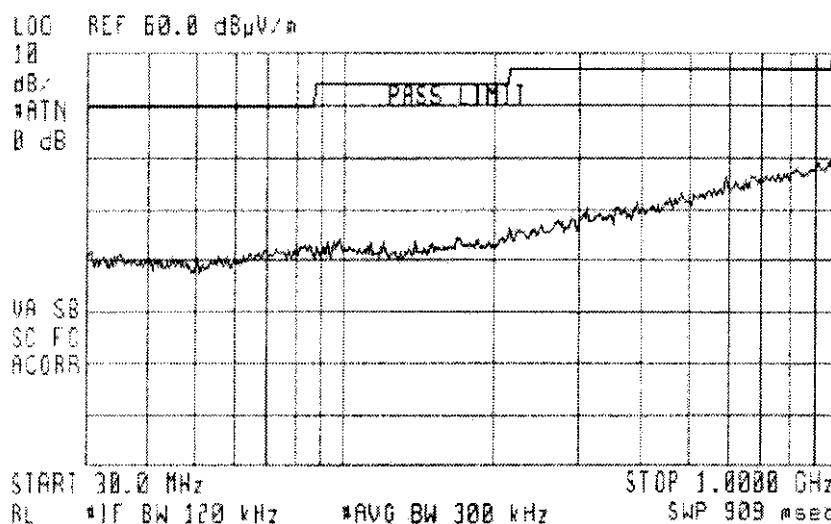
17:45:24 DEC 06, 1998 FCC A  
HJ-0-TER EUT-10-5A-21 Pr.13066

|                               |
|-------------------------------|
| FREEQ 982.9 MHz               |
| PEAK 40.9 dB $\mu$ V/ $\mu$ s |
| QP 35.0 dB $\mu$ V/ $\mu$ s   |
| Avg NOT SELECTED              |

MEASURE  
AT MBR

ADD TO  
LIST

CLEAR  
WRITE A


MAX  
HOLD A

VIEW A

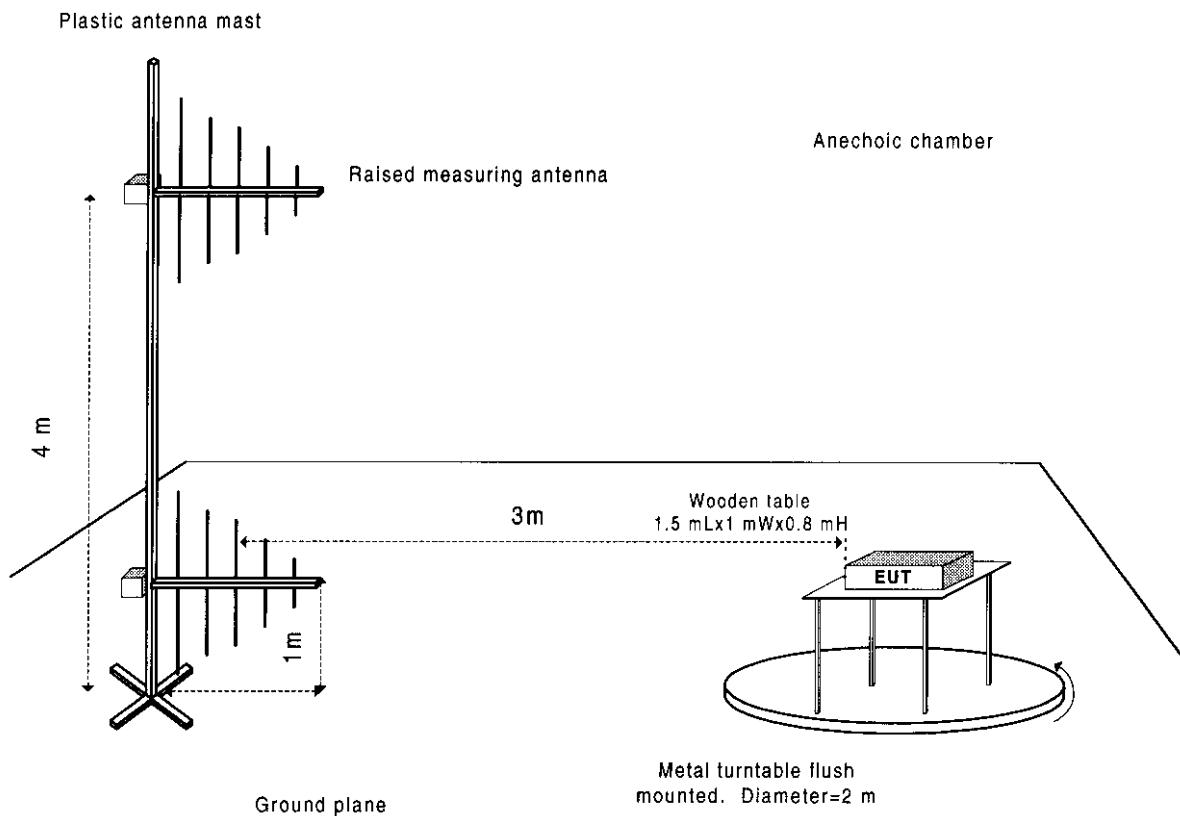
BLANK A

Trace  
A B C

More  
1 of 3






HERMON LABORATORIES

Test Report:HGTFFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

**Figure 3.2.1**  
**Radiated Emission Test Setup**





HERMON LABORATORIES

Test Report:HGTFFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

## 4. Summary and Signatures

The EUT, active Hi-G-Seal, was found to be in compliance with the FCC part 15 subpart B §15.109 class A and subpart C §15.209 limits.

Test performed by:

Mr. Michael Feldman, test technician

Approved by:

Dr. Edward Usoskin, C.E.O.

Responsible person from Hi-G-Tek Ltd. Microelectronics & Asset Tracking Technology

Mr. Yossi Haimovich, Vice President R&D



HERMON LABORATORIES

Test Report:HGT FCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

## APPENDIX A – Test equipment and ancillaries used for tests

| HL<br>Serial<br>No. | Serial<br>No. | Description                                                                   | Manufacturer          | Model No.         | Due<br>Calibr. |
|---------------------|---------------|-------------------------------------------------------------------------------|-----------------------|-------------------|----------------|
| 0275                | 0275          | Wooden Table,<br>1.5 x 1.0 x 0.8                                              | Hermon Labs           | WT-1              | NA             |
| 0446                | 2857          | Antenna, Loop active,<br>10 kHz – 30 MHz                                      | Electro-<br>Mechanics | 6502              | 10/99          |
| 0465                | 0465          | Anechoic Chamber<br>9 mL x 6.5 mW x 5.5 mH                                    | Hermon Labs           | AC-1              | 10/99          |
| 0521                | 0319          | Spectrum Analyzer with<br>RF filter section (EMI<br>Receiver 9 kHz - 6.5 GHz) | Hewlett<br>Packard    | 8546A             | 7/99           |
| 0593                | 593           | Antenna Mast, 1-4 m/<br>1-6 m Pneumatic                                       | Hermon Labs           | HLAM-F1           | 4/99           |
| 0594                | 594           | Turntable for anechoic<br>chamber, flush mounted,<br>D=1.2 m, pneumatic       | Hermon Labs           | HL TT-<br>WDC1    | 11/99          |
| 0604                | 1011          | Antenna Log-Periodic/T<br>Bow-Tie, 26 - 2000 MHz                              | EMCO                  | 3141<br>BICONILOG | 12/99          |
| 0815                | 815           | Cable, coax, RG-214,<br>7.3 m, N-type connectors                              | Hermon Labs           | C56               | 8/99           |
| 0816                | 816           | Cable, coax, RG-214, 8 m,<br>N-type connectors                                | Hermon Labs           | C7576             | 8/99           |



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

## APPENDIX B-Test Equipment Correction Factors

**Antenna Factor**  
**Loop Antenna,Electro-Mechanics, Model 6502**  
**Ser.No.2857**

| Frequency<br>MHz | Antenna Factor<br>dB(1/m) |
|------------------|---------------------------|
| 0.009            | 18.7                      |
| 0.010            | 17.7                      |
| 0.020            | 13.2                      |
| 0.050            | 10.4                      |
| 0.075            | 10.2                      |
| 0.100            | 9.9                       |
| 0.150            | 9.8                       |
| 0.250            | 9.9                       |
| 0.500            | 9.8                       |
| 0.750            | 9.7                       |
| 1.000            | 10.1                      |
| 2.000            | 10.0                      |
| 3.000            | 10.2                      |
| 4.000            | 10.1                      |
| 5.000            | 10.1                      |
| 10.000           | 9.6                       |
| 15.000           | 9.6                       |
| 20.000           | 9.3                       |
| 25.000           | 8.7                       |
| 30.000           | 7.5                       |

Antenna factor is to be added to receiver meter reading in dB( $\mu$ V) to convert to field intensity in dB( $\mu$ V/meter).



HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

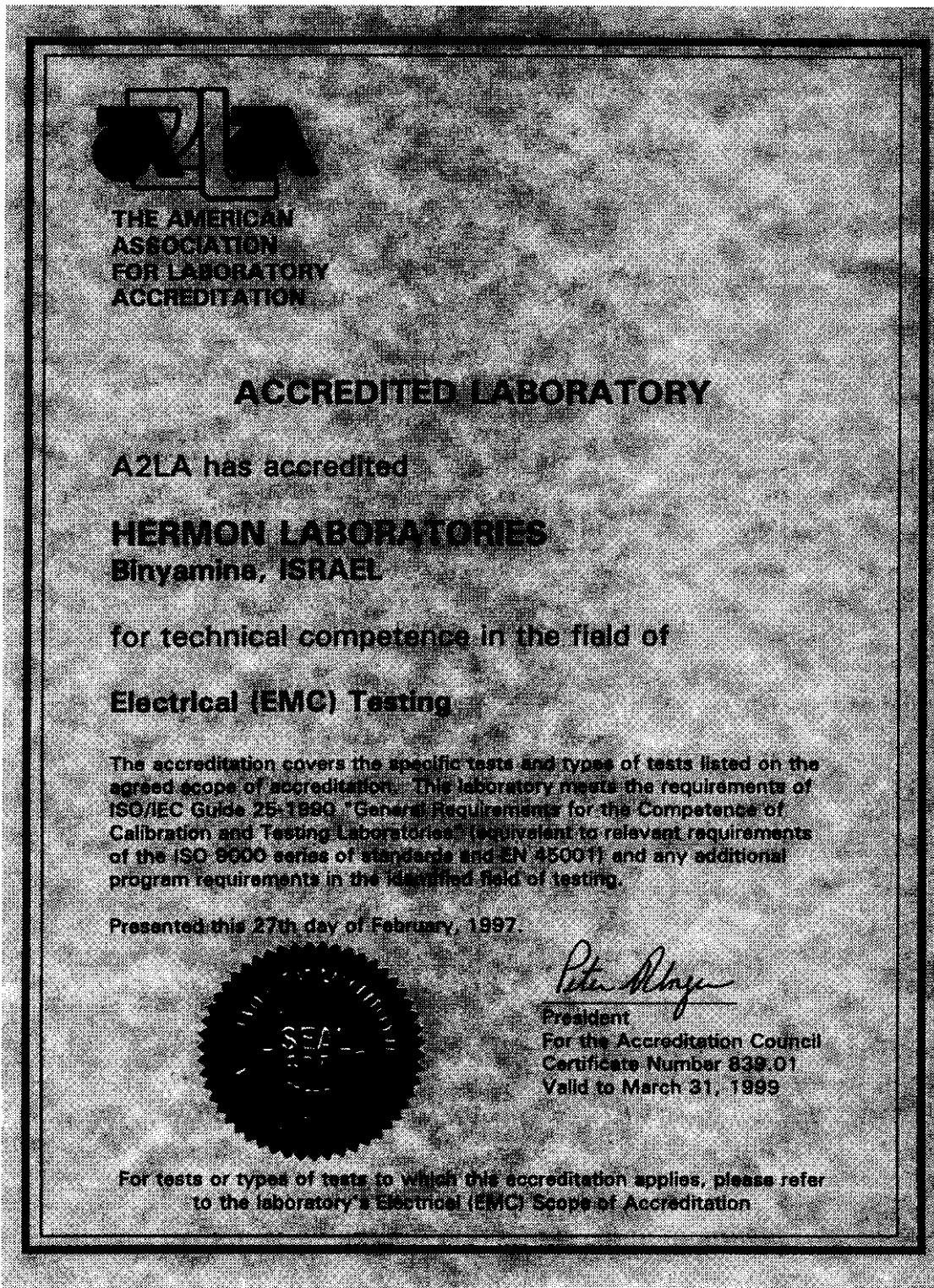
FCC ID:OB6-IGSA21-01

**Antenna Factor at 3m calibration  
Biconilog Antenna EMCO Model 3141  
Ser.No.1011**

| Frequency, MHz | Antenna Factor, dB(1/m) | Frequency, MHz | Antenna Factor, dB(1/m) |
|----------------|-------------------------|----------------|-------------------------|
| 26             | 7.8                     | 940            | 24.0                    |
| 28             | 7.8                     | 960            | 24.1                    |
| 30             | 7.8                     | 980            | 24.5                    |
| 40             | 7.2                     | 1000           | 24.9                    |
| 60             | 7.1                     | 1020           | 25.0                    |
| 70             | 8.5                     | 1040           | 25.2                    |
| 80             | 9.4                     | 1060           | 25.4                    |
| 90             | 9.8                     | 1080           | 25.6                    |
| 100            | 9.7                     | 1100           | 25.7                    |
| 110            | 9.3                     | 1120           | 26.0                    |
| 120            | 8.8                     | 1140           | 26.4                    |
| 130            | 8.7                     | 1160           | 27.0                    |
| 140            | 9.2                     | 1180           | 27.0                    |
| 150            | 9.8                     | 1200           | 26.7                    |
| 160            | 10.2                    | 1220           | 26.5                    |
| 170            | 10.4                    | 1240           | 26.5                    |
| 180            | 10.4                    | 1260           | 26.5                    |
| 190            | 10.3                    | 1280           | 26.6                    |
| 200            | 10.6                    | 1300           | 27.0                    |
| 220            | 11.6                    | 1320           | 27.8                    |
| 240            | 12.4                    | 1340           | 28.3                    |
| 260            | 12.8                    | 1360           | 28.2                    |
| 280            | 13.7                    | 1380           | 27.9                    |
| 300            | 14.7                    | 1400           | 27.9                    |
| 320            | 15.2                    | 1420           | 27.9                    |
| 340            | 15.4                    | 1440           | 27.8                    |
| 360            | 16.1                    | 1460           | 27.8                    |
| 380            | 16.4                    | 1480           | 28.0                    |
| 400            | 16.6                    | 1500           | 28.5                    |
| 420            | 16.7                    | 1520           | 28.9                    |
| 440            | 17.0                    | 1540           | 29.6                    |
| 460            | 17.7                    | 1560           | 29.8                    |
| 480            | 18.1                    | 1580           | 29.6                    |
| 500            | 18.5                    | 1600           | 29.5                    |
| 520            | 19.1                    | 1620           | 29.3                    |
| 540            | 19.5                    | 1640           | 29.2                    |
| 560            | 19.8                    | 1660           | 29.4                    |
| 580            | 20.6                    | 1680           | 29.6                    |
| 600            | 21.3                    | 1700           | 29.8                    |
| 620            | 21.5                    | 1720           | 30.3                    |
| 640            | 21.2                    | 1740           | 30.8                    |
| 660            | 21.4                    | 1760           | 31.1                    |
| 680            | 21.9                    | 1780           | 31.0                    |
| 700            | 22.2                    | 1800           | 30.9                    |
| 720            | 22.2                    | 1820           | 30.7                    |
| 740            | 22.1                    | 1840           | 30.6                    |
| 760            | 22.3                    | 1860           | 30.6                    |
| 780            | 22.6                    | 1880           | 30.6                    |
| 800            | 22.7                    | 1900           | 30.6                    |
| 820            | 22.9                    | 1920           | 30.7                    |
| 840            | 23.1                    | 1940           | 30.9                    |
| 860            | 23.4                    | 1960           | 31.2                    |
| 880            | 23.8                    | 1980           | 31.6                    |
| 900            | 24.1                    | 2000           | 32.0                    |
| 920            | 24.1                    |                |                         |

Antenna factor is to be added to receiver meter reading in dB( $\mu$ V) to convert to field intensity in dB( $\mu$ V/meter).




HERMON LABORATORIES

Test Report:HGTFCC.13066.doc

Date: December, 1998

FCC ID:OB6-IGSA21-01

## APPENDIX C- A2LA Accreditation



HERMON LABORATORIES

**American Association for Laboratory Accreditation**

**SCOPE OF ACCREDITATION: ISO/IEC GUIDE 25-1990 (EN 45001)**

**HERMON LABORATORIES**  
P.O. Box 22  
Birzeit 30550, Israel  
Edward Isaskin Phone: 972-6-6288-001

**ELECTRICAL (EN)**

Valid to: March 31, 1999 Certificate Number: 0839.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following tests:

**Electromagnetic Compatibility**  
Radiated Emissions Tests  
Conducted Emissions Tests

**Product Safety Testing**  
Heat Resistance  
Impulse  
Clearance & Creepage Distance  
Temperature Rise  
High Current Arcing Ignition  
Bonding Resistance

**Flammability**  
Overload  
Leakage Current  
Hot Wire Ignition  
Dielectric Withstanding

**Telecommunications Testing**  
Longitudinal Balance  
Environmental Stresses, Surges  
DTMF & Pulse Dialing  
On Hook, Off Hook DC/AC Impedances  
In-Band, Out of Band Signals

**Return Losses**  
Hazardous Voltages  
Hearing Aids  
Billing Protection

**On the following equipment:**  
Information Technology Equipment (ITE); Industrial, Scientific and Medical Equipment (ISM); Telecommunications Equipment; Electrical Appliances; Portable Tools; Motors, Transformers, and Similar Electrical Apparatus

**Using the following test methods/specifications/standards:**  
FCC Part 15 using ANSI C63.4 - 1992  
ANSI/UL 1950 - 1994  
AS 3260  
AS/NZS 1044, AS/NZS 2064, AS/NZS 3549  
CISPR 11 - 1990, CISPR 14, CISPR 22 - 1993  
EN 55011 - 1991, EN 55014 - 1987, EN 55022 - 1994, EN 60950 - 1993  
IEC 950 - 1996  
Israel Ministry of Communications Specification No. 023/96  
TS 001, TS 002, TS 004  
US Code of Federal Regulation (CFR) 47 Parts 15, 18, and 68

Revised 06/25/97  
*Ranor J. Isaskin*

656 Quince Orchard Road, #620 • Gaithersburg, MD 20878-1409 • Phone: 301 670 1377 • FAX: 301 945 8333