

FCC - Title 47 CFR Part 95	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 95 - Personal Radio Services
FCC - Title 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations

For further applied test standards please refer to section 3 of this test report.

Kind of test item:	SRD for RTTT and other vehicle or fixed installation
Model name:	SRR6-A
FCC ID:	OAYSRR6A
Frequency:	76.0 – 77.0 GHz
Antenna:	Integrated 3D antenna
Power supply:	6.5 V to 19.0 V DC by external power supply
Temperature range:	-40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Thomas Vogler	
Lab Manager	
Radio Communications & EMC	

Test performed:

Meheza Walla Lab Manager Radio Communications & EMC

Test report no.: 1-4593_22-01-03

1 Table of contents

1	Table of contents	2
2	2 General information	
	2.2 Application details	
3	B Test standard/s, references and accreditations	
4	Reporting statements of conformity – decision rule	5
5	5 Test environment	
6	6 Test item	7
	•	
7	Description of the test setup	
	7.2 Shielded fully anechoic chamber7.3 Radiated measurements > 18 GHz	
8	8 Sequence of testing	
	 8.2 Sequence of testing radiated spurious 30 MHz 8.3 Sequence of testing radiated spurious 1 GHz t 8.4 Sequence of testing radiated spurious above 1 	o 30 MHz
9	Measurement uncertainty	
10	0 Far field consideration for measurements above 18	GHz
11	1 Summary of measurement results	
	11.1 Summary	
12	2 Measurement results	
	12.2Modulation characteristics12.3Occupied bandwidth12.4Band edge compliance12.5Field strength of spurious emissions	22 45 45 47 47 48 59
13	3 Glossary	
14	4 Document history	
15	5 Accreditation Certificate – D-PL-12076-01-05	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2022-05-18
Date of receipt of test item:	2023-02-03
Start of test:*	2023-02-06
End of test:*	2023-02-17
Develop(a) area ant during the test.	/

Person(s) present during the test:

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

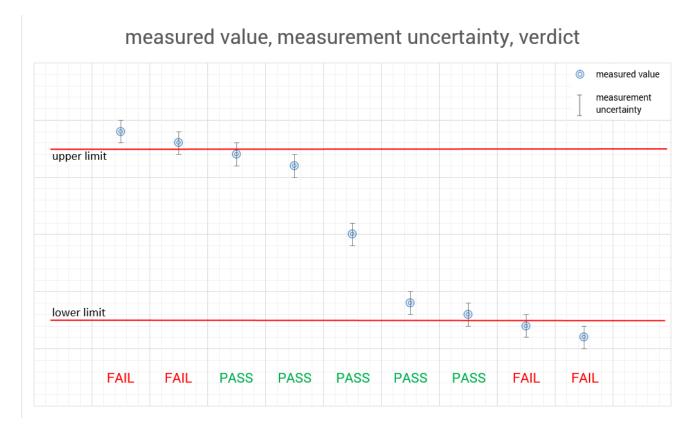
None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 95	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 95 - Personal Radio Services
FCC - Title 47 CFR Part 2	-/-	Frequency allocations and radio treaty matters; general rules and regulations

Guidance	Version	Description		
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz		
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices		
ANSI C63.26-2015	-/-	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services		
KDB 653005 D01	v01r01 2019-04	Equipment Authorization Guidance for 76-81 GHz Radar Devices		

Accreditation	Description	
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	Deutsche Akkreditierungsstelle D-PI-12076-01-05


FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +85 °C during high temperature tests -40 °C during low temperature tests		
Relative humidity content	:		55 %		
Barometric pressure	:		1021 hpa		
Power supply	:	V _{nom} V _{max} V _{min}	12.0 V DC by external power supply 19.0 V 6.5 V		

6 Test item

6.1 General description

Kind of test item	:	SRD for RTTT and other vehicle or fixed installation			
Model name	:	SRR6-A			
S/N serial number	:	A2C78206505000022311300059 (DUT 22)			
Hardware status	:	B2.2			
Software status	:	96.20.56			
Frequency band	:	76.0 – 77.0 GHz			
Type of modulation	:	FMCW			
Antenna	:	Integrated 3D antenna			
Power supply	:	6.5 to 19.0 V DC by external power supply			
Temperature range	:	-40°C to +85°C			

6.2 Additional information

Operating modes as declared by the manufacturer:

HVM_mode_ID	Fcenter [GHz]	Info	Bandwidth [MHz]
03		Operation	938.4
09		Operation	926.7
15	76.492	Operation	934.8
21		Operation	938.4
33		Operation	926.7
45		Operation	934.8
68		EoL/Service	816.9

Tests were performed on all modulations

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

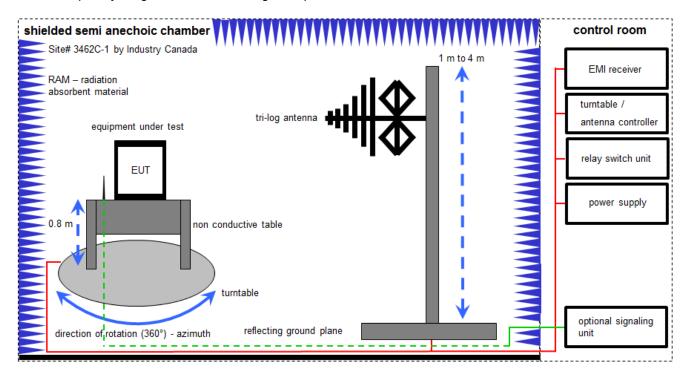
Test setup and EUT photos are included in test report:

1-4593/22-01-01_AnnexA 1-4593/22-01-01_AnnexB 1-4593/22-01-01_AnnexD

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Ca	alibration
--------------------	------------

k	calibration / calibrated	ΕK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

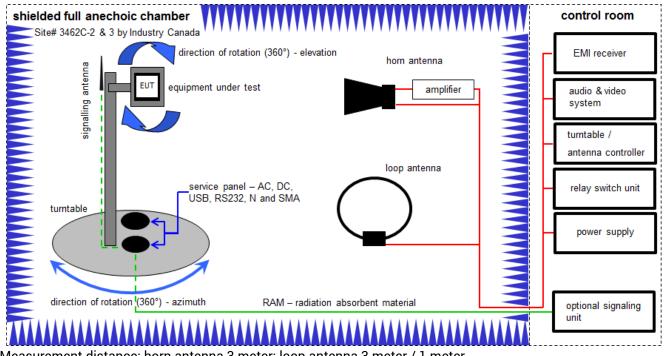
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	101240	300003312	k	14.12.2022	31.12.2023
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKl!	30.09.2019	29.09.2023
9	n. a.	Switch-Unit	3488A	HP	2719A14505	30000368	ev	-/-	-/-
10	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	31.05.2023

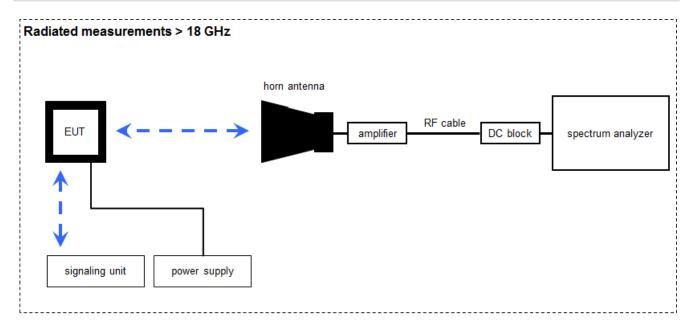
Shielded fully anechoic chamber 7.2

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

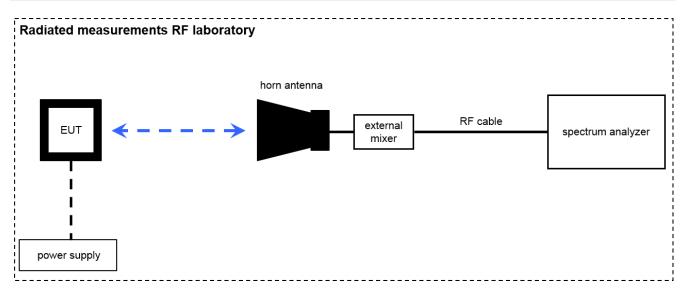
FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

cetecom advanced



Equipment table:


No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKl!	09.12.2020	08.12.2023
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	31.07.2023
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKl!	30.09.2021	29.09.2023
5	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	vlKl!	26.07.2022	25.07.2024
6	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
7	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
8	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	07.12.2022	31.12.2023
9	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
14	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
15	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

7.3 Radiated measurements > 18 GHz

7.4 Radiated measurements > 50/85 GHz

0P = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation:

OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μW)

Note: conversion loss of mixer is already included in analyzer value.

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vlKI!	17.01.2022	31.01.2024
2	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vlKl!	17.01.2022	31.01.2024
3	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKl!	17.01.2022	31.01.2024
4	n.a.	Std. Gain Horn Antenna 40-60 GHz	2424-20	Flann	76	400001981	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
6	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
8	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
10	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
11	n. a.	Std. Gain Horn Antenna 217-330 GHz	32240-20	Flann	233278	300004960	ne	-/-	-/-
12	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2022	08.03.2024
13	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	07.07.2022	31.07.2023
14	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	101555	300004691	k	21.07.2022	31.07.2023
15	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	07.07.2022	31.07.2023
16	n.a.	Harmonic Mixer 3- port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	20.07.2022	31.07.2023
17	n. a.	Harmonic Mixer 3- Port, 110-170 GHz	FS-Z170	Radiometer Physics GmbH	100014	300004156	k	01.07.2022	31.07.2023
18	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	21.07.2022	31.07.2023
19	n. a.	Harmonic Mixer 3- Port, 220-325 GHz	SAM-325	Radiometer Physics GmbH	100002	300004158	k	25.07.2022	31.07.2023
20	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	11.07.2022	31.07.2023
21	n.a.	Power Supply	E3632A	Agilent Technologies	MY40001320	400000396	ev	-/-	-/-
22	n. a.	Temperature Test Chamber	VT4002	Heraeus Voetsch	521/83761	300002326	ev	12.05.2022	31.05.2024

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8.5 Sequence of testing radiated spurious above 50/85 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 40	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 40	± 3 dB
Conducted unwanted emissions in the spurious domain (40 to 50	± 4 dB
Radiated unwanted emissions in the spurious domain (40 to 50	± 4 dB
Conducted unwanted emissions in the spurious domain (50 to	± 5 dB
Radiated unwanted emissions in the spurious domain (50 to 300	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1 °C
Humidity	± 3 %

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2 / \lambda$

with

- D_{ff} Far field distance
- D Antenna dimension
- λ wavelength

Spurious emission measurements:

Antenna frequency Range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
90-140	140	1.02	0.22	9.72
110-170	170	0.85	0.18	8.19
140-220	220	0.68	0.14	6.78
220-325	325	0.43	0.09	4.01
325-500	500	0.26	0.06	2.22

11 Summary of measurement results

11.1 Summary

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 95 Subpart M	see below	2023-04-06	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Pass	Fail	NA	NP	Remark
§2.1046 §95.3367 (a) / (b)	Radiated power	Nominal	Nominal	\boxtimes				complies
§2.1047	Modulation characteristics	-/-	-/-	\boxtimes				complies
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				complies
§2.1051	Spurious emissions at antenna terminals	Nominal	Nominal	\boxtimes				See note
§2.1053 §95.3379 (a)(1) §95.3379 (a)(2) §95.3379 (a)(3)	Field strength of emissions (radiated spurious)	Nominal	Nominal	×				complies
§2.1055 §95.3379 (b)	Frequency stability	Nominal and Extreme	Nominal and Extreme	\boxtimes				complies

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

See FCC's Millimeter Wave Test Procedures:

I. A radiated method of measurements in order to demonstrate compliance with the various regulatory requirements has been chosen in consideration of test equipment availability and the limitations of many external harmonic mixers. A conducted method of measurement could be employed if EUT and mixer waveguides both are accessible and of the same type (WG number) and if waveguide sections and transitions can be found. Another potential problem is that the peak power output of devices operating under Sections 15.253 and 15.255 may exceed the +20 dBm input power limit of many commercially available mixers. For these reasons a radiated method is preferred.

12 Measurement results

12.1 Radiated power

Description:

<u>§95.3367:</u>

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as shown below.

Limits:

FCC §95.3367 (a) (b)/ RSS-251 (5.2.2)

Frequency	Limit (eirp)					
	50 dBm (Average)					
76.0 - 81.0 GHz	55 dBm/MHz (PEAK)					

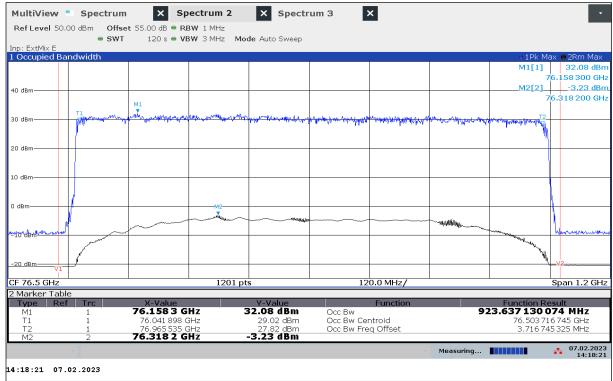
Measurement: Average Power

Measurement parameter			
Detector:	RMS		
Sweep time:	120 s		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Trace-Mode:	Clear Write		
Measurement distance:	2 m		

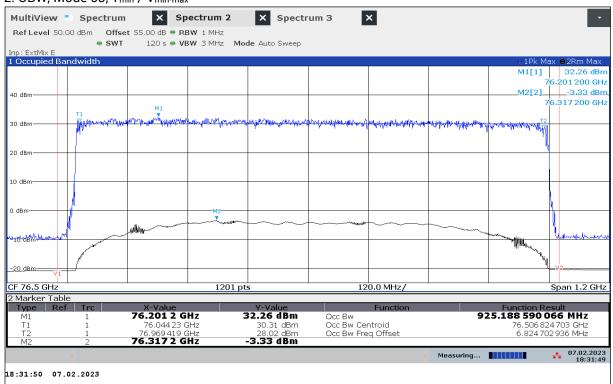
Measurement: Peak Power

Measurement parameter				
Detector:	Pos-Peak			
Sweep time:	120 s			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Trace-Mode:	Max Hold			
Measurement distance:	2 m			

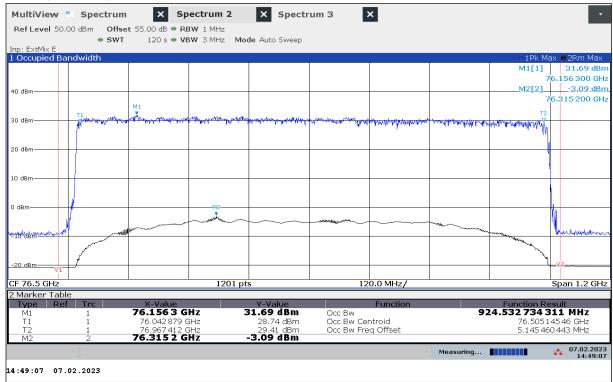
Measurement results:


Modulations / Test conditions		Radiated Peak Power (eirp) [dBm]	Radiated Mean Power (eirp) / Channel power [dBm]	
	T _{nom} / V _{min-max}	32.08	23.29	
03	T _{min} / V _{min-max}	32.26	23.75	
	T _{max} / V _{min-max}	31.69	23.02	
	T _{nom} / V _{min-max}	32.75	23.29	
09	T _{min} / V _{min-max}	33.13	23.78	
	T _{max} / V _{min-max}	32.09	22.73	
	T _{nom} / V _{min-max}	32.73	23.26	
15	Tmin / Vmin-max	33.17	23.74	
	T _{max} / V _{min-max}	32.22	22.57	
	T _{nom} / V _{min-max}	25.86	17.40	
21	T _{min} / V _{min-max}	26.64	18.32	
	T _{max} / V _{min-max}	27.14	18.57	
	T _{nom} / V _{min-max}	28.61	17.42	
33	Tmin / Vmin-max	27.70	18.33	
	T _{max} / V _{min-max}	27.80	19.10	
	T _{nom} / V _{min-max}	26.77	17.45	
45	T _{min} / V _{min-max}	27.64	18.34	
	T _{max} / V _{min-max}	28.17	18.93	
	T _{nom} / V _{min-max}	25.03	14.56	
68	T _{min} / V _{min-max}	23.08	13.12	
	T _{max} / V _{min-max}	25.49	14.84	

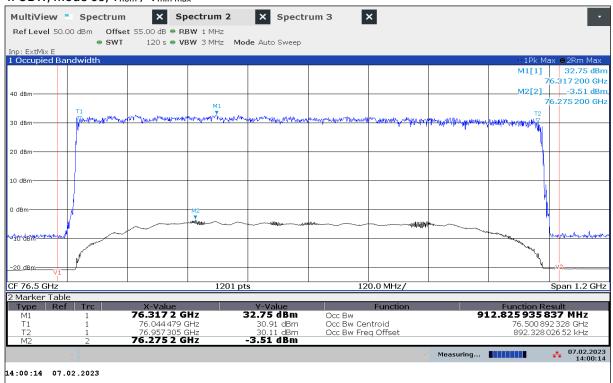
Note: Voltage variation does not affect the radiated signal


Verdict: Compliant

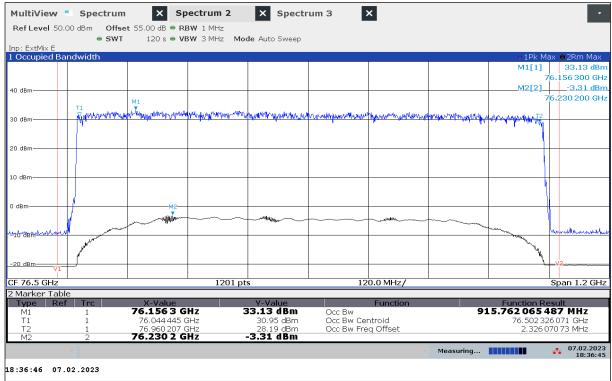
Plot 1: OBW, Mode 03, Tnom / Vmin-max



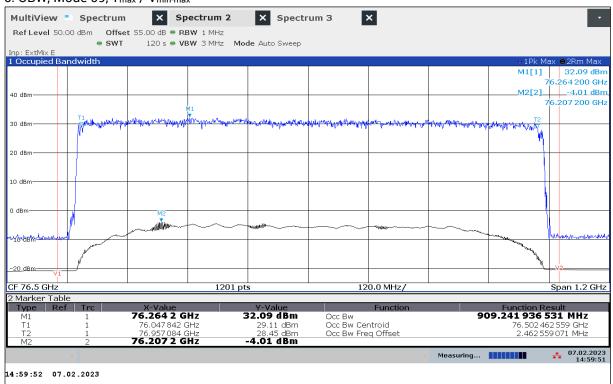
Plot 2: OBW, Mode 03, Tmin / Vmin-max



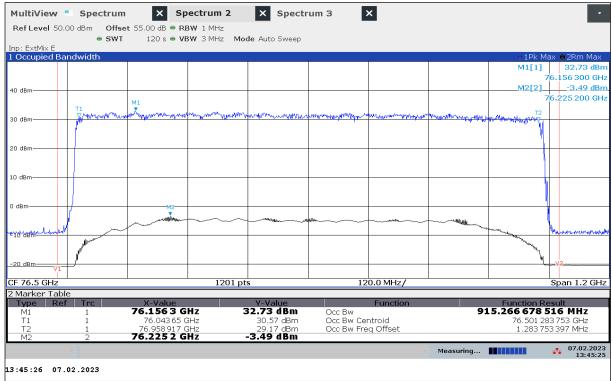
Plot 3: OBW, Mode 03, Tmax / Vmin-max



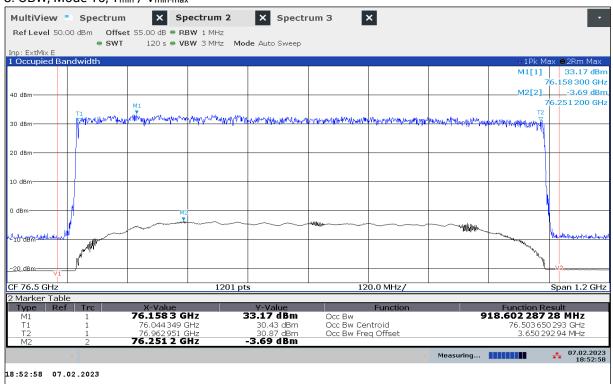
Plot 4: OBW, Mode 09, Tnom / Vmin-max



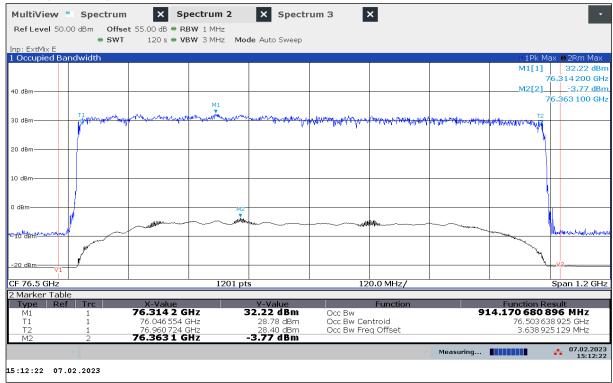
Plot 5: OBW, Mode 09, Tmin / Vmin-max



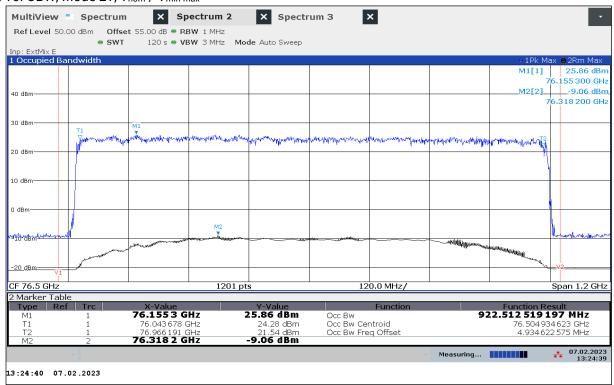
Plot 6: OBW, Mode 09, Tmax / Vmin-max



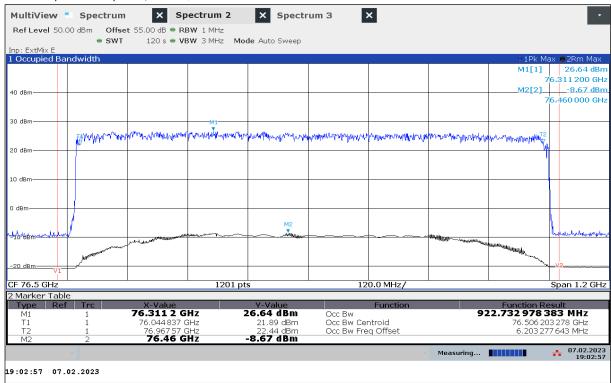
Plot 7: OBW, Mode 15, Tnom / Vmin-max



Plot 8: OBW, Mode 15, Tmin / Vmin-max

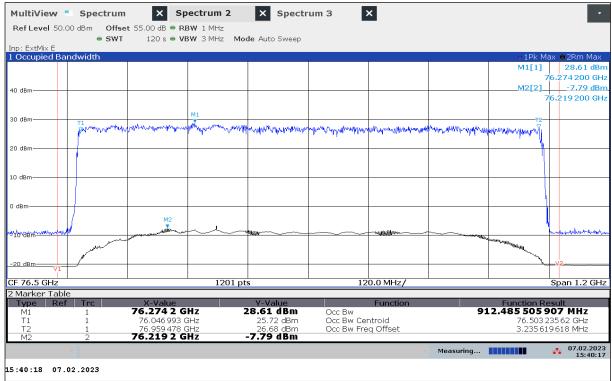


Plot 9: OBW, Mode 15, Tmax / Vmin-max



Plot 10: OBW, Mode 21, Tnom / Vmin-max

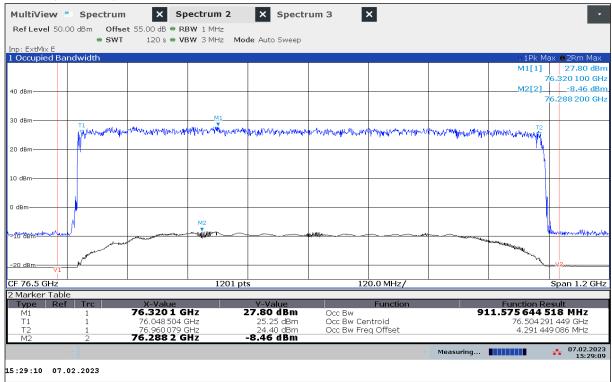
Plot 11: OBW, Mode 21, Tmin / Vmin-max



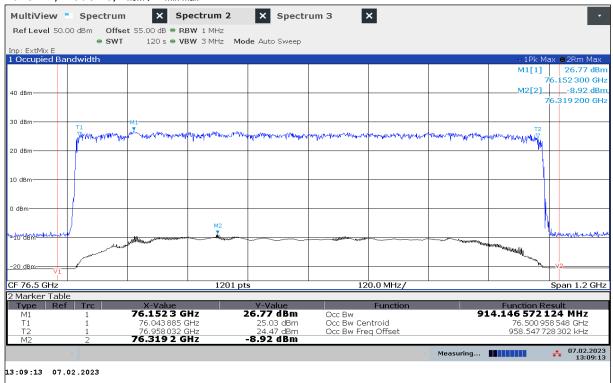
Plot 12: OBW, Mode 21, Tmax / Vmin-max

MultiView 📑 Spectru	m × Spectrum 2	× Spectr	um 3 🗙			•
Ref Level 50.00 dBm Offs	set 55.00 dB • RBW 1 MHz		_			
sw		Mode Auto Sween				
Inp: ExtMix E	1203 0 1011 01112	noue nate enteep				
1 Occupied Bandwidth					o1Pk Max	●2Rm Max
					M1[1]	27.14 dBm
						320 100 GHz
40 dBm					M2[2]	-8.32 dBm
					76.3	816 200 GHz
30 dBm	M1					
Julianna Mark	water and a second water a state provide	non an annound when the	WHAT WARD MAN AND MANY MANY MANY	Marin marine walk	MAN AMAMMA LAND	
		1.				
20 dBm						
10 dBm						
10 0.011						
0 dBm				_		
	M2				h h	Hormoniadadap
-ionability and the line	- Man Martin - Martin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		100	Maller and the states of the second
	number of the second				and a contraction of the contrac	
Marian					and the second	
-20 dBm //					<u> </u>	2
CF 76.5 GHz	1201	nto	120.0 MHz/			an 1.2 GHz
2 Marker Table	1201	pta	120.0 MIHZ/		эµ	
Type Ref Trc	X-Value	Y-Value	Function		Function Resu	lt
M1 1	76.320 1 GHz	27.14 dBm	Occ Bw	92	2.104 591 293	8 MHz
T1 1	76.047 027 GHz	25.93 dBm	Occ Bw Centroid		76.5080789	27 GHz
T2 1	76.969131 GHz	23.33 dBm	Occ Bw Freq Offset		8.078 926 8	41 MHz
M2 2	76.316 2 GHz	-8.32 dBm				
~				Measuring		07.02.2023 15:23:59
						10.20.09
15:24:00 07.02.2023						

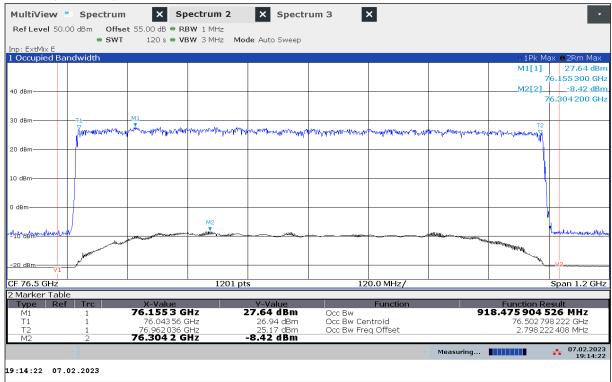
Plot 13: OBW, Mode 33, Tnom / Vmin-max



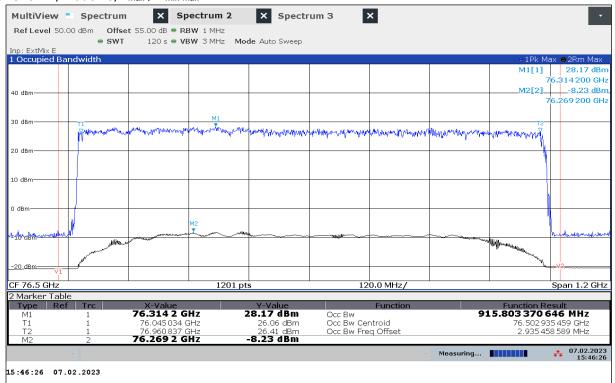
Plot 14: OBW, Mode 33, Tmin / Vmin-max


	•	Charter						
MultiView		× Spectru		'um 3 🗙 🗙	1			
Ref Level 5		t 55.00 dB ● RBW 1 M						
Inp: ExtMix E	● SWT	120 s 🗢 VBW 3 M	Hz Mode Auto Sweep					
1 Occupied E	Bandwidth						o 1Pk Ma	< ⊜2Rm Max
							M1[1]	27.70 dBm
							76	5.155 300 GHz
40 dBm							M2[2]	-7.96 dBm
							76	5.253 200 GHz
30 dBm	T1	NI III					Т2	
	WWW WWWWWW	Manute Manufacture And Manufactures	and a consideration and a second	announce and an announce of the	physical practices and the provident of the	anne a church ann an thair ann an	Water and the second second	
20 dBm	'						- 4	
10 dBm								
0 dBm	Ņ							
		M2						
∿_10"dem	hund	and Manager and	~	┝- <i>-</i>				mark mension
	- Martin - Alite	· · · · · · · · · · · · · · · · · · ·					annisandiputatiti	
	Journal						and the second states	
<u>-20_dBm</u> V	·						- 19	V2
CF 76.5 GHz			1201 pts	120	.0 MHz/			Span 1.2 GHz
2 Marker Ta	ble		1201 pt3	120.	.0 1411 12.7		· · · · · ·	
Type R		X-Value	Y-Value		Function		Function Res	sult
M1	1	76.1553 GHz	27.70 dBm	Occ Bw		91	4.160 408 04	
T1	1	76.045856 GHz	26.44 dBm	Occ Bw Centr			76.502936	
T2 M2	2	76.960017 GHz 76.253 2 GHz	25.26 dBm -7.96 dBm	Occ Bw Freq	Unset		2.936 502	701 MHZ
1112	£		710 C 4 Bill			Manaurina		• 07.02.2023
	V				~	Measuring		07.02.2023 19:07:48
19:07:49 0	7.02.2023							

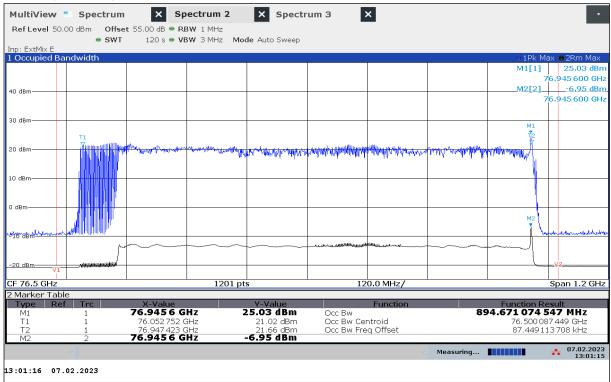
Plot 15: OBW, Mode 33, T_{max} / V_{min-max}



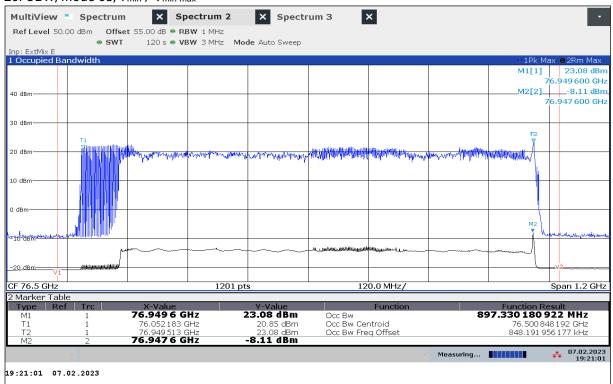
Plot 16: OBW, Mode 45, Tnom / Vmin-max



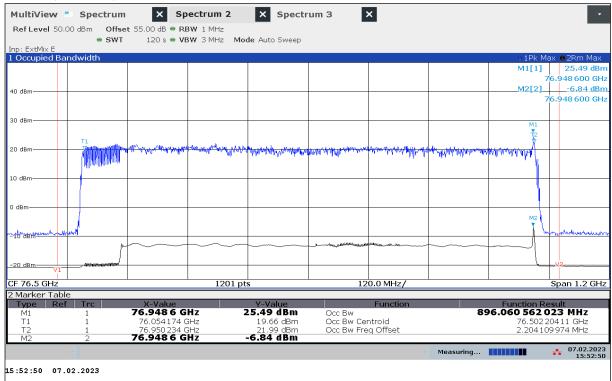
Plot 17: OBW, Mode 45, Tmin / Vmin-max



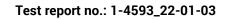
Plot 18: OBW, Mode 45, Tmax / Vmin-max



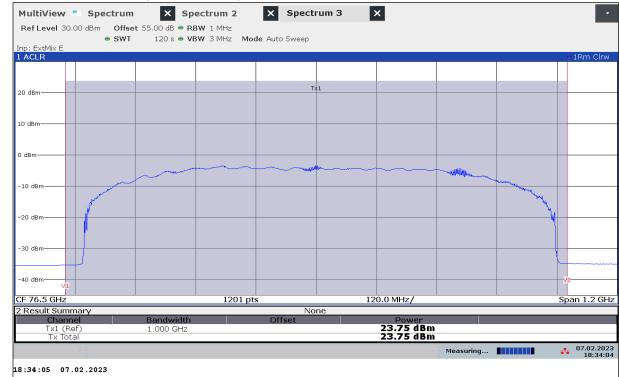
Plot 19: OBW, Mode 68, Tnom / Vmin-max



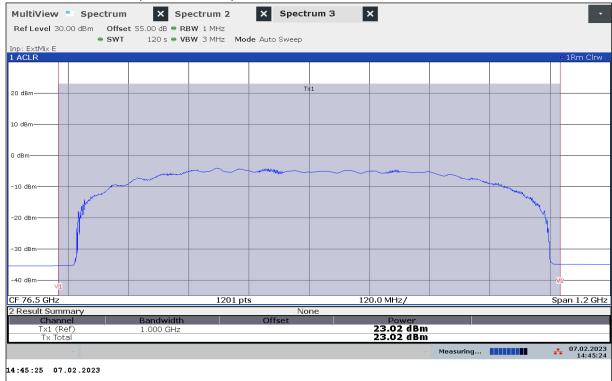
Plot 20: OBW, Mode 68, Tmin / Vmin-max

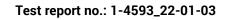


Plot 21: OBW, Mode 68, Tmax / Vmin-max



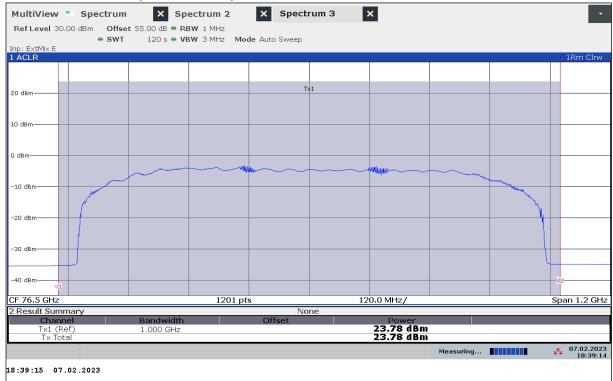
Plot 22: EIRP Mean Power (Channel Power), Mode 03, RMS detector, Tnom / Vmin-max

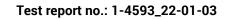




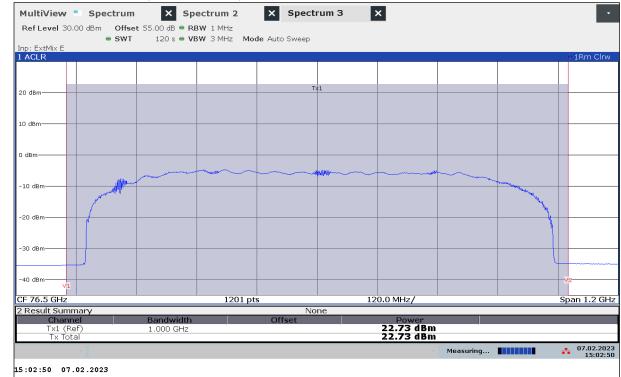
Plot 23: EIRP Mean Power (Channel Power), Mode 03, RMS detector, Tmin / Vmin-max

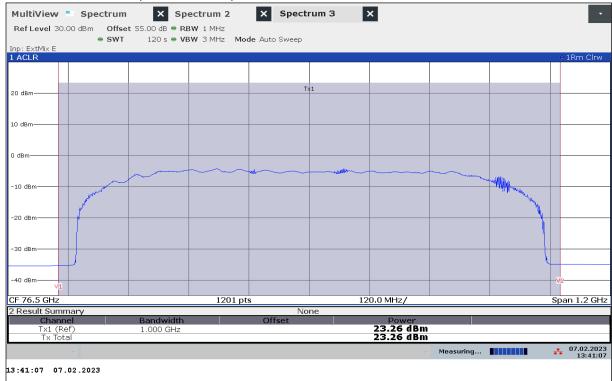
Plot 24: EIRP Mean Power (Channel Power), Mode 03, RMS detector, Tmax / Vmin-max

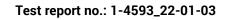




MultiView 📑 Spectrum × Spectrum 2 × Spectrum 3 × Ref Level 30.00 dBm Offset 55.00 dB RBW 1 MHz • SWT 120 s • VBW 3 MHz Mode Auto Sweep Inp: ExtMix E 20 dBm 10 dBm 0 dBm -10 dBr -20 dBm -30 dBm -40 dBm CF 76.5 GHz 1201 pts 120.0 MHz/ Span 1.2 GHz 2 Result Summary None Channel Tx1 (Ref) Tx Total Bandwidth Offset Power 23.29 dBm 23.29 dBm 1.000 GHz Measuring... + 07.02.2023 13:56:41 13:56:42 07.02.2023

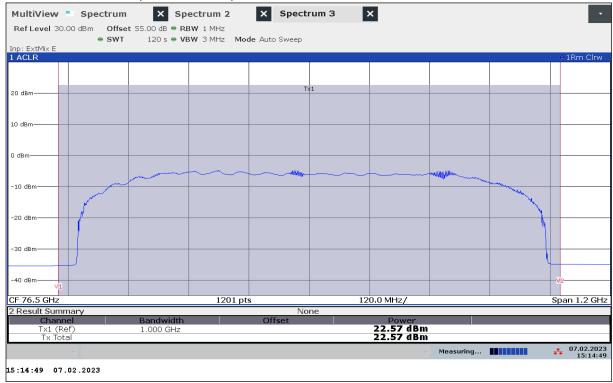

Plot 25: EIRP Mean Power (Channel Power), Mode 09, RMS detector, Tnom / Vmin-max

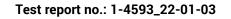




Plot 27: EIRP Mean Power (Channel Power), Mode 09, RMS detector, Tmax / Vmin-max

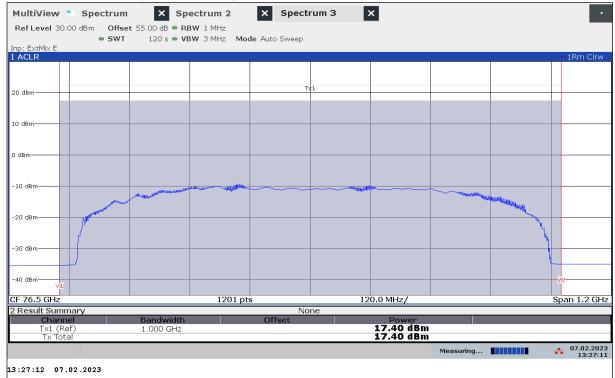


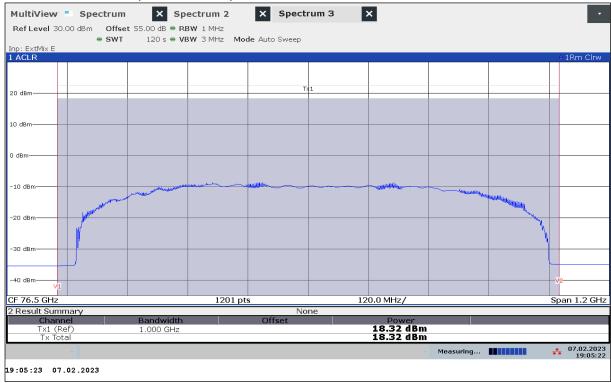


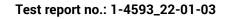


MultiView 📑 Spectrum × Spectrum 2 × Spectrum 3 × Ref Level 30.00 dBm Offset 55.00 dB RBW 1 MHz • SWT 120 s • VBW 3 MHz Mode Auto Sweep Inp: ExtMix E 20 dBm 10 dBm 0 dBm -10 dBr -20 dBm -30 dBm -40 dBm V1 CF 76.5 GHz 1201 pts 120.0 MHz/ Span 1.2 GHz 2 Result Summary None Channel Tx1 (Ref) Tx Total Bandwidth Offset Power 23.74 dBm 23.74 dBm 1.000 GHz Measuring... 07.02.2023 18:55:36 18:55:37 07.02.2023

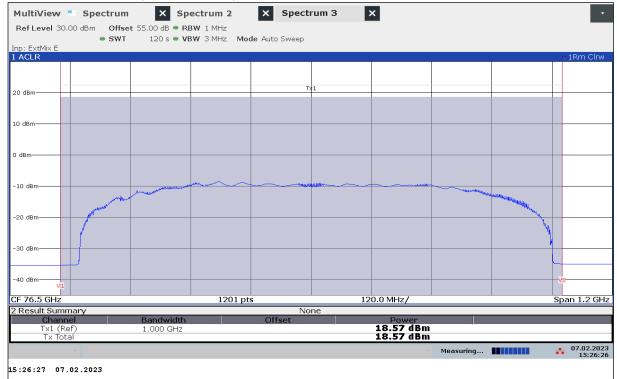
Plot 29: EIRP Mean Power (Channel Power), Mode 15, RMS detector, Tmin / Vmin-max

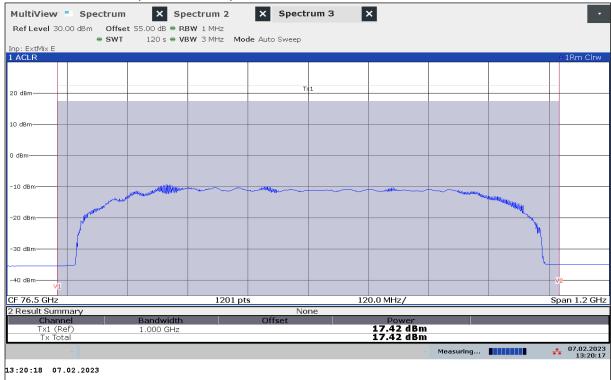


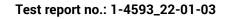




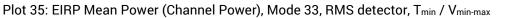
Plot 31: EIRP Mean Power (Channel Power), Mode 21, RMS detector, Tnom / Vmin-max

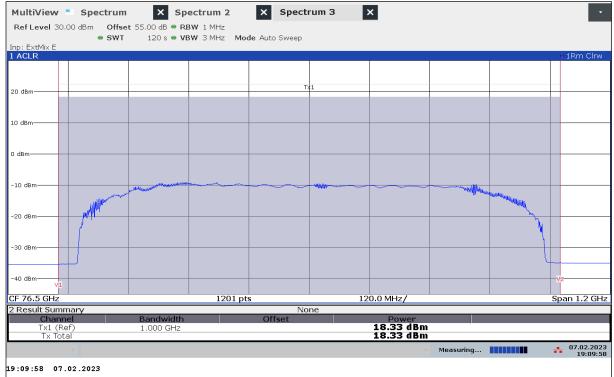

Plot 32: EIRP Mean Power (Channel Power), Mode 21, RMS detector, Tmin / Vmin-max

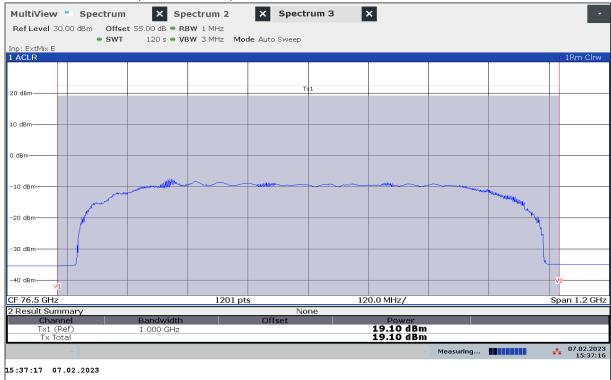


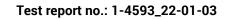


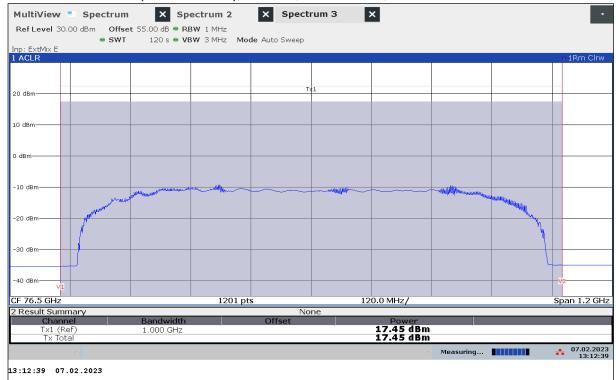
Plot 33: EIRP Mean Power (Channel Power), Mode 21, RMS detector, Tmax / Vmin-max

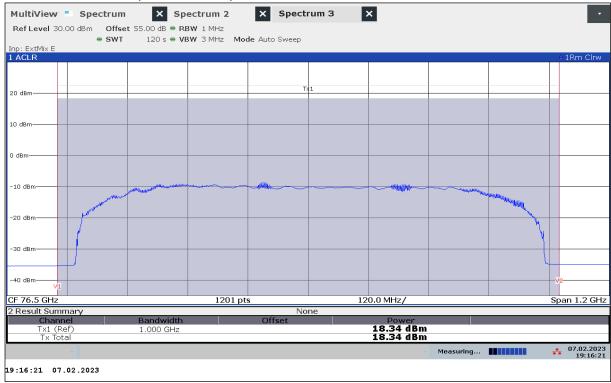


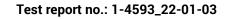

Plot 34: EIRP Mean Power (Channel Power), Mode 33, RMS detector, Tnom / Vmin-max



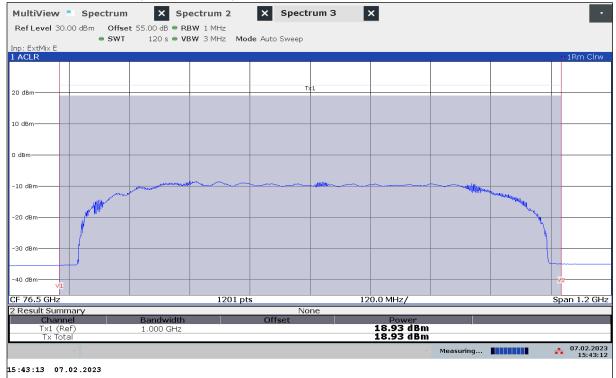


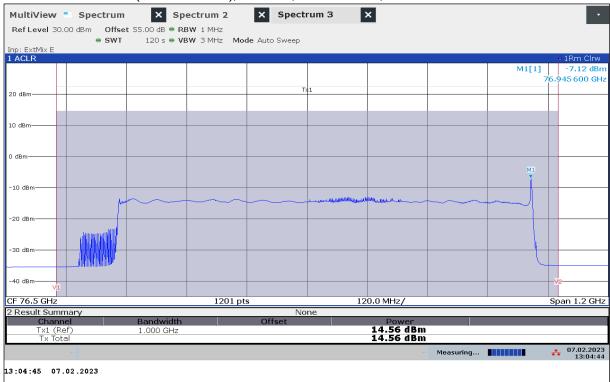

Plot 36: EIRP Mean Power (Channel Power), Mode 33, RMS detector, Tmax / Vmin-max

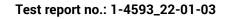


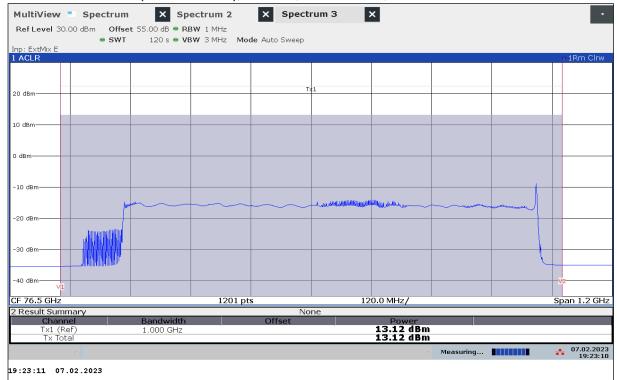


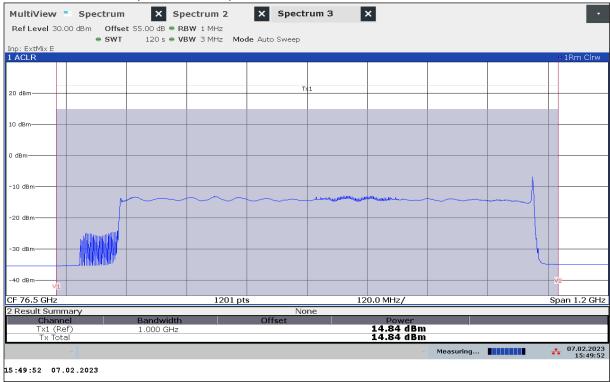
Plot 37: EIRP Mean Power (Channel Power), Mode 45, RMS detector, Tnom / Vmin-max


Plot 38: EIRP Mean Power (Channel Power), Mode 45, RMS detector, Tmin / Vmin-max






Plot 40: EIRP Mean Power (Channel Power), Mode 68, RMS detector, Tnom / Vmin-max



Plot 41: EIRP Mean Power (Channel Power), Mode 68, RMS detector, Tmin / Vmin-max

Plot 42: EIRP Mean Power (Channel Power), Mode 68, RMS detector, Tmax / Vmin-max

12.2 Modulation characteristics

Description:

§2.1047 (d) *Other types of equipment.* A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

Parameter	SRR6-A
Duty Cycle	Typical 41%
Timing	Typical Cycle Time: 50ms
	RF on 20.3 ms (256 Ramps + Monitoring).
Modulation	FM- chirps, negative Sawtooth with linear change of center frequency over
	sweep bandwidth or single chirps
Sweep Bandwidth	Mode dependent: 816 / 926 / 934 / 938 MHz
Sweep rate	Max 13 MHz/ µs
Power	Power constant during RF on
Steepness of Ramps	Steepness varies for scans and monitoring
Calibration	No calibration routines applied
Antenna Beam Steering (Tx)	No beam steering

Comments from manufacturer on modulation characteristics according to KDB 653005 3.(g):

12.3 Occupied bandwidth

Description:

§2.1049 The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Limits:

FCC §95.3379 (b)

The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following: 76 GHz – 81 GHz

Measurement:

Parameters			
Detector:	Pos. Peak		
Sweep time:	120 s		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Trace-Mode:	Max Hold		
Measurement distance:	2 m		

Measurement results:

Modulations / Test conditions		Operating Frequency Range				
			fн [GHz]	OBW [MHz]		
	T _{nom} / V _{min-max}	76.041 898	76.965 535	923.6		
03	T _{min} / V _{min-max}	76.044 230	76.969 419	925.2		
	T _{max} / V _{min-max}	76.042 879	76.967 412	924.5		
	Tnom / Vmin-max	76.044 479	76.957 305	912.8		
09	T _{min} / V _{min-max}	76.044 445	76.960 207	915.8		
	T _{max} / V _{min-max}	76.047 842	76.957 084	909.2		
	T _{nom} / V _{min-max}	76.043 650	76.958 917	915.3		
15	Tmin / Vmin-max	76.044 349	76.962 951	918.6		
	T _{max} / V _{min-max}	76.046 554	76.960 724	914.2		
	Tnom / Vmin-max	76.043 678	76.966 191	922.5		
21	T _{min} / V _{min-max}	76.044 837	76.967 570	922.7		
	T _{max} / V _{min-max}	76.047 027	76.969 131	922.1		
	T _{nom} / V _{min-max}	76.046 993	76.959 478	912.5		
33	Tmin / Vmin-max	76.045 856	76.960 017	914.2		
	T _{max} / V _{min-max}	76.048 504	76.960 079	911.6		
	Tnom / Vmin-max	76.043 885	76.958 032	914.1		
45	Tmin / Vmin-max	76.043 560	76.962 036	918.5		
	T _{max} / V _{min-max}	76.045 034	76.960 837	915.8		
	T _{nom} / V _{min-max}	76.052 752	76.947 423	894.7		
68	Tmin / Vmin-max	76.052 183	76.949 513	897.3		
	T _{max} / V _{min-max}	76.054 174	76.950 234	896.1		

Note: Voltage variation does not affect the radiated signal

Verdict: Compliant

12.4 Band edge compliance

Description:

Investigation of the emission limits at the band edge.

<u>Limits:</u>

FCC §95.3379 (a) (2) (i) + (ii) / ANSI C63.10-2013 / 6.10

Frequency Range [GHz]	Measurement distance	Power Density
40 – 76 and 81 – 200	3.0 m	600 pW/cm² → -1.7 dBm

<u>Limits:</u>

FCC §95.3367 (a) (b)

Frequency Range [GHz]	Power Density
76 - 81	50 dBm/MHz (e.i.r.p)

Measurement:

Parameters			
Detector:	RMS		
Sweep time:	See plots		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Trace-Mode:	Max Hold		

Measurement results:

• Results are part of chapter 12.5

Verdict: Compliant

12.5 Field strength of spurious emissions

Description:

The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:

<u>Limits:</u>

FCC							
CFR Part 95.3379 (a) (1) / CFR Part 95.3379 (a) (3)							
	Radiated Spurious Emissions						
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.							
Frequency [MHz] Field Strength [dBµV/m] Measurement distance							
0.009 - 0.490	300						
0.490 - 1.705	30						
1.705 - 30.0 30 30							
30 88	30.0	10					
88 – 216	10						
216 - 960 36.0 10							
960 - 40 000	54.0	3					

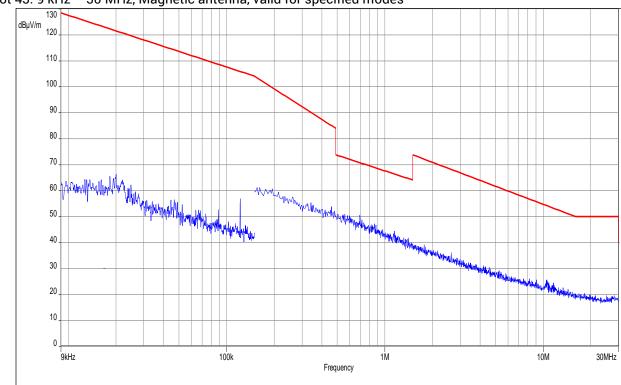
Limits:

FCC §95.3379 (a) (2) (i) + (ii)

Frequency Range [GHz] Measurement distance		Power Density
40 - 200	3.0 m	600 pW/cm² → -1.7 dBm
200 – 231	3.0 m	1000 pW/cm ² → +0.5 dBm

Measurement:

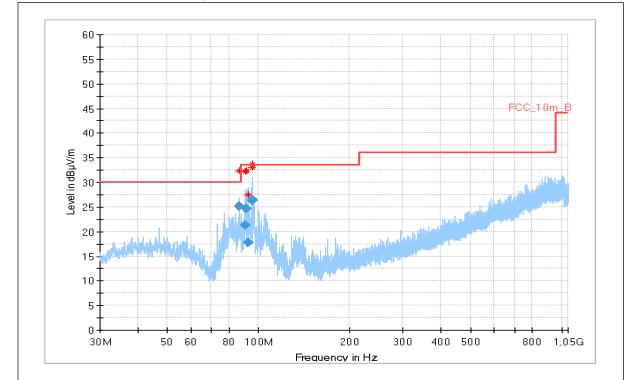
Measurement parameter				
Detector: Quasi Peak / Pos-Peak / LinAV / RMS				
Resolution bandwidth:	F < 1 GHz: 100 kHz			
	F > 1 GHz: 1 MHz			
Video bandwidth:	F < 1 GHz: 300 kHz			
	F > 1 GHz: 3 MHz			
Trace-Mode:	Max Hold			


Measurement:

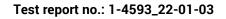
Measurement parameter				
Detector: Quasi Peak / Pos-Peak / LinAV / RMS				
Resolution bandwidth:	F < 1 GHz: 100 kHz			
	F > 1 GHz: 1 MHz			
Video bandwidth:	F < 1 GHz: 300 kHz			
	F > 1 GHz: 3 MHz			
Trace-Mode:	Max Hold			

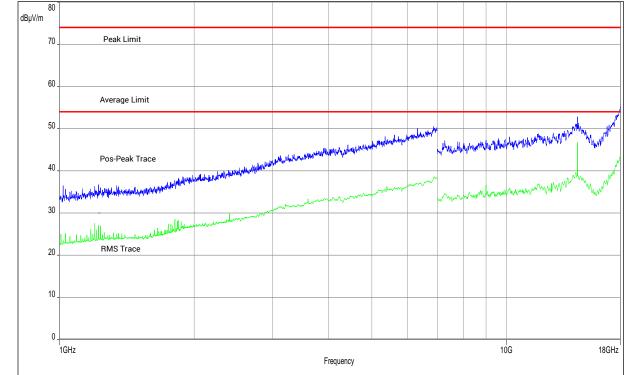
Measurement results:

Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]			
-/-	-/-	-/-	-/-	-/-	-/-			
No critical spurious emission levels								


Verdict: Compliant

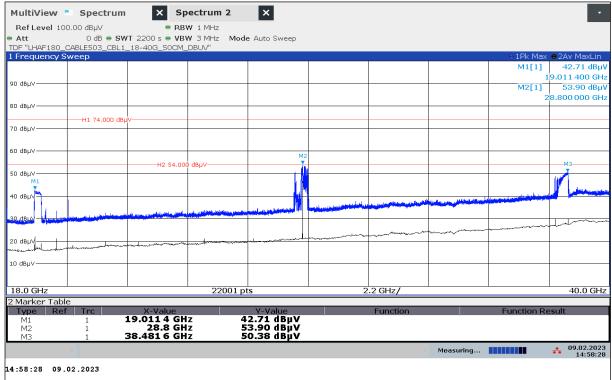
Plot 43: 9 kHz - 30 MHz, Magnetic antenna, valid for specified modes

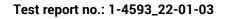

Test report no.: 1-4593_22-01-03



Plot 44: 30 MHz - 1 GHz, valid for specified modes, antenna vertical / horizontal

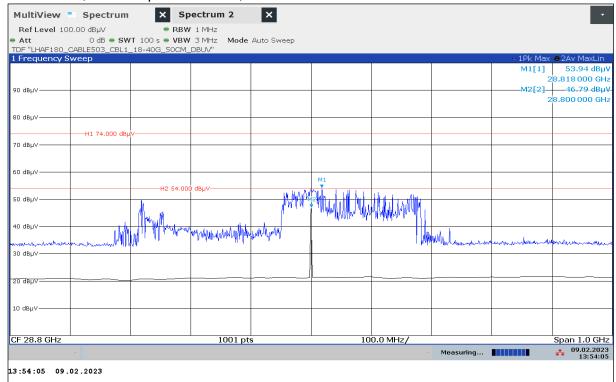
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
86.339	25.06	30.0	4.9	1000	120.0	139.0	V	328	10
90.250	21.36	33.5	12.1	1000	120.0	146.0	V	20	11
91.367	24.61	33.5	8.9	1000	120.0	131.0	V	11	12
92.790	17.73	33.5	15.8	1000	120.0	104.0	V	23	12
95.534	26.55	33.5	7.0	1000	120.0	129.0	V	35	13
95.545	26.30	33.5	7.2	1000	120.0	108.0	V	45	13

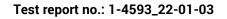




Plot 45: 1 GHz - 18 GHz, valid for specified modes, antenna vertical / horizontal

Plot 46: 18 GHz - 40 GHz, valid for specified modes, antenna vertical / horizontal (PEAK detector)

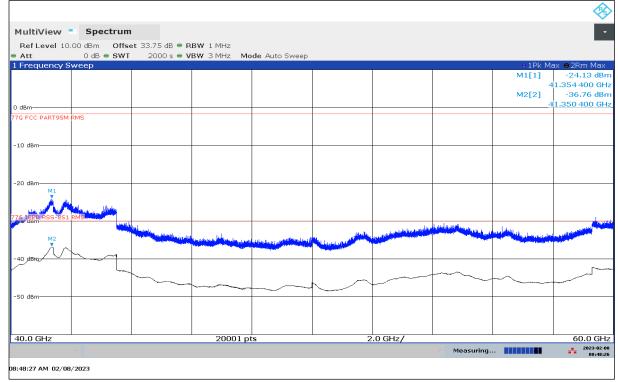



Ref Level 100.00 dBµV		ectrum 2	×					· ·
	● SWT 2200 s ● VB		Auto Sweep					
1 Frequency Sweep	_CDL1_18-40G_50CM_	DBUV					o 1 Pk Ma	ax e2Av MaxLin
							M1[2]	
								19.799 400 GHz
90 dBµV							M2[2]	41.14 dBµ\
								28.800 000 GHz
80 dBµV								
H1 74.	000 dBµV							
70 dBµV								
60 dBµV								
50 dBµV	H2 54.00) dBµV						
SO UBDV								
								a la management
40 dBµV					وأرياف والمستعملان والمستع	A STATE OF THE OWNER OF THE OWNER OF	المتعاول ومعاولة فالمعالم والمعالي وال	мз
	Lease and the second se	a la des anticipations des autores des	and the second second second					Y
30 dBuy - Hash during the								- Lund
M1					multim	hanne		
20 dBµY	La de sta adamente				chique :			
10 dBuV								
CF 29.0 GHz		22001 pts		2	.2 GHz/			Span 22.0 GHz
2 Marker Table								
Type Ref Trc	X-Value		Y-Value		Function		Function I	Result
M1 2	19.799 4 GH 28.8 GH		.89 dBµV .14 dBµV					
M2 2 M3 2	38.024 6 GH	7 32	.45 dBμV					
	20.0240 01							- 09 02 2023
						Measuring		09.02.2023 17:38:55

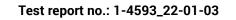
Plot 47: 18 GHz - 40 GHz, valid for specified modes, antenna vertical / horizontal (Average detector)

Plot 48: 28.8 GHz, valid for specified modes, antenna vertical / horizontal

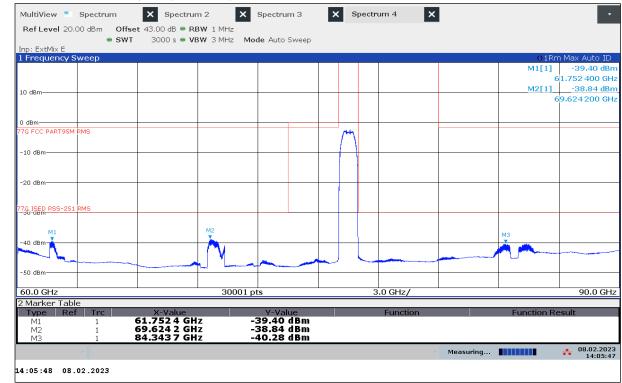
Peak Value: 53.94 dBµV/m (Limit 74 dBµV/m) / Average 46.79 dBµV/m (Limit 54 dBµV/m)



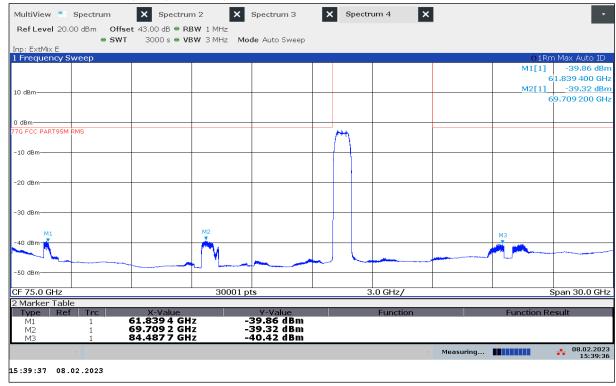
MultiView	Spectrum	× Sp	ectrum 2	×					-
	0.00 dBµV 0 dB ● SW CABLE503_CBL1_		3 MHz Mode	Auto Sweep					
1 Frequency S		_10 408_506.0						o1Pk Max	●2Av MaxLin
90 dBµV								M1[1] 3 <u>M2[2]</u>	53.85 dBµV 8.392 900 GHz 31.45 dBµV 8.024 300 GHz
80 dBµV	н1 74.000 dBµ	v							
70 dBµV									
60 dBµV		H2 54.000		Annanananan	waata ay ahaa ahaan ahaan ahaa ahaa ahaa aha	M1			
,40,dBuV	and the second s	M)					WW	and the particular lar	mana manuna
30 dвµV		M2							
20 dBµV									
10 dBµ∨									
CF 38.28 GHz	v		1001 pt	<u>s</u>	10	0.0 MHz/	Measuring		Span 1.0 GHz 09.02.2023 15:14:26
15:14:26 09.	02.2023								

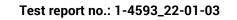

Plot 49: 38 GHz, valid for specified modes, antenna vertical / horizontal

Peak Value: 53.85 dBµV/m (Limit 74 dBµV/m) / Average 31.45 dBµV/m (Limit 54 dBµV/m)

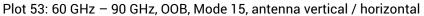

Plot 50: 40 GHz - 60 GHz, valid for specified modes, antenna vertical / horizontal

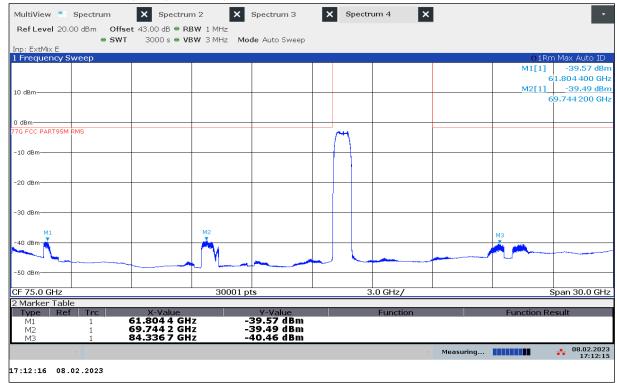
Marker 1 (Peak value) is just informative, Marker 2 shows the right value with a RMS detector



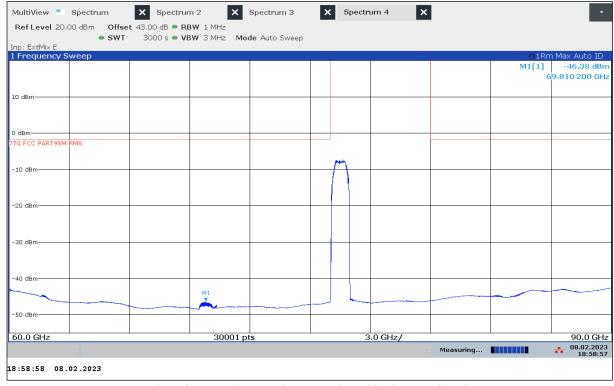

Plot 51: 60 GHz - 90 GHz, OOB, Mode 03, antenna vertical / horizontal

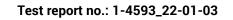
Markers show mixer products produced by harmonic mixer


Plot 52: 60 GHz - 90 GHz, OOB, Mode 09, antenna vertical / horizontal



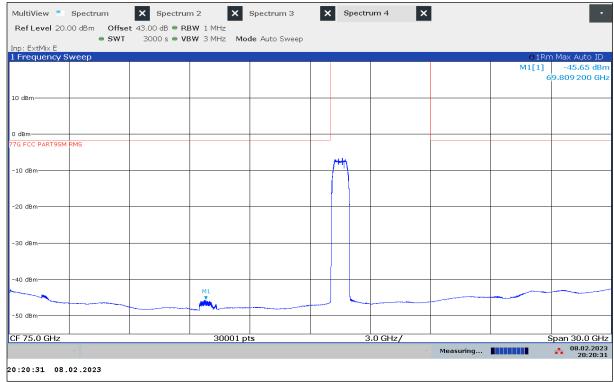
Markers show mixer products produced by harmonic mixer



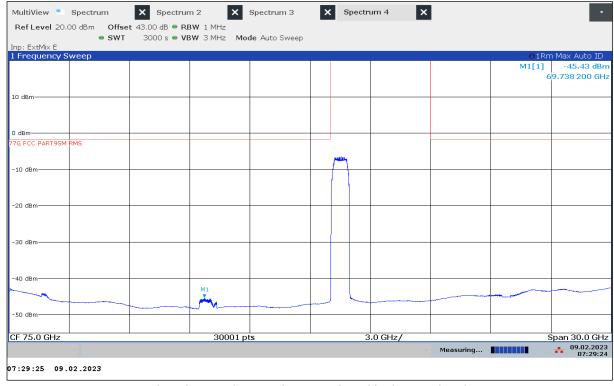


Markers show mixer products produced by harmonic mixer

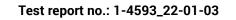
Plot 54: 60 GHz - 90 GHz, OOB, Mode 21, antenna vertical / horizontal



Marker shows mixer products produced by harmonic mixer



Plot 55: 60 GHz - 90 GHz, OOB, Mode 33, antenna vertical / horizontal

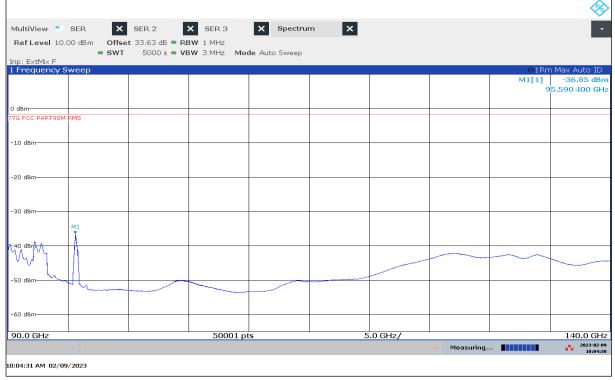


Marker shows mixer products produced by harmonic mixer

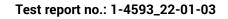
Plot 56: 60 GHz - 90 GHz, OOB, Mode 45, antenna vertical / horizontal



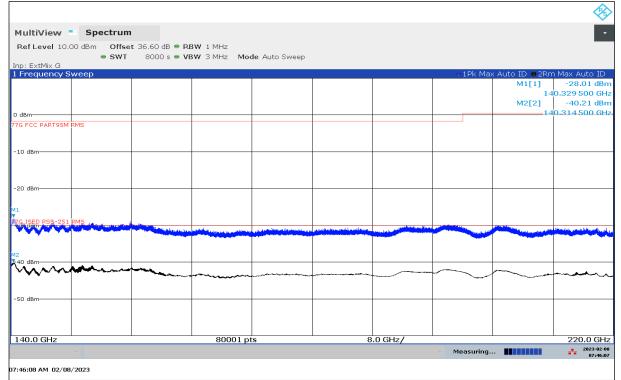
Marker shows mixer products produced by harmonic mixer



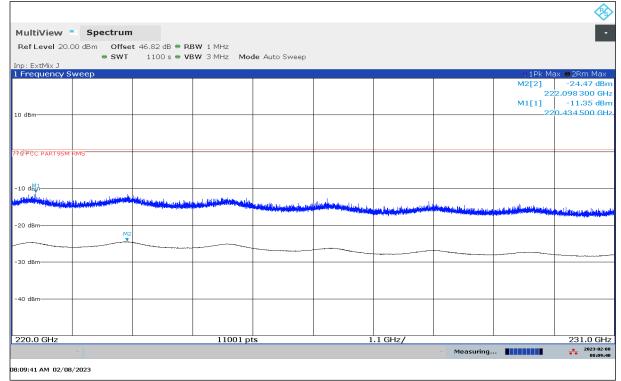
Plot 57: 60 GHz - 90 GHz, OOB, Mode 68, antenna vertical / horizontal



Markers show mixer products produced by harmonic mixer



Marker shows mixer products produced by harmonic mixer



Marker 1 (Peak value) is just informative, Marker 2 shows the right value with a RMS detector

Marker 1 (Peak value) is just informative, Marker 2 shows the right value with a RMS detector

12.6 Frequency stability

Description:

§95.3379 (b) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

<u>Limits:</u>

FCC §95.3379 (b)

The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following: 76 GHz – 81 GHz

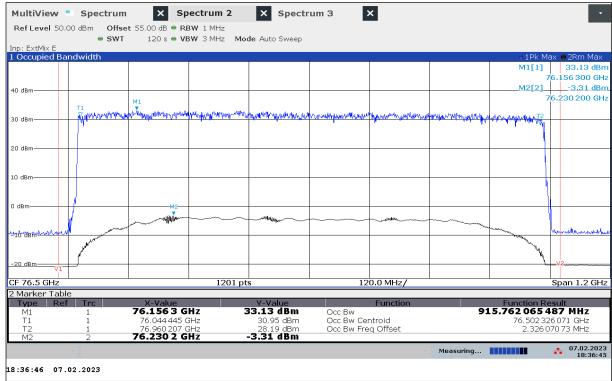
Measurement results:

Temperature variation

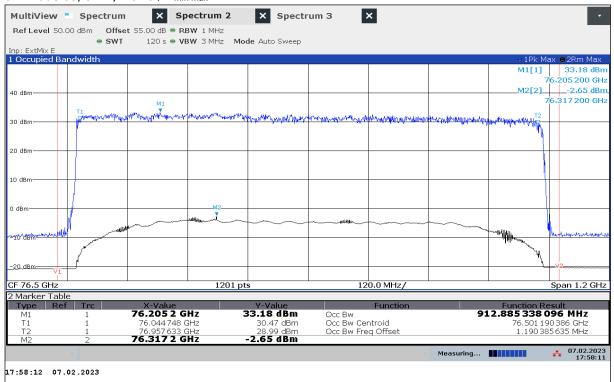
Mode	Temperature in °C	f∟in GHz	f _H in GHz	Bandwidth [MHz]
	-40 °C / V _{nom}	76.044 445	76.960 207	915.8
	-20 °C / V _{nom}	76.044 748	76.957 633	912.9
	-10 °C / V _{nom}	76.044 658	76.957 595	912.9
	0 °C / V _{nom}	76.043 584	76.956 866	913.3
Mode 09	10 °C / V _{nom}	76.045 428	76.958 178	912.7
(Worst case)	20 °C / V _{nom}	76.044 479	76.957 305	912.8
	30 °C / V _{nom}	76.046 115	76.957 518	911.4
	40 °C / V _{nom}	76.046 000	76.957 832	911.8
	50 °C / V _{nom}	76.050 526	76.960 553	910.0
	85 °C / V _{nom}	76.047 842	76.957 084	909.2

Voltage variation

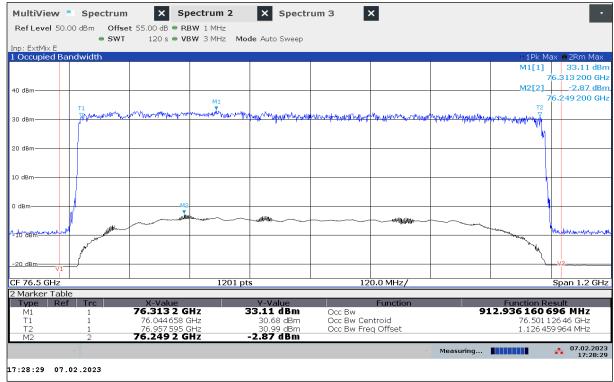
Voltage variation of rated input voltage	f⊾in GHz	f _H in GHz		
< 85 % of U	Valtage veriation does n	hat affect the redicted signal		
> 115 % of U	Voltage variation does not affect the radiated signal			


Note:

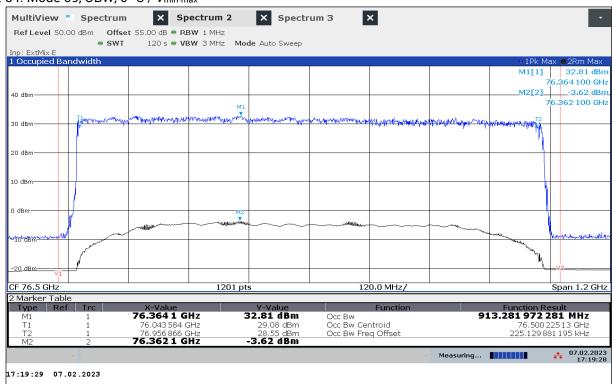
- The EUT is measured in the temperature range from -20°C to 50°C specified by §95.3379 (b)
- If the customer declared a wider temperature range, the customer take care about the proper functionality of the EUT.


Verdict: Compliant

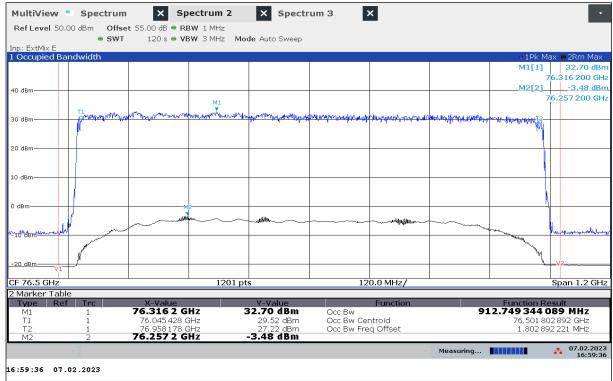
Plot 61: Mode 09, OBW, -40 °C / Vmin-max



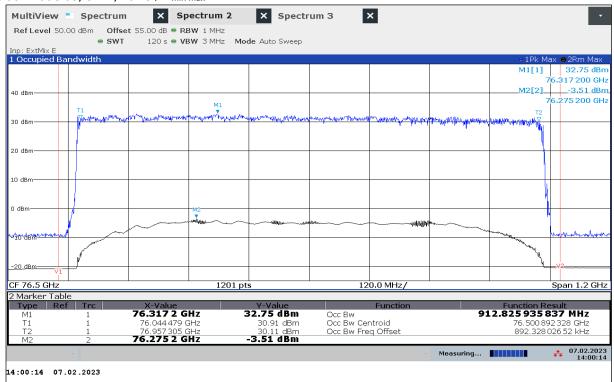
Plot 62: Mode 09, OBW, -20 °C / Vmin-max



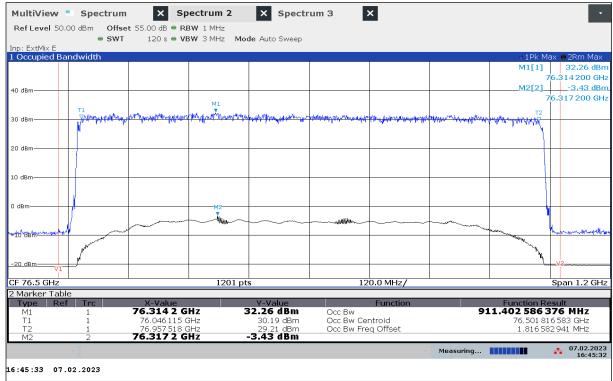
Plot 63: Mode 09, OBW, -10 °C / Vmin-max



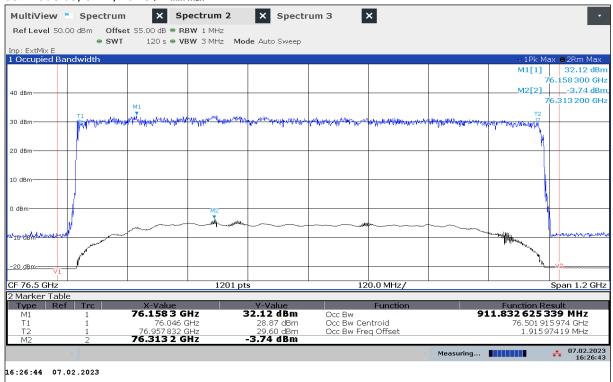
Plot 64: Mode 09, OBW, 0 °C / Vmin-max



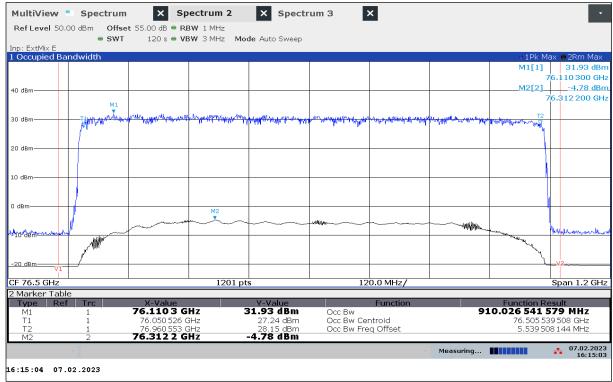
Plot 65: Mode 09, OBW, 10 °C / Vmin-max



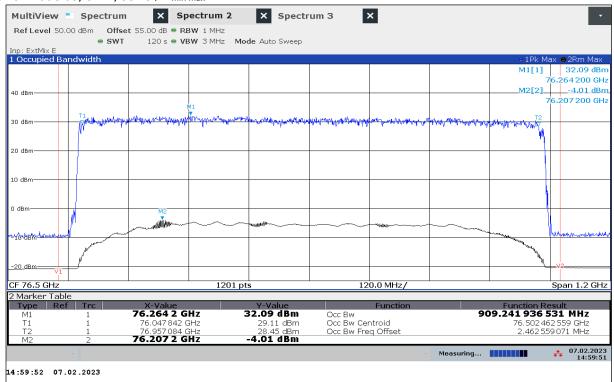
Plot 66: Mode 09, OBW, 20 °C / Vmin-max



Plot 67: Mode 09, OBW, 30 °C / Vmin-max



Plot 68: Mode 09, OBW, 40 °C / Vmin-max



Plot 69: Mode 09, OBW, 50 °C / Vmin-max

Plot 70: Mode 09, OBW, 85 °C / Vmin-max

13 Glossary

FUT	Facility and an Acad
EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

14 Document history

Version	Applied changes	Date of release	
-/-	Initial release - DRAFT	2023-02-12	
-/-	Minor changes	2023-04-06	

15 Accreditation Certificate – D-PL-12076-01-05

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://cetecomadvanced.com/files/pdfs/d-pl-12076-01-05_tcb_usa.pdf

####