

PARTIAL TEST REPORT

Test report no.: 1-7505-24-01-02_TR1-R01

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.cetecomadvanced.com

e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH

The accreditation is valid for the scope of testing procedures as stated in

the accreditation certificate with the registration number:

D-PL-12047-01-00.

Radio Labs

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

ADC Automotive Distance Control Systems GmbH

Peter-Dornier-Str. 10 88131 Lindau / GERMANY Phone: 08382 9699 - 0 Contact: Thomas Reitmayer

e-mail: <u>Thomas.Reitmayer@continental-</u>

corporation.com

Phone: +49 731 55035-3332

Manufacturer

ADC Automotive Distance Control Systems GmbH

Peter-Dornier-Str. 10 88131 Lindau / GERMANY

Test standard/s

FCC - Title 47 CFR Part 95 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 95 - Personal

Radio Services

FCC - Title 47 CFR Part 2 Frequency allocations and radio treaty matters; general rules and regulations

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: SRD for RTTT and other vehicle or fixed installation

Model name: ARS5-A FCC ID: OAYARS5A

Frequency: 76.0 GHz – 77 GHz

Antenna: Integrated 3D array antenna

Power supply: 8.5 V to 17.0 V DC by external power supply

Temperature range: -40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Thomas Vogler	Meheza Walla	
Lab Manager	Lab Manager	

Radio Labs

Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	standard/s, references and accreditations	2
4	Repor	ting statements of conformity – decision rule	5
5	Test e	environment	(
6	Test it	tem	6
	6.1 6.2	General description	
7	Descr	iption of the test setup	7
	7.1 7.2 7.3	Shielded semi anechoic chamber	10
	7.4	Radiated measurements > 50/85 GHz	12
8	Seque	ence of testing	14
	8.1 8.2 8.3 8.4 8.5	Sequence of testing radiated spurious 9 kHz to 30 MHz	15 1 <i>6</i> 17
9	Meas	urement uncertainty	19
10	Far	field consideration for measurements above 18 GHz	19
11	Sun	nmary of measurement results	20
	11.1 11.2	Summary	
12	Mea	asurement results	22
	12.1 12.2 12.3 12.4 12.5	Radiated power	30
13	Glo	ssary	44
14	Doc	sument history	45

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2024-03-21
Date of receipt of test item: 2024-04-01
Start of test:* 2024-04-02
End of test:* 2024-04-12

Person(s) present during the test: Mr. Dirk Voellmecke

2.3 Test laboratories sub-contracted

None

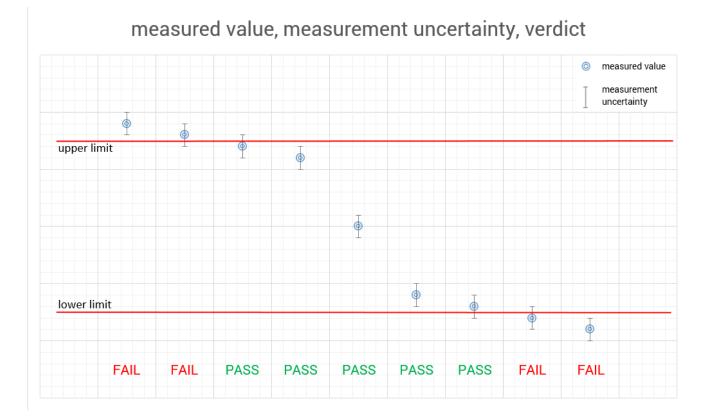
© cetecom advanced GmbH Page 3 of 45

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 95	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 95 - Personal Radio Services
FCC - Title 47 CFR Part 2	-/-	Frequency allocations and radio treaty matters; general rules and regulations

Guidance	Version	Description		
		American National Standard for Methods of Measurement of		
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic		
		Equipment in the Range of 9 kHz to 40 GHz		
ANSI C63.10-2020	-/-	American National Standard of Procedures for Compliance		
ANSI C03.10-2020	-/-	Testing of Unlicensed Wireless Devices		
ANSI C63.26-2015 -/-		American National Standard for Compliance Testing of		
		Transmitters Used in Licensed Radio Services		
76-81 GHz Radars KDB v01r02		653005 D01 76-81 GHz Radars v01r02: EQUIPMENT		
		AUTHORIZATION GUIDANCE FOR 76-81 GHz RADAR DEVICES		


© cetecom advanced GmbH Page 4 of 45

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

© cetecom advanced GmbH Page 5 of 45

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests -/- °C during high temperature tests -/- °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hPa
Power supply	:	$egin{array}{c} V_{nom} \ V_{max} \ V_{min} \end{array}$	12 V DC by external power supply -/- V -/- V

6 Test item

6.1 General description

Kind of test item	:	SRD for RTTT and other vehicle or fixed installation
Model name	:	ARS5-A
S/N serial number	:	A2C7820980100000023209160541 (DUT_1)
Hardware status	:	Index01
Software status	:	3.0.103
Frequency band	:	76.0 GHz – 77 GHz
Type of modulation	:	FMCW
Number of channels	:	1
Antenna	:	Integrated 3D array antenna
Power supply	:	8.5 V to 17.0 V DC by external power supply
Temperature range	:	-40°C to +85°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Only partial tests on customer request: peak power, channel power and occupied bandwidth were carried out at nominal conditions for all modulations and the spurious emissions only with the worst-case evaluation

Test setup and EUT photos are included in test report:

- 1-7505-24-01-01_TR1-A101-R01 (External photographs of EUT)
- 1-7505-24-01-01_TR1-A102-R01 (Internal photographs of EUT)
- 1-7505-24-01-01_TR1-A103-R01 (Test set-up photographs)
- Note: The referenced photos show EUT delivered by the customer in this project, not necessarily the exact one used for the specific tests. EUT identification shown in the photos may differ.

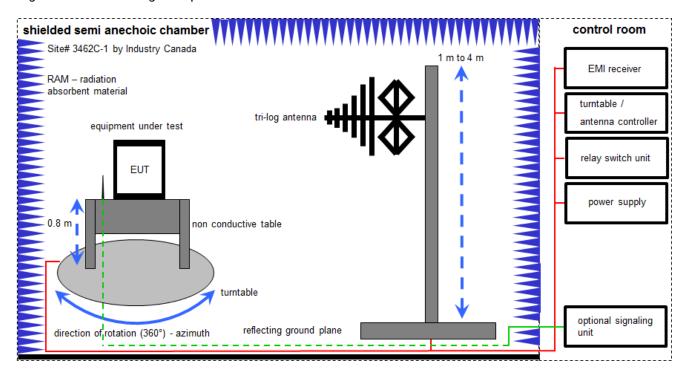
© cetecom advanced GmbH Page 6 of 45

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated		EK	limited calibration
ne	ne not required (k, ev, izw, zw not required)		ZW	cyclical maintenance (external cyclical
				maintenance)
ev	periodic self verification		izw	internal cyclical maintenance
Ve	long-term stability recognized		g	blocked for accredited testing
vlkl!	Attention: extended calibration interval			
NK!	Attention: not calibrated		*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 7 of 45

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

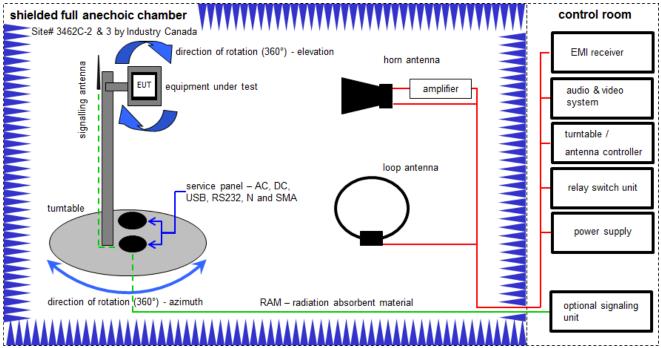
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

© cetecom advanced GmbH Page 8 of 45


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	216	300003288	vlKI!	31.08.2023	31.08.2025
8	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
9	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	06.12.2023	31.12.2024

© cetecom advanced GmbH Page 9 of 45

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

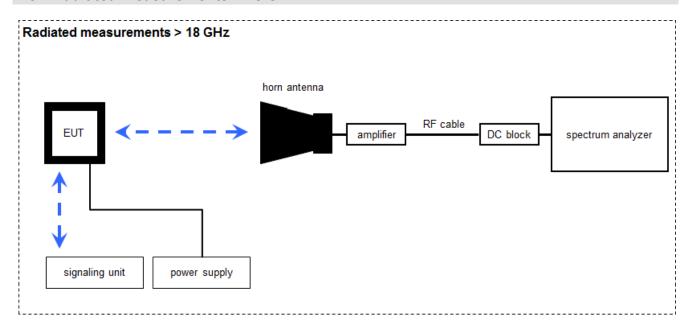
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

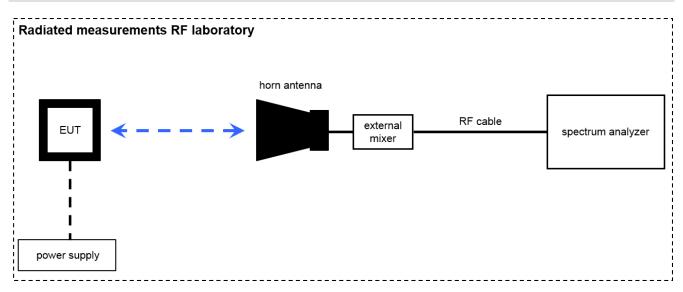
Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

© cetecom advanced GmbH Page 10 of 45


Equipment table:

No.	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	vlKI!	20.03.2023	19.03.2025
2	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
3	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
4	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
5	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	23.05.2023	31.05.2025
6	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
7	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
8	NEXIO EMV- Software	BAT EMC V2022.0.22.0	Nexio	-/-	300004682	ne	-/-	-/-
9	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
10	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	15.01.2024	31.01.2025


© cetecom advanced GmbH Page 11 of 45

7.3 Radiated measurements > 18 GHz

7.4 Radiated measurements > 50/85 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation:

 $OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 \mu W)$

Note: conversion loss of mixer is already included in analyzer value.

© cetecom advanced GmbH Page 12 of 45

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18.0-40.0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vlKI!	24.01.2024	23.01.2026
2	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vlKI!	24.01.2024	23.01.2026
3	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	24.01.2024	23.01.2026
4	n.a.	Std. Gain Horn Antenna 40-60 GHz	2424-20	Flann	76	400001981	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
6	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
8	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
10	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
11	n. a.	Std. Gain Horn Antenna 217-330 GHz	32240-20	Flann	233278	300004960	ne	-/-	-/-
12	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	22.04.2024	21.04.2026
13	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	19.07.2023	31.07.2024
14	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	101555	300004691	k	25.08.2023	31.08.2024
15	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	21.07.2023	31.07.2024
16	n.a.	Harmonic Mixer 3- port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	03.08.2023	31.08.2024
17	n. a.	Harmonic Mixer 3- Port, 110-170 GHz	FS-Z170	Radiometer Physics GmbH	100014	300004156	k	21.07.2023	31.07.2024
18	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	02.08.2023	31.08.2024
19	n. a.	Harmonic Mixer 3- Port, 220-325 GHz	SAM-325	Radiometer Physics GmbH	100002	300004158	k	02.08.2023	31.08.2024
20	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	02.08.2023	31.08.2024
21	n.a.	Power Supply	E3632A	Agilent Technologies	MY40001320	400000396	ev	14.12.2021	31.12.2024

© cetecom advanced GmbH Page 13 of 45

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 14 of 45

^{*)} Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 15 of 45

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 16 of 45

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 17 of 45

8.5 Sequence of testing radiated spurious above 50/85 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 18 of 45

9 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 40 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 40 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1°C
Humidity	± 3 %

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2 / \lambda$

with

 $\begin{array}{ll} D_{ff} & & \text{Far field distance} \\ D & & \text{Antenna dimension} \\ \lambda & & \text{wavelength} \end{array}$

Spurious emission measurements:

Antenna frequency Range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
90-140	140	1.02	0.22	9.72
110-170	170	0.85	0.18	8.19
140-220	220	0.68	0.14	6.78
220-325	325	0.43	0.09	4.01
325-500	500	0.26	0.06	2.22

© cetecom advanced GmbH Page 19 of 45

11 Summary of measurement results

11.1 Summary

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 95 Subpart M	see below	2024-06-25	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Pass	Fail	NA	NP	Remark
§2.1046 §95.3367 (a) / (b)	Radiated power	Nominal	Nominal	\boxtimes				complies
§2.1047	Modulation characteristics	-/-	-/-	\boxtimes				complies
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				complies
§2.1051	Spurious emissions at antenna terminals	Nominal	Nominal	\boxtimes				See note
§2.1053 §95.3379 (a)(1) §95.3379 (a)(2) §95.3379 (a)(3)	Field strength of emissions (radiated spurious)	Nominal	Nominal	×				complies
§2.1055 §95.3379 (b)	Frequency stability	Nominal and Extreme	Nominal and Extreme				\boxtimes	

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

See FCC's Millimeter Wave Test Procedures:

I. A radiated method of measurements in order to demonstrate compliance with the various regulatory requirements has been chosen in consideration of test equipment availability and the limitations of many external harmonic mixers. A conducted method of measurement could be employed if EUT and mixer waveguides both are accessible and of the same type (WG number) and if waveguide sections and transitions can be found. Another potential problem is that the peak power output of devices operating under Sections 15.253 and 15.255 may exceed the +20 dBm input power limit of many commercially available mixers. For these reasons a radiated method is preferred.

Partial tests on customer request: peak power, channel power and occupied bandwidth were carried out at nominal conditions for all modulations and the spurious emissions only with the worst-case evaluation

© cetecom advanced GmbH Page 20 of 45

11.2 Additional comments

Reference documents:

None

Special test descriptions:

• How to Configure ARS542.pdf

Configuration descriptions:

• How to Configure ARS542.pdf

Test devices (EUT):

DUT1: Serial number A2C7820980100000023209160541

Associated equipment (AE):

• -/-

Operation modes:

Operating modes as declared by the manufacturer:

HVM_mode_ID	Fcenter [GHz]	Info	Bandwidth [MHz]
03	76.48	Operation	960
15	76.48	Operation	760
27	76.48	Operation	690
39	76.48	Operation	640
51	76.48	Operation	590
63	76.48	Operation	550

Additional test modes:	\bowtie	No test modes available
		Special test modes/special software (see description below)

Description of special test modes as declared by customer:

None

Details on test mode settings:

According to the customer's instructions, the following steps and commands were used to configure the test modes:

• None

Software provided by the manufacturer:

• None

© cetecom advanced GmbH Page 21 of 45

12 Measurement results

12.1 Radiated power

Description:

§95.3367:

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as shown below.

<u>Limits:</u> FCC §95.3367 (a) (b)

Frequency	Limit (eirp)		
76.0 - 81.0 GHz	50 dBm (Average)		
	55 dBm/MHz (PEAK)		

Measurement: Average Power

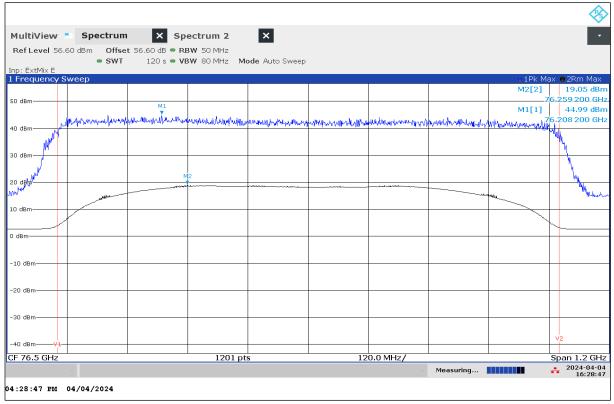
Measurement parameter			
Detector:	RMS		
Sweep time:	120 s		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Trace-Mode:	Clear Write		
Measurement distance:	2 m		

Measurement: Peak Power

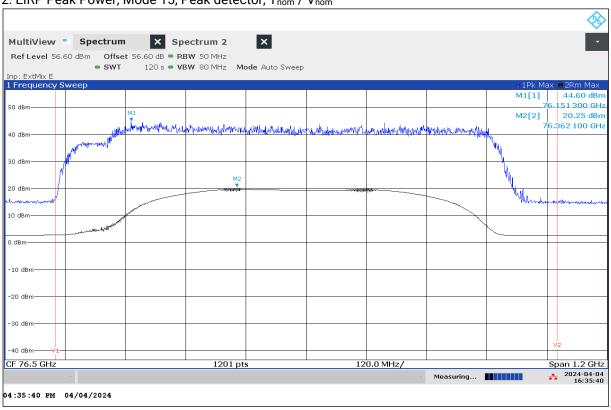
Measurement parameter			
Detector:	Pos-Peak		
Sweep time:	120 s		
Resolution bandwidth:	50 MHz		
Video bandwidth:	80 MHz		
Trace-Mode:	Max Hold		
Measurement distance:	2 m		

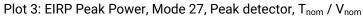
© cetecom advanced GmbH Page 22 of 45

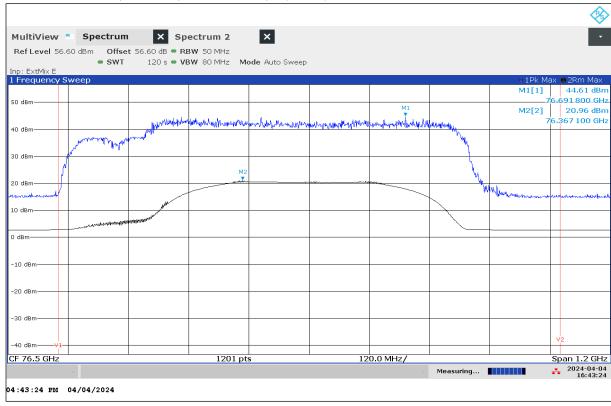
Measurement results:

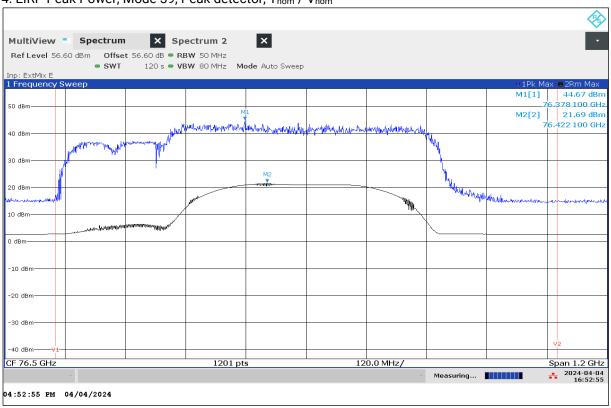

Modulations /	Test conditions	Radiated Peak Power (eirp) [dBm]	Radiated Mean Power (eirp) / Channel power [dBm]
03	T_{nom} / V_{nom}	44.99	28.91
15	T_{nom} / V_{nom}	44.60	28.87
27	T_{nom} / V_{nom}	44.61	28.87
39	T_{nom} / V_{nom}	44.67	28.88
51	T_{nom} / V_{nom}	44.29	28.88
63	T_{nom} / V_{nom}	44.09	28.92

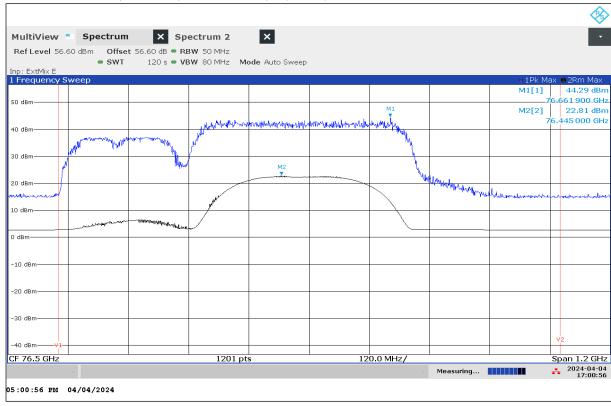
Verdict: Compliant


© cetecom advanced GmbH Page 23 of 45

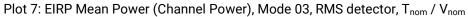


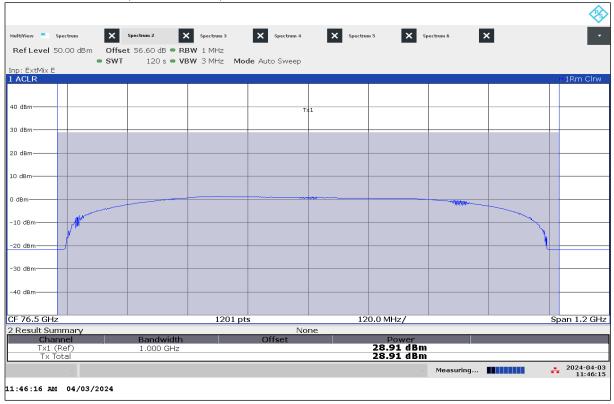

Plot 2: EIRP Peak Power, Mode 15, Peak detector, T_{nom} / V_{nom}

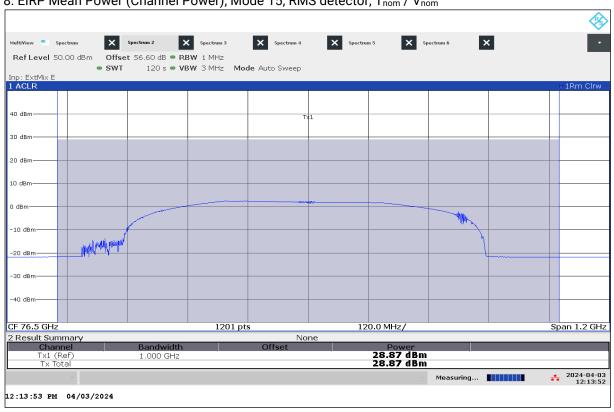

© cetecom advanced GmbH Page 24 of 45

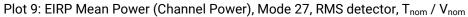

Plot 4: EIRP Peak Power, Mode 39, Peak detector, T_{nom} / V_{nom}

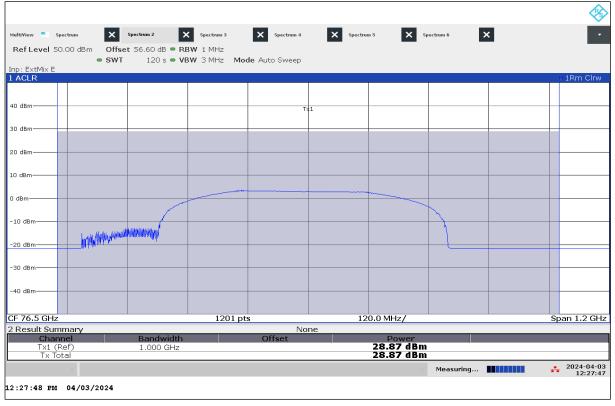
© cetecom advanced GmbH Page 25 of 45



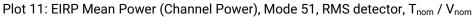

Plot 6: EIRP Peak Power, Mode 63, Peak detector, T_{nom} / V_{nom}


© cetecom advanced GmbH Page 26 of 45




Plot 8: EIRP Mean Power (Channel Power), Mode 15, RMS detector, T_{nom} / V_{nom}

© cetecom advanced GmbH Page 27 of 45



Plot 10: EIRP Mean Power (Channel Power), Mode 39, RMS detector, T_{nom} / V_{nom}

Plot 12: EIRP Mean Power (Channel Power), Mode 63, RMS detector, T_{nom} / V_{nom}

© cetecom advanced GmbH Page 29 of 45

12.2 Modulation characteristics

Description:

§2.1047 (d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

Comments from manufacturer on modulation characteristics according to KDB 653005 3.(g):

Parameter	ARS5-A
Duty Cycle	40 % or less (all modes)
Timing	Typical Cycle Time: 50ms In average 20 ms RF on (512-515 Ramps).
Modulation	FM- chirps, negative Sawtooth with linear change of center frequency over sweep bandwidth
Sweep Bandwidth	Scan mode dependent: 960 MHz or lower, Monitoring chirps beside scan
Sweep rate	25600 Sweeps/second
Power	Power constant during RF on
Steepness of Ramps	Fixed steepness during given operation mode. Only varies for different bandwidth.
Calibration	No calibration routines applied
Antenna Beam Steering (Tx)	No beam steering

12.3 Occupied bandwidth

Description:

§2.1049 The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

<u>Limits:</u> FCC §95.3379 (b)

The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following: 76 GHz – 81 GHz

Measurement:

Parameters			
Detector:	Pos. Peak		
Sweep time:	120 s		
Resolution bandwidth:	10 MHz		
Video bandwidth:	28 MHz		
Trace-Mode:	Max Hold		
Measurement distance:	2 m		

© cetecom advanced GmbH Page 30 of 45

Measurement results:

Modulations / Test conditions		Operating Frequency Range			
		f _L [GHz] f _H [GHz] OBW [MHz			
03	T _{nom} / V _{nom}	76.026 556	76.966 329	939.8	
15	T _{nom} / V _{nom}	76.091 669	76.845 588	753.9	
27	T _{nom} / V _{nom}	76.084 944	76.770 441	685.5	
39	T _{nom} / V _{nom}	76.081 347	76.721 849	640.5	
51	T _{nom} / V _{nom}	76.080 254	76.661 798	581.5	
63	T _{nom} / V _{nom}	76.073 954	76.624 630	550.7	

Verdict: Compliant

© cetecom advanced GmbH Page 31 of 45

Plot 13: OBW, Mode 03, T_{nom} / V_{nom}

Plot 14: OBW, Mode 15, T_{nom} / V_{nom}

© cetecom advanced GmbH Page 32 of 45

Plot 15: OBW, Mode 27, T_{nom} / V_{nom}

Plot 16: OBW, Mode 39, T_{nom} / V_{nom}

© cetecom advanced GmbH Page 33 of 45

Plot 17: OBW, Mode 51, T_{nom} / V_{nom}

Plot 18: OBW, Mode 63, T_{nom} / V_{nom}

© cetecom advanced GmbH Page 34 of 45

12.4 Band edge compliance

Description:

Investigation of the emission limits at the band edge.

Limits:

FCC §95.3379 (a) (2) (i) + (ii) / ANSI C63.10-2013 / 6.10

Frequency Range [GHz]	Measurement distance	Power Density
40 - 76 and 81 - 200	3.0 m	600 pW/cm $^2 \rightarrow -1.7 \text{ dBm}$

<u>Limits:</u> FCC §95.3367 (a) (b)

Frequency Range [GHz]	Power Density
76 - 81	50 dBm/MHz (e.i.r.p)

Measurement:

Parameters		
Detector:	RMS	
Sweep time:	See plots	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

Measurement results:

• Results are part of chapter 12.5

Verdict: Compliant

© cetecom advanced GmbH Page 35 of 45

12.5 Field strength of spurious emissions

Description:

The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:

Limits:

FCC
CFR Part 95.3379 (a) (1) / CFR Part 95.3379 (a) (3)
Radiated Spurious Emissions

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Frequency [MHz]	Field Strength [dBµV/m]	Measurement distance
0.009 - 0.490	2400/F[kHz]	300
0.490 - 1.705	24000/F[kHz]	30
1.705 - 30.0	30	30
30 88	30.0	10
88 – 216	33.5	10
216 - 960	36.0	10
960 - 40 000	54.0	3

Limits:

FCC §95.3379 (a) (2) (i) + (ii)

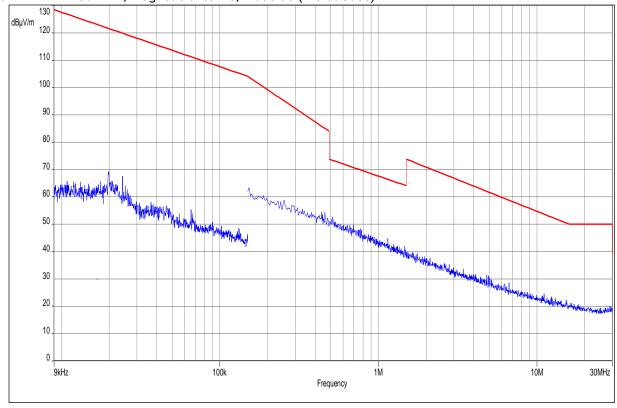
Frequency Range [GHz]	Measurement distance	Power Density
40 - 200	3.0 m	600 pW/cm ² \rightarrow -1.7 dBm
200 - 231	3.0 m	$1000 \text{ pW/cm}^2 \rightarrow +0.5 \text{ dBm}$

Measurement:

Measurement parameter			
Detector:	Quasi Peak / Pos-Peak / LinAV / RMS		
Resolution bandwidth:	F < 1 GHz: 100 kHz		
Resolution bandwidth.	F > 1 GHz: 1 MHz		
Video bandwidth:	F < 1 GHz: 300 kHz		
video baridwidtii.	F > 1 GHz: 3 MHz		
Trace-Mode:	Max Hold		

© cetecom advanced GmbH Page 36 of 45

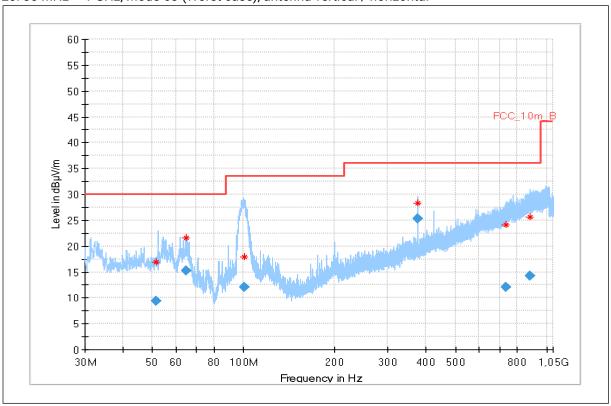
Measurement:

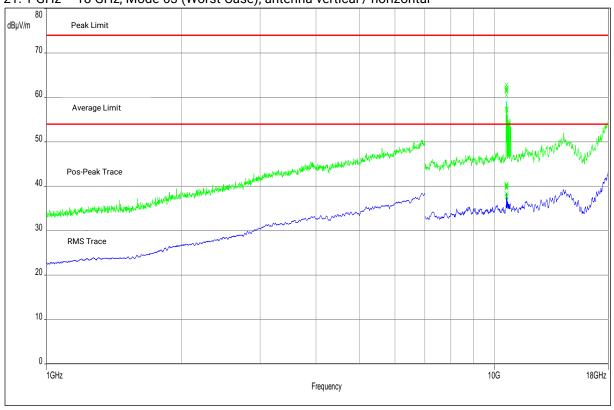

Measurement parameter			
Detector:	Quasi Peak / Pos-Peak / LinAV / RMS		
Resolution bandwidth:	F < 1 GHz: 100 kHz		
Resolution bandwidth.	F > 1 GHz: 1 MHz		
Video bandwidth:	F < 1 GHz: 300 kHz		
video baridwidtii.	F > 1 GHz: 3 MHz		
Trace-Mode:	Max Hold		

Measurement results:

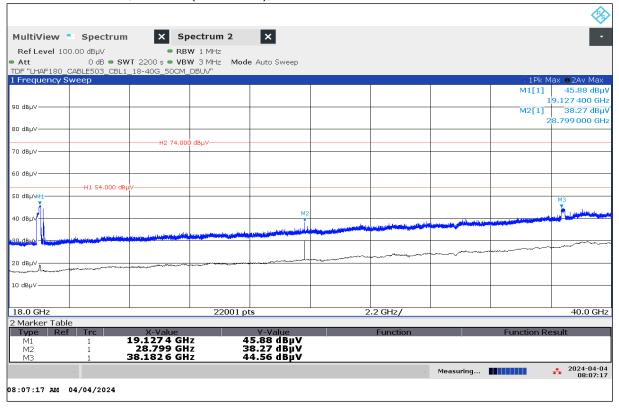
Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
-/-	-/-	-/-	-/-	-/-	-/-
No critical spurious emission levels					

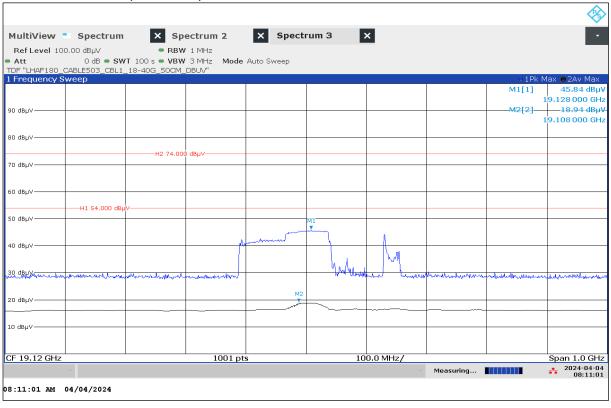
Verdict: Compliant


Plot 19: 9 kHz - 30 MHz, Magnetic antenna, Mode 63 (Worst Case)

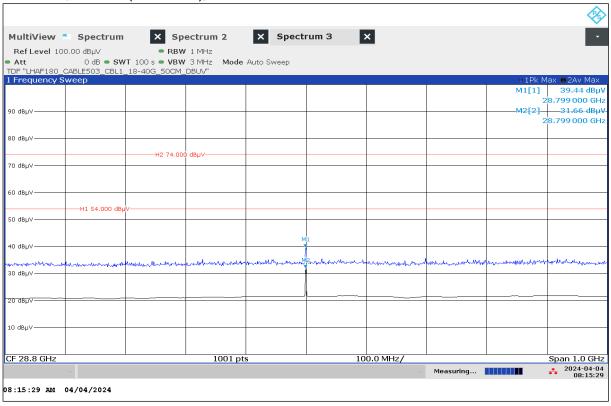

© cetecom advanced GmbH Page 37 of 45

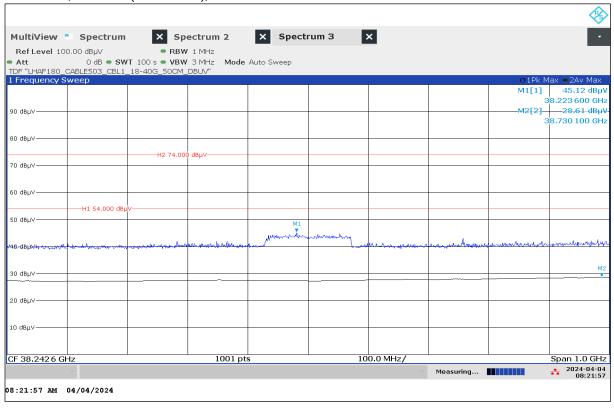
Plot 20: 30 MHz - 1 GHz, Mode 63 (Worst case), antenna vertical / horizontal


Plot 21: 1 GHz – 18 GHz, Mode 63 (Worst Case), antenna vertical / horizontal

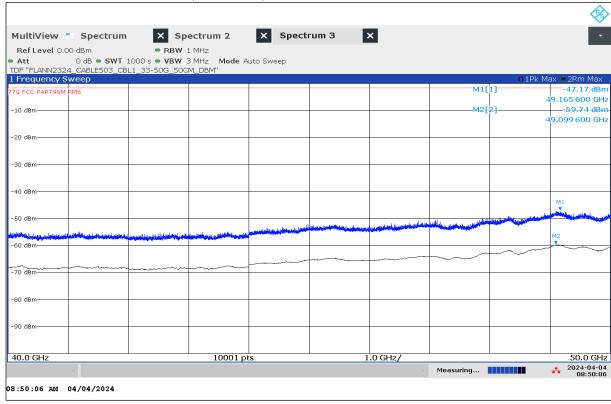

© cetecom advanced GmbH Page 38 of 45

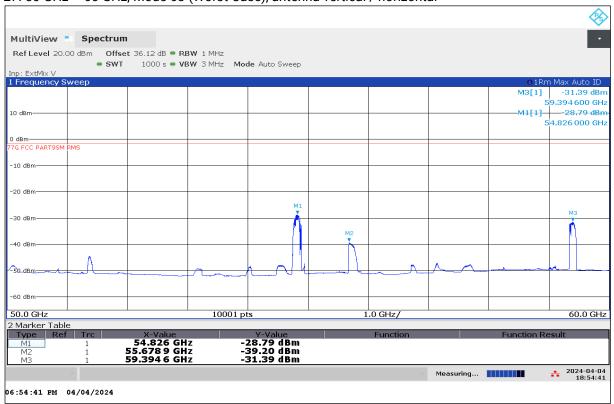
Plot 22: 18 GHz - 40 GHz, Mode 63 (Worst Case), antenna vertical / horizontal


Plot 23: 19 GHz, Mode 63 (Worst case), antenna vertical / horizontal


© cetecom advanced GmbH Page 39 of 45

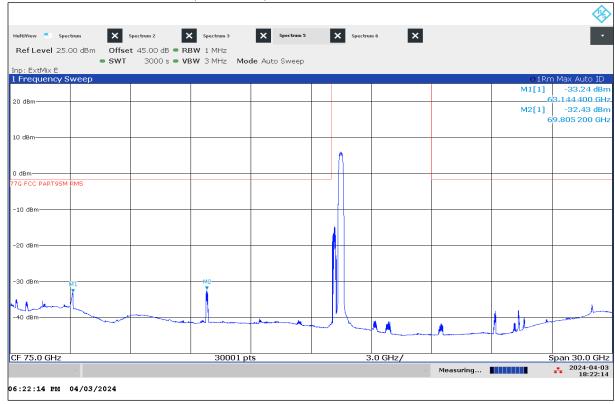
Plot 24: 29 GHz, Mode 63 (Worst case), antenna vertical / horizontal


Plot 25: 38 GHz, Mode 63 (Worst case), antenna vertical / horizontal


© cetecom advanced GmbH Page 40 of 45

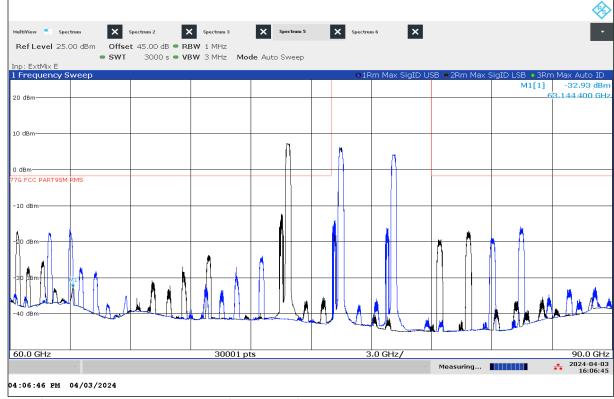
Plot 26: 40 GHz - 50 GHz, Mode 63 (Worst Case), antenna vertical / horizontal

Plot 27: 50 GHz - 60 GHz, Mode 63 (Worst Case), antenna vertical / horizontal



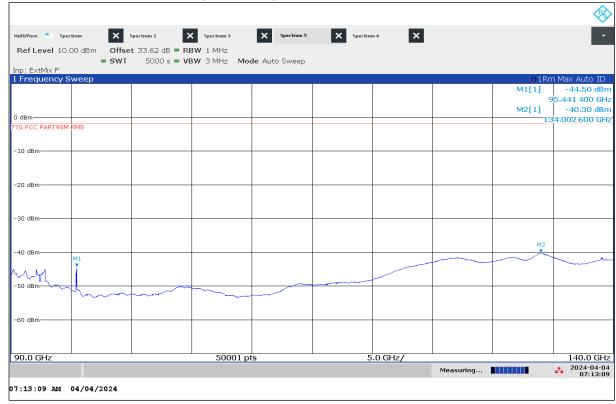
Marker show mixer products produced by harmonic mixer

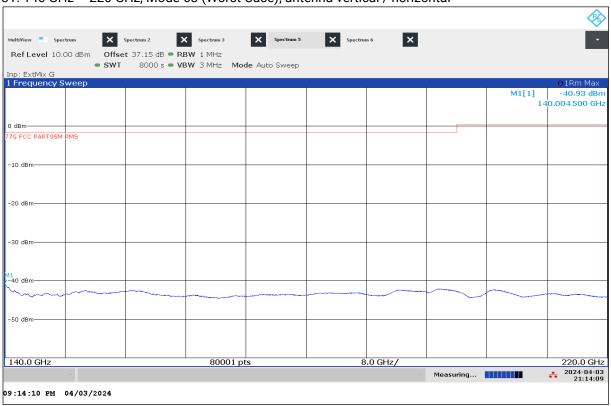
© cetecom advanced GmbH Page 41 of 45



Plot 28: 60 GHz - 90 GHz, Mode 63 (Worst Case), antenna vertical / horizontal

Marker show mixer products produced by harmonic mixer


Plot 29: 60 GHz - 90 GHz, Mode 63 (Worst Case), antenna vertical / horizontal, Signal-ID function


Note: Analyzer function 'Signal-ID' is used to reveal the occurrence of mixing products of the external harmonic mixers. Mixer products caused by undesired harmonics are displayed at different frequency positions in both traces. Hence, the shown signals are most likely caused by mixer products. Blue line: RMS detector, SigID USB / Black Line: RMS detector, SigID LSB

Plot 30: 90 GHz - 140 GHz, Mode 63 (Worst Case), antenna vertical / horizontal

Plot 31: 140 GHz - 220 GHz, Mode 63 (Worst Case), antenna vertical / horizontal

© cetecom advanced GmbH Page 43 of 45

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© cetecom advanced GmbH Page 44 of 45

14 Document history

Version	Applied changes	Date of release
-/-	Initial release - DRAFT	2024-05-23
-/-	Minor changes	2024-06-25

© cetecom advanced GmbH Page 45 of 45