

TEST REPORT # EMCC-980162IAAA, 2003-FEB-06

EQUIPMENT UNDER TEST:

Egon MENT ONDER TEOT.			
Type: Serial Number [:]	ARS 2-A		
Equipment Category:	Part 15 Forward-Looking Field Disturbance Sensor, Vehicle		
	Radar System		
Manufacturer:	Conti Temic GmbH		
Address:	Sieboldstrasse 19		
	90411 Numberg		
Phone:	+49-911-9526-2100		
Fax:	+49-911-9526-2354		
Applicant	A.D.C. Automotive Distance Control Systems CmbH		
Applicant. Address	Kemptener Strasse 99		
Address.	88131 Lindau (Bodensee)		
	Germany		
Phone:	+49-8382-9699-0		
Fax:	+49-8382-9699-19		
RELEVANT STANDARD:	47 CFR Part 15C - Intentional Radiators, §15.253		
MEASUREMENT PROCEDURE USED:			
🖂 ANSI C63.4-1992 🛛 🗌 F	CC/OET MP-4 (1987)		
TEST REPORT PREPARED BY:			
Reinhard Sauerschell	EMCC DR. RAŠEK		
E-mail: r.sauerschell@emcc.de	il: r.sauerschell@emcc.de Moggast 72-74		
Phone: +49 9194 9016	91320 Ebermannstadt		
Fax: +49 9194 8125	Germany		
TEST PERSONNEL:	HEAD OF LABORATORY:		
R. Lane	W. Kert		
Reinhard Sauerschell	Winfried Hoffmann		

EMCC DR. RAŠEK Moggast 72-74 91320 Ebermannstadt Germany

FCC Registration # 90566

ARS200_FCC_IAAA.doc

RADIO LABORATORIES EMC LABORATORIES Deutscher Rat TTI-P-G 094/94 TTI-P-G 074/95 Telephone: Telefax: Mail: Web: +49-9194-9016 +49-9194-8125 emc.cons@emcc.de http://www.emcc.de

CONTENTS

Page

1	GENER		3
•	1 1		
	1.1	rupose	J 2
	1.2		J 2
	1.3	Test Education.	J 2
	1.4		
	1.0	Applicant	4
	1.0		4
2	Product	Description	5
	2.1	Equipment Under Test (EUT)	5
	2.2	EUT Peripherals	5
	2.3	Mode of Operation During Testing	5
	2.4	Modifications Required for Compliance	5
3	Test Res	sults Summary	6
4	Antenna	a Requirement	7
	4.1	Regulation	7
	4.2	Result	7
5	Conduct	ted Emissions	8
	5.1	Regulation	8
	5.2	Test Equipment	8
	5.3	Test Procedures.	8
	5.4	Test Results	8
•	Dedictor	d Fusieriese	
0	Radiated	a Emissions	9
	6.1	Regulation	9
	6.2	Radiated Emissions Test, up to 26.5 GHZ	.11
	6.2.	1 Test Equipment	.11
	6.2.	2 Test Procedures	.11
	6.2.	3 Calculation of Field Strength Limits	.12
	6.2.	4 Average Correction Factor	.12
	6.2.	5 Field Strength Calculation	.12
	6.2.	.6 Test Results	.13
	6.3	Radiated Emissions Test, 26.5 GHz to 231 GHz (outside the operating band)	.14
	6.3.	1 Test Equipment	.14
	6.3.	2 Test Procedures	.15
	6.3.	3 Calculations of Spurious Emissions Limits	.15
	6.3.	4 Field Strength Calculation	.16
	6.3.	.5 Power Density Calculation	.17
	6.3.	.6 Test Results	.17
	6.4	Radiated Emissions Test within the Band, 76.0 GHz to 77.0 GHz	.19
	6.4.	1 Test Equipment	.19
	6.4.	.2 Test Procedures	.19
	6.4.	3 Calculations of Power Density Limits	.20
	6.4.	4 Calculation of RBW and PDF	.20
	6.4.	5 Test Results	.21
7	Operatio	on within the Band, 20 dB Bandwidth, Frequency Stability	.22
•	7 1		22
	7.1	Test Equipment	22
	7.2		22
	1.3 7 /	Toot Doculto	23
	/. 4		.23
8	Radio Fi	requency Exposure	.24
	8.1	Regulation	.24
	8.2	Test Equipment	.26
	8.3	Test Procedures	.26
	8.4	Calculations of Power Density Limits	.26
	8.5	Power Density Calculation	.26
	8.6	Test Results	.27
9	Miscella	ineous Comments and Notes	28
•	mooona		
10	List	t of ANNEXES	.28

1 GENERAL INFORMATION

1.1 Purpose

The purpose of this report is to show compliance to the FCC regulations for devices operating under section 15.253 of the Code of Federal Regulations title 47.

1.2 Limits and Reservations

The test results in this report apply only to the particular Equipment Under Test (EUT) as declared in this report.

This test report shall not be reproduced except in full without the written permission of EMCC DR. RAŠEK.

1.3 Test Location

Company Name:	EMCC DR. RAŠEK
Street:	Moggast 72-74
City:	91320 Ebermannstadt
Country:	Germany
Laboratory: Test Laboratory of EMCC DR. RAŠEK	
	FCC Registration Number: 90566
	This site has been fully described in a report submitted to the FCC, and
	accepted in the letter dated February 09, 2000 Registration Number 90566.
Phone:	+49-9194-9016
Fax:	+49-9194-8125
E-Mail:	emc.cons@emcc.de
Web:	www.emcc.de

1.4 Manufacturer

Company Name:	Conti Temic GmbH
Street:	Sieboldstrasse 19
City:	90411 Nürnberg
Country:	Germany
Phone:	+49-911-9526-2100
Fax:	+49-911-9526-2354

1.5 Applicant

Company Name:	A.D.C. Automotive Distance Control Systems GmbH	
Street:	Kemptener Strasse 99	
City:	88131 Lindau (Bodensee)	
Country:	Germany	
Name for contact purposes: Mr Peter Glocker		
Phone:	+49-8382-9699-62	
Fax:	+49-8382-9699-94	
E-mail:	peter.glocker@adc-gmbh.de	

1.6 Dates

Date of receipt of EUT:	CW 01/2003
Test date:	CW 02-03/2003

2 PRODUCT DESCRIPTION

2.1 Equipment Under Test (EUT)

Description: Device designation: Type:	Adaptive Cruise Control Pulse Doppler RADAR System Part 15 Forward-Looking Field Disturbance Sensor, Vehicle Radar System ARS 2-A ¹	
No. of units:	one	
Serial number:	0002490009	
Transmit Frequency:	76 to 77 GHz	
Type of modulation:	Pulse Doppler	
Pulse repetition frequency: 286 to 667 kHz		
Pulse width:	33 ns	

50M0 P0N
1 to 150 m
200 µW average nominal
Integral
12.0 VDC nominal

2.2 EUT Peripherals

The EUT was tested connected with

- personal computer as CAN-bus simulator for start up and initializing purposes,
- standard laboratory DC power supply.

2.3 Mode of Operation During Testing

The equipment under test (EUT) was operated during the tests under the three following conditions:

- in motion mode,
- not in motion mode,
- CW mode (for test purposes only) for measuring the carrier power.

All three modes were set via the CAN-bus from the PC.

2.4 Modifications Required for Compliance

Specific housing screws (please refer to photograph 4 in ANNEX 4 to this test report) were used, to improve the contact between the parts of the housing.

¹ The applicant declared: The type designations ARS 2-B and ARS 2-C will be also used depending on the manufacturer of the automobiles where the sensor is installed.

3 TEST RESULTS SUMMARY

Summary of Test Results

Requirement	CFR Section	Report Section	Test Result
Antenna Requirement	15.203	4	Pass
Conducted Emissions	15.207	5	n.a.
Radiated Spurious Emissions	15.209, 15.253(c)	6	Pass
Power Density Limits (Fundamental)	15.253(b)	6	Pass
Operation within the band, 20 dB bandwidth, frequency stability	15.253(e), 15.215(c)	7	Pass
Radio frequency exposure	15.253(f)	8	Pass

The client has made the determination that EUT Condition, Characterization, and Mode of Operation are representative of production units, and meet the requirements of the specifications referenced herein.

Consistent with Industry practice, measurement and test equipment not directly involved in obtaining measurement results but having an impact on measurements (such as cable loss, antenna factors, etc.) are factored into the "Correction Factor" documented in certain test results. Instrumentation employed for testing meets tolerances consistent with known Industry Standards and Regulations.

The measurements contained in this report were made in accordance with the procedure ANSI C63.4 - 1992 and IEEE Std C95.3-1991. All requirements were found to be within the limits outlined in this report.

The test results in this report apply only to the particular Equipment Under Test (EUT) as declared in this report.

Test Personnel:Reinhard SauerschellIssuance Date:2003-02-06

4 ANTENNA REQUIREMENT

Test Requirement: FCC CFR47, Part 15C

4.1 Regulation

15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

4.2 Result

Device:	Adaptive Cruise Control Pulse Doppler RADAR System
Туре:	ARS 2-A
Serial number:	0002490009

Antenna is integral.

The EUT meets the requirements of this section.

5 CONDUCTED EMISSIONS

Test Requirement: FCC CFR47, Part 15C

Test Procedure: ANSI C63.4:1992

5.1 Regulation

Section 15.207 (a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

Section 15.207 (d) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

5.2 Test Equipment

Not applicable.

5.3 Test Procedures

Not applicable.

5.4 Test Results

Device:	Adaptive Cruise Control Pulse Doppler RADAR System
Туре:	ARS 2-A
Serial number:	0002490009

The EUT is intended to be powered from a vehicle battery, only. Therefore - according to Section 15.207 (d) - conducted emissions measurements to demonstrate compliance with the conducted limits are not required.

6 RADIATED EMISSIONS

Test Requirement: FCC CFR47, Part 15C Test Procedure: ANSI C63.4:1992

6.1 Regulation

Section 15.253 Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

(a) Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems. The transmission of additional information, such as data, is permitted provided the primary mode of operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section is not permitted on aircraft or satellites.

(b) The radiated emission limits within the bands 46.7-46.9 GHz and 76.0-77.0 GHz are as follows: (1) If the vehicle is not in motion, the power density of any emission within the bands specified in this section shall not exceed 200 nW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

(2) For forward-looking vehicle-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission within the bands specified in this section shall not exceed 60 μ W/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

(c) The power density of any emissions outside the operating band shall consist solely of spurious emissions and shall not exceed the following:

(1) Radiated emissions below 40 GHz shall not exceed the general limits in Section 15.209 of this part.
(2) Radiated emissions outside the operating band and between 40 GHz and 200 GHz shall not exceed the following:

(ii) For forward-looking vehicle-mounted field disturbance sensors operating in the band 76-77 GHz: 600 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

(3) For radiated emissions above 200 GHz from field disturbance sensors operating in the 76-77 GHz band: the power density of any emission shall not exceed 1000 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

(4) For field disturbance sensors operating in the 76-77 GHz band, the spectrum shall be investigated up to 231 GHz.

(d) The provisions in Section 15.35 of this part limiting peak emissions apply.

(e) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Section 15.35 Measurement detector functions and bandwidths.

(b) On any frequency of frequencies above 1000 MHz, the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurements are specified in the regulations, including emission measurements below 1000 MHz, there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules in this part, e.g., see § 15.255. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. Measurement of AC power line conducted emissions are performed using a CISPR quasipeak detector, even for devices for which average radiated emission measurements are specified.

Section 15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement distance
(MHz)	(microvolts/meter)	(meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100	3
88–216	150	3
216–960	200	3
Above 960	500	3

(b) In the emission table above, the tighter limit applies at the band edges.

(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

6.2 Radiated Emissions Test, up to 26.5 GHz²

6.2.1 Test Equipment

Туре	Manufacturer/ Model No.	Serial No.	Last Calibration	Next Calibration
Receiver (30 MHz - 1 GHz)	Rohde & Schwarz ESS	825132/015	July 2002	July 2003
Antenna (30 MHz - 1 GHz)	EMCO 3143	9604-1269	June 2002	Dec. 2003
Receiver	Rohde & Schwarz		May 2002	May 2003
(1 GHz - 26.5 GHz)	ESAI-D ESMI-RF ESMI-B1	833771/008 833827/002 832504/005		
Antenna (1 GHz - 18 GHz)	Schwarzbeck BBHA 9120 D	137	Oct. 2001	Oct. 2003
Standard Gain Horn Antenna (18 GHz - 26.5 GHz)	Mid Century MC 20/31B	1362/86	May 2002	May 2004

6.2.2 Test Procedures

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that sits on a flush mounted metal turntable. Floor standing equipment is placed directly on the flush mounted metal turntable. The EUT is connected to its associated peripherals with any excess I/O cabling bundled to approximately 1 meter.

The EUT was tested as a tabletop equipment, connected with CAN-bus simulator and the power supply to provide the 12 VDC operation power.

The tests were performed in the three modes as described above.

The initial step in collecting radiated data is a peak scan of the measurement range with an EMI test receiver under closer distances as given in the rule. The significant peaks are then measured with the appropriate distance and detectors.

Worst case radiated emissions are listed under chapter: test results.

² The end frequency 26.5 GHz of this chapter was selected because of the end frequency of the coaxial RF input of the spectrum analyzer used as test receiver.

Radiated Emissions Test Characteristics	Radiated Emissions Test Characteristics					
Frequency range	30 MHz - 26,500 MHz					
Test distance	3 m					
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1,000 MHz)					
	1 MHz (1,000 MHz - 26,500 MHz)					
Test instrumentation detector	QP (30 MHz - 1,000 MHz)					
	AV (1,000 MHz - 26,500 MHz)					
Receive antenna scan height	1 m - 4 m					
Receive antenna polarization	Vertical/Horizontal					

6.2.3 Calculation of Field Strength Limits

Calculation: microvolts/meter to $dB\mu V/m$

Frequency	Field Strength		Measurement distance	Remarks
(MHz)	(microvolts/meter)	(dBµV/m)	(meters)	
30–88	100	40	3	
88–216	150	43.5	3	
216–960	200	46	3	
960-26,500	500	54	3	

6.2.4 Average Correction Factor

NOTE: All AV measurements were performed using the test receiver's average detector and the max. hold facility; the average value measured directly without the necessity of additional correction factor.

6.2.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor. The basic equation with a sample calculation is as follows:

```
FS = RA + AF + CF
where
FS = Field Strength in dBµV/m
RA = Receiver Amplitude in dBµV
AF = Antenna Factor in dB(1/m)
CF = Cable Attenuation Factor in dB
```


Assume a receiver reading of 23.5 dB μ V is obtained. The Antenna Factor of 7.4 dB(1/m) and a Cable Factor of 1.1 dB are added, giving a field strength of 32 dB μ V/m. The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

FS = 23.5 + 7.4 + 1.1 = 32 [dBµV/m]

Level in μ V/m = Common Antilogarithm (32/20) = 39.8

6.2.6 Test Results

Device:Adaptive Cruise Control Pulse Doppler RADAR SystemType:ARS 2-ASerial number:0002490009

	PRODUCT EMISSIONS DATA										
No	Emission Frequency	Receiver Mode and Bandwidth	Test Distance	Receiver Reading RA	Correction Factor AF+CF	Distance Extrapola- tion Factor DF	Result = Corrected Reading FS	Spec Limit	Polari- zation Ant	Margin	Remark
	[MHz]	[kHz]	[m]	[dBµV]	[dB(1/m)]	[dB]	[dBµV/m]	[dBµV/m]		[dB]	
1	360	120, QP	3	11.4	17.6	0	29 QP	46 QP	v	17	
2	12,707	1000, PK	1	20.7	40.3	9.5	51.5 PK	54 AV	v	2.5	3
3	25,406	1000, AV	1.5	17.2	41	6	52.2 AV	54 AV	v	1.8	
		1000, PK	1.5	23.1	41	6	58.1 PK	74 PK	v	15.9	

The EUT meets the requirements of this section.

Test Personnel: Reinhard Sauerschell

Test Date: 2003-01-14

³ Where the PK result kept below the AV limit, no AV detector measurement were performed.

6.3 Radiated Emissions Test, 26.5 GHz to 231 GHz (outside the operating band)

6.3.1 Test Equipment

Туре	Manufacturer/ Model	Serial No.	Last Calibration	Next
	No.			Calibration
Receiver	Rohde & Schwarz		May 2002	May 2003
	ESAI-D	833771/008		-
(26.5 GHz - 110	ESMI-RF	833827/002		
GHz)	ESMI-B1	832504/005		
Waveguide Mixer	R&S/Tektronix			
	FS-Z40/WM782A	840448/007		
	FS-Z60/WM782U	840449/001		
	FS-Z75/WM782V	840450/005		
	FS-Z110/WM782W	840451/005		
LO Amplifier	R&S, FS-Z30	775850/002		
Standard Gain Horn Ant.	FMI/Pro N 2224-25	49	May 2002	May 2004
Standard Gain Horn	FMI/ProN 2424-25	30	May 2002	May 2004
Ant.				
Standard Gain Horn	Electrof./Tho WG25-25	001	May 2002	May 2004
Ant				-
Standard Gain Horn	Electrof./Tho WG27-25	001	May 2002	May 2004
Ant.				
Spectrum Analyzer	Tektronix 2755A1	B 010245	Dec. 2002	Dec. 2003
Waveguide Mixer	Tektronix WM 490 F	B 020970		
Waveguide Mixer	Tektronix WM 490 G	B 020958		
Waveguide	Tektronix 119-1728-00	678B/0567		
Transition				
Diplexer	Textronix 015-0385-00	003/900		
Standard Gain Horn	FMI/Pro N 2824-25	24	May 2002	May 2004
Ant.				
Standard Gain Horn	FMI/Pro N 3024-25	001	May 2002	May 2004
Ant.				-
Standard Gain Horn	Electrof./Tho WR-3	001	May 2002	May 2004
Ant.				

6.3.2 Test Procedures

The basic test setups and procedures are the same as for the tests 30 MHz to 26.5 GHz. Above 26.5 GHz additional external mixers have to be used, which results in additional correction factors. Due to high mixer loss at very high frequencies the distance between the EUT and the test antenna was reduced to very low values (some cm) to detect any emissions. The operating band 76 GHz to 77 GHz was excluded.

Radiated Emissions Test Characteristics	
Frequency range	26,500 MHz - 231,000 MHz
Test distance	0.01 - 3 * m
Test instrumentation resolution bandwidth	1 MHz
Test instrumentation detector	РК
Receive antenna scan height	no height scan performed due to high gain antenna
Receive antenna polarization	Vertical/Horizontal

* According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. (...) When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

6.3.3 Calculations of Spurious Emissions Limits

Frequency	Field Strength		Measurement distance	Remarks
(MHz)	(microvolts/meter)	(dBµV/m)	(meters)	
26,500 - 40,000	500	54	3	

Frequency	Power Density		Measurement distance	Remarks
(MHz)	pW/cm²	dBm/cm²	(meters)	
40,000 - 200,000	600	-62.2	3	
> 200,000	1000	-60.0	3	

6.3.4 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Mixer Loss. The basic equation with a sample calculation is as follows:

FS = RA + AF + ML where FS = Field Strength in dBµV/m RA = Receiver Amplitude in dBµV AF = Antenna Factor in dB(1/m) ML = Mixer Loss in dB

Assume a receiver reading of 10.2 dB μ V is obtained. The Antenna Factor of 38.8 dB(1/m) and a Mixer Loss of 22 dB are added, giving a field strength of 71 dB μ V/m. The 71 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

FS = 10.2 + 38.8 + 22 = 71 [dBµV/m]

Level in μ V/m = Common Antilogarithm (71/20) = 3,548

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f)(1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements). The basic equation with a sample calculation is as follows:

FS = RA + AF + ML + DF where FS = Field Strength in dBμV/m RA = Receiver Amplitude in dBμV AF = Antenna Factor in dB(1/m) ML = Mixer Loss in dB DF = Distance Extrapolation Factor in dB, where DF = 20 log (Dtest/Dspec) where Dtest = Test Distance and Dspec = Specified Distance.

Assume the tests performed at a reduced Test Distance of 1 m instead of the Specified Distance of 3 m giving a Distance Extrapolation Factor of DF = $20 \log(1m/3m) = -9.5 dB$.

Assuming a receiver reading of 10.2 dB μ V is obtained. The Antenna Factor of 38.3 dB(1/m), the Mixer Loss of 22 dB and the Distance Factor of -9.5 dB are added, giving a field strength of 61.5 dB μ V/m. The 61.5 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

FS = 10.2 + 38.8 + 22 - 9.5 = 61.5 [dBµV/m]

Level in μ V/m = Common Antilogarithm (61.5/20) = 1,188

6.3.5 Power Density Calculation

The power density is calculated by using the reading, mixer loss, effective aperture of the antenna and distance correction factor (20 dB/dec relation).

The basic calculation is similar as described in the chapter above with the difference, that the result is the power density:

PD = RA + ML + DF - A

where

 $PD = Power Density in dBm/cm^{2}$,

RA = Receiver Amplitude in dBm,

ML = Mixer Loss in dB,

DF = Distance Extrapolation Factor in dB,

A = effective Antenna Aperture in $dB(cm^2)$

where DF = 20 log (Dtest/Dspec) where Dtest = Test Distance and Dspec = Specified Distance, and A = 10 log (effective Antenna Aperture in cm^2).

For an assumed result of -60 dBm/cm² the level in pW/cm² is:

 10^9 x Common Antilogarithm (-60/10) = 1,000

6.3.6 Test Results

Device: Type: Serial number: Adaptive Cruise Control Pulse Doppler RADAR System ARS 2-A 0002490009

	PRODUCT EMISSIONS DATA, 26.5 GHz < f < 40 GHz										
No	Emission Frequen- cy	Receiver Mode and Bandwidth	Test Distan- ce	Receiver Reading RA	Antenna Factor AF	Mixer Loss ML	Distance Extrapola- tion Factor DF	Result = Corrected Reading FS	Spec Limit	Polarization Ant	Margin
	[MHz]	[kHz]	[m]	[dBµV]	[dB(1/m)]	[dB]	[dB]	[dBµV/m]	[dBµV/m]		[dB]
1	38,200	1000, PK	0.1	21	36.8	24	-29.5	52.3	54 AV	h	1.7 4

⁴ Where the PK result kept below the AV limit, no AV measurement were performed.

	PRODUCT EMISSIONS DATA, f > 40 GHz (excluding the operation band)									
Rece Banc Pola Gain	Receiver Mode: PK Bandwidth: 1000 kHz Polarization of antenna: h/v (worst case) Gain of measurement antennas: f<220GHz: 25 dBi, f>220GHz: 30 dBi									
No	Emission Frequen- cy	Test Distan- ce	Receiver Reading RA	Mixer Loss ML	Distance Extrapola -tion Factor DF	Eff. Antenna Area A	Result = Corrected Reading FS	Spec Limit	Margin	Remark
	[IVI⊓Z]	[m]	lapui	Įubj	Įαbj	[ub(crrr)]			Įubj	
1	76,000	1	-92	31	-9.5	5.9	-76.4	-62.2	14.2	noise, lower band edge
2	77,000	1	-92	31	-9.5	5.8	-76.3	-62.2	14.1	noise, upper band edge
ΝΟΤ	E: no emi	ssions f	ound abov	ve noise	over the w	/hole frequ	uency range)		

The EUT meets the requirements of this section.

Test Personnel: Reinhard Sauerschell

Test Date: 2003-01-10...13

6.4 Radiated Emissions Test within the Band, 76.0 GHz to 77.0 GHz

6.4.1 Test Equipment

Туре	Manufacturer/ Model	Serial No.	Last Calibration	Next
	NU.			Calibration
Receiver	Rohde & Schwarz		May 2002	May 2003
	ESAI-D	833771/008		-
(26.5 GHz - 110	ESMI-RF	833827/002		
GHz)	ESMI-B1	832504/005		
Waveguide Mixer	R&S/Tektronix			
	FS-Z40/WM782A	840448/007		
	FS-Z60/WM782U	840449/001		
	FS-Z75/WM782V	840450/005		
	FS-Z110/WM782W	840451/005		
LO Amplifier	R&S, FS-Z30	775850/002		
Standard Gain Horn	Electrof./Tho WG27-25	001	May 2002	May 2004
Ant.			-	-

6.4.2 Test Procedures

For the basic measurement procedures please refer to chapter 6.4.2.

Further details:

The average level of the radiated field strength of the fundamental was measured in the "line spectrum mode" (with setting the RBW to 0.3*PRF).

Then by calculation with the appropriate pulse desensitization factor (PDF) 20 log (pulse width* PRF) the peak level was obtained.

Additionally the carrier was measured in CW mode to verify the results.

Beside the carrier also the local oscillator (LO) at a distance of 200 MHz below the carrier is visible in the band. The LO can be seen as a CW signal under both operation conditions: in motion and not in motion. Here no correction between average and peak was made.

All these tests were performed at a distance of 3 meters, with a 25 dBi gain standard gain horn antenna and with an optimized external mixer operation (mixer loss = 26.2 dB).

Radiated Emissions Test Characteristics						
Frequency range	76,000 MHz - 77,000 MHz					
Test distance	3 m					
Test instrumentation resolution bandwidth	see chapter 6.4.4					
Test instrumentation detector	РК					
Receive antenna scan height	no height scan performed due to high gain antenna					
Receive antenna polarization	Vertical/Horizontal					

6.4.3 Calculations of Power Density Limits

Frequency	Power Density		Measurement distance	Remarks
(MHz)	µW/cm²	dBm/cm ²	(meters)	
76,000 MHz - 77,000 MHz	60	-12.2	3	in motion, AVERAGE
	6000	+7.8	3	in motion, PEAK (§15.35)
	0.2	-37.0	3	not in motion, AVERAGE
	20	-17.0	3	not in motion, PEAK (§15.35)

6.4.4 Calculation of RBW and PDF

RBW = resolution bandwidth of the test receiver PDF = pulse desensitization factor Pulse width = 33 ns

The unit sweeps the PRF between 286 and 667 kHz. Three test points were selected: low, mid and high.

PRF (kHz)	0.3 x PRF (kHz)	RBW used (kHz)	PDF (dB)
			20 log (pulse width* PRF)
286	85.8	94.4	-40.5
400	120	120.9	-37.6
667	200	201.9	-33.1

6.4.5 Test Results

Device:	Adaptive Cruise Control Pulse Doppler RADAR System
Туре:	ARS 2-A
Serial number:	0002490009

Following plots of the spectrum can be found in the ANNEX 1 to this test report: PLOT 1: Operation condition: in motion, RBW = 1 MHz, PLOT 2: Operation condition: not in motion, RBW = 1 MHz, PLOT 3: Operation condition: not in motion, RBW = 94.4 kHz, PLOT 4: Operation condition: not in motion, RBW = 120.9 kHz, PLOT 5: Operation condition: not in motion, RBW = 201.9 kHz,

	PRODUCT EMISSIONS DATA at distance 3 m										
No	Emission Frequen- cy	Receiver RBW	Receiver Reading RA	Mixer Loss ML	Eff. Antenna Area A	Result = Corrected Reading AVERAGE	PDF	Result = Corrected Reading PEAK	Spec Limit AV/PEAK	Margin AV/PEAK	NOTES
	[MHz]	[kHz]	[dBm]	[dB]	[dB/cm²]	[dBm/cm²]	[dB]	[dBm/cm ²]	[dBm/cm²]	[dB]	
1	76,401	94.4	-76.7	26.2	5.9	-56.4	-40.5	-15.9	-12.2/+7.8	44.2/23.7	1,4
2	76,401	120.9	-76.2	26.2	5.9	-55.9	-37.6	-18.3	-12.2/+7.8	43.7/26.1	1,4
3	76,401	201.9	-74.2	26.2	5.9	-53.9	-33.1	-20.8	-12.2/+7.8	41.7/28.6	1,4
4	76,228	1000	-58.4	26.2	5.9	-38.1	0	-38.1	-12.2/+7.8	25.9/45.9	1,5
5	76,228	1000	-58.4	26.2	5.9	-38.1	0	-38.1	-37/-17	1.1/21.1	2,5
6	76,408	1000	-40.3	26.2	5.9	-20	0	-20	-12.2/+7.8	7.8/27.8	3,4

- NOTES: 1: in motion state, 2: not in motion state, 3: CW mode, 4: carrier,
 - 5: LO

The EUT meets the requirements of this section.

Test Personnel: Reinhard Sauerschell

Test Date: 2003-01-10...13

7 OPERATION WITHIN THE BAND, 20 DB BANDWIDTH, FREQUENCY STABILITY

Test Requirement: FCC CFR47, Part 15C Test Procedure: ANSI C63.4:1992

7.1 Regulation

Section 15.215 Additional provisions to the general radiated emission limitations.

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in Sections 15.217 through 15.255 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Section 15.253 Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

(e) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

7.2 Test Equipment

Туре	Manufacturer/ Model No.	Serial No.	Last Calibration	Next Calibration
Receiver	Rohde & Schwarz		May 2002	May 2003
	ESAI-D	833771/008		,
(26.5 GHz - 110	ESMI-RF	833827/002		
GHz)	ESMI-B1	832504/005		
Waveguide Mixer	R&S/Tektronix			
-	FS-Z40/WM782A	840448/007		
	FS-Z60/WM782U	840449/001		
	FS-Z75/WM782V	840450/005		
	FS-Z110/WM782W	840451/005		
LO Amplifier	R&S, FS-Z30	775850/002		
Standard Gain Horn Ant.	Electrof./Tho WG27-25	001	May 2002	May 2004
Climatic Test Unit	Heraeus Vötsch VLK 07/90	29143	March 2002	March 2004
True RMS Digital Multimeter	Hewlett-Packard 3478A	2301A17492	July 2002	July 2004
Programmable Power Source	R&S NGPE40	451292/0529		

7.3 Test Procedures

The EUT was installed in a climatic test chamber, where the temperature was changed in 10° C steps from -20° C to $+50^{\circ}$ C. The frequency was measured under normal operation mode (pulse mode) by variation the input voltage (10.0 VDC, 12.0 VDC, 16.0 VDC, as declared by applicant). The lower and upper -20 dB points relative to the carrier were measured. These frequency edges must remain within the operation band 76 to 77 GHz.

7.4 Test Results

Device:	Adaptive Cruise Control Pulse Doppler RADAR System
Туре:	ARS 2-A
Serial number:	0002490009

The PLOT 1 in the ANNEX 1 to this test report shows the spectrum at 12 VDC and temperature +20 $^{\circ}$ C.

Temperature	Input Voltage	Frequ. of lower -20dB point	Frequ. of upper -20dB point	Remarks
С	Volt	MHz	MHz	
-20 °C	12	76,315	76,803	
	10.0	76,316	76,803	
	16.0	76,317	76,804	
-10 °C	12	76,293	76,781	
	10.0	76,293	76,781	
	16.0	76,293	76,781	
0 °C	12	76,261	76,753	
	10.0	76,263	76,755	
	16.0	76,264	76,756	
10 °C	12	76,234	76,731	
	10.0	76,235	76,732	
	16.0	76,237	76,733	
20 °C	12	76,213	76,713	
	10.0	76,214	76,714	
	16.0	76,215	76,714	
30 °C	12	76,182	76,685	
	10.0	76,184	76,686	
	16.0	76,188	76,688	
40 °C	12	76,157	76,663	
	10.0	76,158	76,664	
	16.0	76,161	76,666	
50 °C	12	76,136	76,647	
	10.0	76,137	76,647	
	16.0	76,138	76,648	

The EUT meets the requirements of this section.

Test Personnel: Reinhard Sauerschell

Test Date: 2003-01-15

8 RADIO FREQUENCY EXPOSURE

Test Requirement: FCC CFR47, Part 15C Test Procedure: IEEE Std C95.3-1991

8.1 Regulation

Section 15.253 Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

(f) Regardless of the power density levels permitted under this section, devices operating under the provisions of this section are subject to the radio frequency radiation exposure requirements specified in § 1.1307(b), § 2.1091 and § 2.1093 of this chapter, as appropriate. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

§ 2.1091 Radiofrequency radiation exposure evaluation: mobile devices.

(a) Requirements of this section are a consequence of Commission responsibilities under the National Environmental Policy Act to evaluate the environmental significance of its actions. See subpart I of part 1 of this chapter, in particular § 1.1307(b).

(b) For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily relocated, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

(c) Mobile devices that operate in the Cellular Radiotelephone Service, the Personal Communications Services, the Satellite Communications Services, the General Wireless Communications Service, the Wireless Communications Service, the Maritime Services and the Specialized Mobile Radio Service authorized under subpart H of part 22 of this chapter, part 24 of this chapter, part 25 of this chapter, part 26 of this chapter, part 27 of this chapter, part 80 of this chapter (ship earth stations devices only) and part 90 of this chapter are subject to routine environmental evaluation for RF exposure prior to equipment authorization or use if they operate at frequencies of 1.5 GHz or below and their effective radiated power (ERP) is 1.5 watts or more, or if they operate at frequencies above 1.5 GHz and their ERP is 3 watts or more. Unlicensed personal communications service devices, unlicensed millimeter wave devices and unlicensed NII devices authorized under §15.253, § 15.255, and subparts D and E of part 15 of this chapter are also subject to routine environmental evaluation for RF exposure prior to equipment authorization or use if their ERP is 3 watts or more or if they meet the definition of a portable device as specified in § 2.1093

(b) requiring evaluation under the provisions of that section. All other mobile and unlicensed transmitting devices are categorically excluded from routine environmental evaluation for RF exposure prior to equipment authorization or use, except as specified in §§ 1.1307(c) and 1.1307(d) of this chapter. Applications for equipment authorization of mobile and unlicensed transmitting devices subject to routine environmental evaluation must contain a statement confirming compliance with the limits specified in paragraph (d) of this section as part of their application. Technical information showing the basis for this statement must be submitted to the Commission upon request.

(d) The limits to be used for evaluation are specified in § 1.1310 of this chapter. All unlicensed personal communications service (PCS) devices and unlicensed NII devices shall be subject to the limits for general population/uncontrolled exposure.

(1) For purposes of analyzing mobile transmitting devices under the occupational/controlled criteria specified in § 1.1310 of this chapter, timeaveraging provisions of the guidelines may be used in conjunction with typical maximum duty factors to determine maximum likely exposure levels.
 (2) Timeaveraging provisions may not be used in determining typical exposure levels for devices intended for use by consumers in general population/uncontrolled environments as defined in § 1.1310 of this chapter. However, "sourcebased" timeaveraging based on an inherent property or dutycycle of a device is allowed. An example of this is the determination of exposure from a device that uses digital technology such as a timedivision multipleaccess (TDMA) scheme for transmission of a signal. In general, maximum average power levels must be used to determine compliance.

(3) If appropriate, compliance with exposure guidelines for devices in this section can be accomplished by the use of warning labels and by providing users with information concerning minimum separation distances from transmitting structures and proper installation of antennas.

(4) In some cases, e.g., modular or desktop transmitters, the potential conditions of use of a device may not allow easy classification of that device as either mobile or portable (also see § 2.1093). In such cases, applicants are responsible for determining minimum distances for compliance for the intended use and installation of the device based on evaluation of either specific absorption rate (SAR), field strength or power density, whichever is most appropriate.

§ 1.1307 Actions that may have a significant environmental effect, for which Environmental Assessments (EAs) must be prepared.

(b) In addition to the actions listed in paragraph (a) of this section, Commission actions granting construction permits, licenses to transmit or renewals thereof, equipment authorizations or modifications in existing facilities, require the preparation of an Environmental Assessment (EA) if the particular facility, operation or transmitter would cause human exposure to levels of radiofrequency radiation in excess of the limits in §§ 1.1310 and 2.1093 of this chapter. Applications to the Commission for construction permits, licenses to transmit or renewals thereof, equipment authorizations or modifications in existing facilities must contain a statement confirming compliance with the limits unless the facility, operation, or transmitter is categorically excluded, as discussed below. Technical information showing the basis for this statement must be submitted to the Commission upon request.

§ 1.1310 Radiofrequency radiation exposure limits.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued								
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
1500–100,000	-	-	1.0	30				

8.2 Test Equipment

Туре	Manufacturer/ Model No.	Serial No.	Last Calibration	Next Calibration
Receiver	Rohde & Schwarz	833771/008	May 2002	May 2003
(26.5 GHz - 110	ESMI-RF	833827/002		
GHz) Waveguide Mixer	ESMI-B1 R&S/Tektronix	832504/005		
	FS-Z40/WM782A	840448/007		
	FS-Z60/WM782U	840449/001		
	FS-Z110/WM782W	840451/005		
LO Amplifier	R&S, FS-Z30	775850/002		
Standard Gain Horn	Electrof./Tho WG27-25	001	May 2002	May 2004
Ant.				

8.3 Test Procedures

The radiation in the band 76 GHz to 77 GHz GHz was tested with standard gain horn antenna at a distance of 3 m and 0.2 m to the surface of the EUT depending on the operation mode. Two operation modes were checked:

- vehicle in motion (carrier on, pulse mode): test distance 3 m,

- vehicle not in motion (carrier off): test distance 0.2 m.

The surface of the EUT was scanned with the antenna. Max. levels were detected in the copolarized plane of the antenna of EUT.

Emissions outside the band are negligible.

8.4 Calculations of Power Density Limits

Frequency	Power Density		Remarks
(MHz)	mW/cm ²	dBm/cm ²	
1,500 to 100,000	1.0	0	

8.5 Power Density Calculation

Refer to appropriate chapter above.

8.6 Test Results

Adaptive Cruise Control Pulse Doppler RADAR System
ARS 2-A
0002490009

For the tests at 3 m distance please refer to the results in chapter 6.4.5. Here all results are far below the limit 0 dBm/cm². Therefore no long term tests over 30 min were performed.

	PRODUCT EMISSIONS DATA										
No	Emission Frequen- cy	Receiver Bandwidt h	Test Distan- ce	Receiver Reading RA	Mixer Loss ML	Eff. Antenna Area A	PDF	Result = Corrected Reading	Spec Limit	Margin	Remark
	[MHz]	[kHz]	[m]	[dBm]	[dB]	[dB/cm²]	[dB]	[dBm/cm²]	[dBm/cm²]	[dB]	
1	76,408	1000	0.2	-50.6	26.2	5.9	0	-30.3	0	30.3	not in motion, LO
2	76,401	94.4	3	-76.7	26.2	5.9	-40.5	-15.9	0	15.9	in motion, carrier, taken from chapter 6.4.5

The EUT meets the requirements of this section.

Test Personnel: Reinhard Sauerschell

Test Date: 2003-01-13

9 MISCELLANEOUS COMMENTS AND NOTES

None.

10 LIST OF ANNEXES

Following annexes are separated parts from this test report.

Description	Pages
Annex 1: Spectrum plots	6
Annex 2: Photographs of test setups	5
Annex 3: Photographs of equipment under test (EUT), external views	4
Annex 4: Photographs of equipment under test (EUT), internal views	9