

EMC TEST REPORT

Applicant	Quectel Wireless Solutions Co., Ltd
FCC ID	XMR202007BG95M6
Product	LTE Cat M1 & Cat NB2 Module
Brand	Quectel
Model	BG95-M6
Marketing	Quectel BG95-M6
Report No.	R2006A0413-E1
Issue Date	August 17, 2020

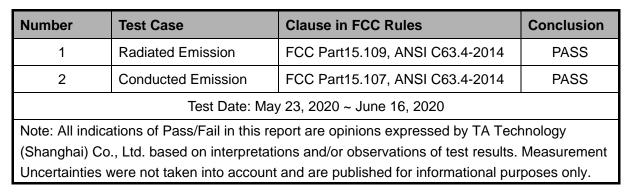
TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC Code CFR47 Part15B (2019)/ ANSI C63.4 (2014)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Wei Liu

Guangchang Fan

Performed by: Wei Liu/ Manager

Approved by: Guangchang Fan/ Director


TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1 Te	st Laboratory	4
1.1	Notes of the Test Report	4
1.2.	Test facility	4
1.3	Testing Location	4
2 Ge	eneral Description of Equipment under Test	5
2.1	Applicant and Manufacturer Information	5
2.2	General information	5
2.3	Applied Standards	7
2.4	Test Mode	8
3 Te	st Case Results	9
3.1	Radiated Emission	9
3.2	Conducted Emission	. 14
4 Ma	ain Test Instruments	. 17

Summary of measurement results

BG95-M6 (Report No.: R2006A0413-E1) is a variant model of BG95-M5 (Report No.: R2005A0283- E1).Test values duplicated from Original for variant. Only Radiated Emission is tested for variant and it does not worsen, so it will not be recorded in this report. The detailed product change description please refers to the *Statement letter_BG95-M5&BG95-M6*.

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Fan Guangchang
Contact: Telephone:	Fan Guangchang +86-021-50791141/2/3
	5 5
Telephone:	+86-021-50791141/2/3

2 General Description of Equipment under Test

2.1 Applicant and Manufacturer Information

Applicant	Quectel Wireless Solutions Co., Ltd			
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233			
Manufacturer	Quectel Wireless Solutions Co., Ltd			
Manufacturer address	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233			

2.2 General information

EUT Description							
Device Type:	Module Device						
Model:	BG95-M6						
IMEI:	866642050000803	866642050000803					
HW Version:	R1.1						
SW Version:	BG95M6R02A01						
Antenna Type:	The EUT don't have st	tandard Antenna, The Anter	nna used for testing in this				
Аптенна туре.	report is the after-mark	ket accessory (Dipole Anten	na)				
	Band	Tx (MHz)	Rx (MHz)				
	LTE Band 2	1850 ~ 1910	1930 ~ 1990				
	LTE Band 4	1710 ~ 1755	2110 ~ 2155				
	LTE Band 5	824 ~ 849	869 ~ 894				
	LTE Band 12	699 ~ 716	729 ~ 746				
	LTE Band 13	777 ~ 787	746 ~ 756				
	LTE Band 25	1850 ~ 1915	1930 ~ 1995				
Francisco a	LTE Band 26	814 ~ 849	859 ~ 894				
Frequency:	LTE Band 66	1710 ~ 1780	2110 ~ 2180				
	LTE Band 85	698 ~ 716	728 ~ 746				
	NB-IOT Band 2	1850 ~ 1910	1930 ~ 1990				
	NB-IOT Band 4	1710 ~ 1755	2110 ~ 2155				
	NB-IOT Band 5	824 ~ 849	869 ~ 894				
	NB-IOT Band 12	699 ~ 716	729 ~ 746				
	NB-IOT Band 13	777 ~ 787	746 ~ 756				
	NB-IOT Band 25	1850 ~ 1915	1930 ~ 1995				

EMC Test Report

Report No.: R2006A0413-E1

	NB-IOT Band 66	1710 ~ 1780	2110 ~ 2180			
	NB-IOT Band 71	663 ~ 698	617 ~ 652			
NB-IOT Band 85		698 ~ 716	728 ~ 746			
Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the						
applicant.						

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2019) ANSI C63.4 (2014)

2.4 Test Mode

Test Mode	
Mode 1:	External Power Supply + PCB Layout + EUT + EMTC/NB-IOT Receiver
Mode 2:	External Power Supply + PCB Layout + EUT

During the test, the preliminary test was performed in all modes with all frequency bands, mode 2 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure		
24°C~26°C	45%~50%	102.5kPa		

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

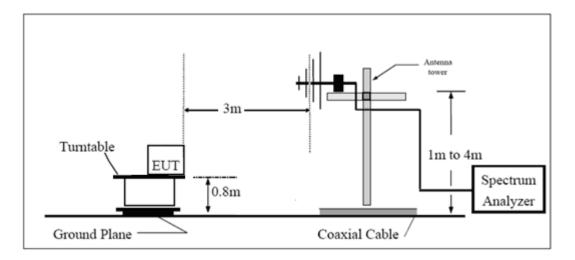
The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

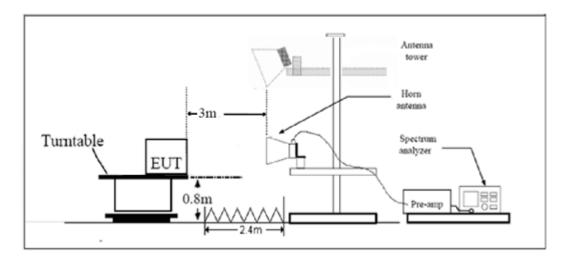
Below 1GHz:

RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:


- (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

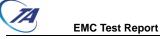

During the test, EUT is connected to a laptop via a USB cable in the case of power supply.

Below 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

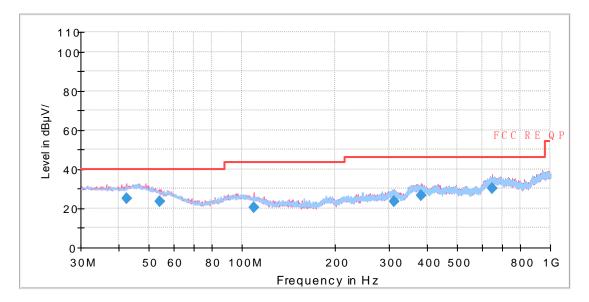
Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.



Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

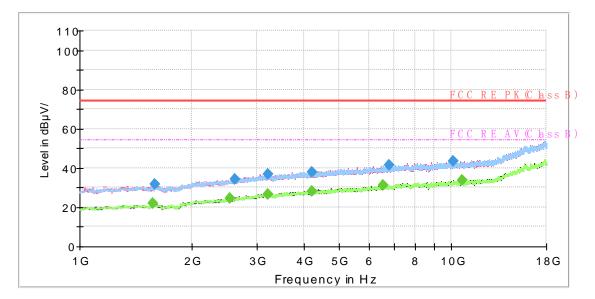
Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
30MHz~200MHz	4.17 dB
200MHz~1000MHz	4.84 dB
1GHz~18GHz	4.35 dB
18GHz~26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz- 26.5GHz is more than 20dB below the limit are not reported.


The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
42.340635	25.21	184.0	V	242.0	2.7	14.79	40.00
54.154375	23.41	125.0	V	130.0	-0.1	16.59	40.00
109.145203	20.55	184.0	V	332.0	-4.3	22.95	43.50
310.916000	23.67	198.0	V	49.0	-1.4	22.33	46.00
380.548250	26.56	184.0	V	235.0	1.3	19.44	46.00
648.318000	30.05	197.0	V	1.0	5.6	15.95	46.00

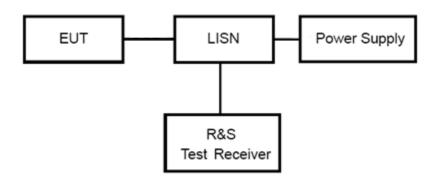
Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain) 2. Margin = Limit – Quasi-Peak EMC Test Report

Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1573.750000		21.91	54.00	32.09	100.0	V	42.0	-15.7
1592.875000	31.97		74.00	42.03	100.0	Н	120.0	-15.6
2534.250000		24.74	54.00	29.26	100.0	Н	112.0	-11.4
2619.250000	34.42		74.00	39.58	200.0	V	11.0	-10.9
3214.250000		26.49	54.00	27.51	200.0	V	97.0	-8.3
3218.500000	36.94		74.00	37.06	200.0	V	23.0	-8.3
4206.625000		28.38	54.00	25.62	100.0	V	130.0	-5.6
4223.625000	38.11		74.00	35.89	200.0	V	0.0	-5.6
6546.250000		31.25	54.00	22.75	200.0	V	77.0	-1.4
6792.750000	41.50		74.00	32.50	100.0	V	243.0	-1.0
10135.375000	43.47		74.00	30.53	200.0	V	127.0	2.0
10685.750000		33.61	54.00	20.39	100.0	V	243.0	2.4

3.2 Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure
24°C ~26°C	50%~55%	102.5kPa

Methods of Measurement

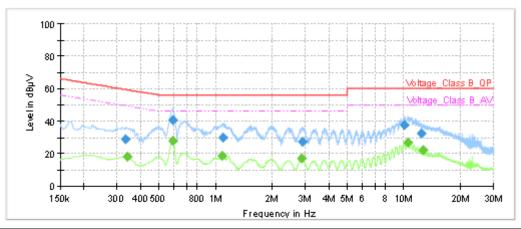
The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

During the test, EUT is connected to a laptop via a USB cable in the case of power supply.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

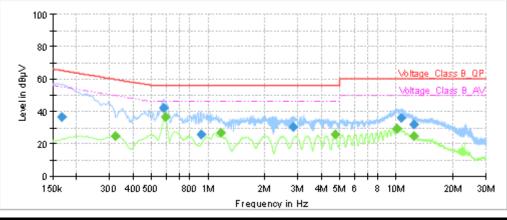

Frequency	Conducted Limits(dBµV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 [*]	56 to 46 [*]				
0.5 - 5	56	46				
5 - 30	60	50				
* Decreases with the logarithm of the frequency.						

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.



Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.33	28.85		59.34	30.49	1000.0	9.000	L1	ON	19
0.34		17.89	49.23	31.34	1000.0	9.000	L1	ON	19
0.59	40.42		56.00	15.58	1000.0	9.000	L1	ON	19
0.59		27.68	46.00	18.32	1000.0	9.000	L1	ON	19
1.09		18.25	46.00	27.75	1000.0	9.000	L1	ON	19
1.10	29.94		56.00	26.06	1000.0	9.000	L1	ON	19
2.87		17.09	46.00	28.91	1000.0	9.000	L1	ON	19
2.89	27.01		56.00	28.99	1000.0	9.000	L1	ON	19
10.07	37.65		60.00	22.35	1000.0	9.000	L1	ON	19
10.47		26.70	50.00	23.30	1000.0	9.000	L1	ON	19
12.41	32.18		60.00	27.82	1000.0	9.000	L1	ON	19
12.69		21.80	50.00	28.20	1000.0	9.000	L1	ON	19

Remark: Correct factor=cable loss + LISN factor

L line Conducted Emission from 150 KHz to 30 MHz

EMC Test Report

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.17	36.38		65.06	28.68	1000.0	9.000	Ν	ON	19
0.32		24.77	49.62	24.85	1000.0	9.000	Ν	ON	19
0.58	42.16		56.00	13.84	1000.0	9.000	Ν	ON	19
0.59		36.62	46.00	9.38	1000.0	9.000	Ν	ON	19
0.92	25.48		56.00	30.52	1000.0	9.000	Ν	ON	19
1.17		26.81	46.00	19.19	1000.0	9.000	Ν	ON	19
2.84	30.12		56.00	25.88	1000.0	9.000	Ν	ON	19
4.75		25.47	46.00	20.53	1000.0	9.000	Ν	ON	19
10.07		29.34	50.00	20.66	1000.0	9.000	Ν	ON	19
10.68	36.12		60.00	23.88	1000.0	9.000	Ν	ON	19
12.41		24.36	50.00	25.64	1000.0	9.000	Ν	ON	19
12.44	31.66		60.00	28.34	1000.0	9.000	Ν	ON	19

Remark: Correct factor=cable loss + LISN factor

N line

Conducted Emission from 150 KHz to 30 MHz

4 Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Time
Spectrum Analyzer	R&S	FSV40	15195-01- 00	2020-05-17	2021-05-16
EMI Test Receiver	R&S	ESCI	ESCI 100948		2021-05-16
Trilog Antenna	SCHWARZBECK	VULB 9163	9163-201	2017-11-18	2020-11-17
Horn Antenna	R&S	HF907	102723	2018-08-11	2021-08-10
Horn Antenna	ETS-Lindgren	3160-09	00102643	2018-06-20	2021-06-19
EMI Test Receiver	R&S	ESR	101667	2020-05-17	2021-05-16
LISN	R&S	ENV216	101171	2018-12-15	2021-12-14
Bore Sight Antenna mast	ETS	2171B	00058752	/	/
Test software	EMC32	R&S	9.26.0	/	/

******END OF REPORT ******