RF TEST REPORT Applicant Spireon Inc FCC ID O9YFLF3M **Product** GPS tracker **Model** Flex2-M **Report No.** R2109A0847-R2 Issue Date October 19, 2021 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2020)/ FCC CFR47 Part 27C (2020). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Prepared by: Peng Tao Approved by: Kai Xu TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **TABLE OF CONTENT** | 1 | Tes | t Laboratory | 4 | |---|------|--|----| | | 1.1 | Notes of the Test Report | 4 | | | 1.2. | Test facility | 4 | | | 1.3 | Testing Location | | | 2 | Ger | neral Description of Equipment under Test | 5 | | | 2.1 | Applicant and Manufacturer Information | 5 | | | 2.2 | General information | | | 3 | App | olied Standards | 6 | | 4 | Tes | t Configuration | 7 | | 5 | Tes | t Case Results | 8 | | | 5.1 | RF Power Output and Effective Isotropic Radiated Power | 8 | | | 5.2 | Radiates Spurious Emission | 12 | | 6 | Mai | n Test Instruments | 19 | | Α | | A: The EUT Appearance | | | | | B: Test Setup Photos | | ## **Summary of Measurement Results** | Number | Test Case | Clause in FCC rules | Verdict | |--------|---|-------------------------------|---------| | | | 2.1046 | | | 4 | RF Power Output and Effective Isotropic | /27.50(d)(4) | DACC | | ' | Radiated Power | /27.50(b)(10) | PASS | | | | /27.50(c)(10) | | | | | 2.1053 | | | 2 | Radiates Spurious Emission | /27.53(h) | PASS | | | | /27.53(g) /27.53(f) /27.53(c) | | Date of Testing: October 12, 2021 Date of Sample Received: September 23, 2021 Note: PASS: The EUT complies with the essential requirements in the standard. FAIL: The EUT does not comply with the essential requirements in the standard. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The report only tests the RF Power Output and Effective Isotropic Radiated Power and Radiates Spurious Emission. Other test items are subject to the module report. (Report No: R2006A0413-R4) 1 Test Laboratory ## 1.1 Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (**shanghai**) **co.**, **Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. ## 1.2. Test facility FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. ### 1.3 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com Report No.: R2109A0847-R2 # 2 General Description of Equipment under Test ## 2.1 Applicant and Manufacturer Information | Applicant | Spireon Inc | | | | | | |----------------------|---|--|--|--|--|--| | Applicant address | 9724 Kingston Pike, Suite 800 Knoxville | | | | | | | Manufacturer | Asiatelco Technologies Co | | | | | | | Manufacturer address | #289 Bisheng Road, Building-8, 3F, Zhangjiang Hi-Tech Park, | | | | | | | Manufacturer address | Pudong, Shanghai 201204, China | | | | | | ## 2.2 General information | EUT Description | | | | | | | | | |----------------------------------|------------------------------------|----------------------|--------------------|--|--|--|--|--| | Model Flex2-M | | | | | | | | | | SN | 864919057421931 | | | | | | | | | Hardware Version | P3.0.0 | | | | | | | | | Software Version | B1 | | | | | | | | | Power Supply | Battery | | | | | | | | | Antenna Type | Internal Antenna | | | | | | | | | | LTE band 4: 2.0dBi | | | | | | | | | Antenna Gain | LTE band 12:1.3dBi | | | | | | | | | | LTE band 13: -1.0dBi | | | | | | | | | Test Mode(s) | LTE Band 4/12/13; | | | | | | | | | Test Modulation | QPSK, 16QAM; | | | | | | | | | LTE Category | M1 | | | | | | | | | | LTE Band 4: 26.36dBm | | | | | | | | | Maximum E.I.R.P./ E.R.P. | LTE Band 12: 23.33dBm | | | | | | | | | | LTE Band 13: 21.04dBm | | | | | | | | | Rated Power Supply Voltage | 12V | | | | | | | | | Operating Voltage | Minimum: 8V Maxim | ium: 30V | | | | | | | | Operating Temperature | Lowest: -30°C High | nest:+70°C | | | | | | | | Extreme Temperature | Lowest: -30°C High | nest: +50°C | | | | | | | | | Mode | Tx (MHz) | Rx (MHz) | | | | | | | Operating Frequency Range(s) | LTE Band 4 | 1710 ~ 1755 | 2110 ~ 2155 | | | | | | | operating requerity realige(s) | LTE Band 12 | 699 ~ 716 | 729 ~ 746 | | | | | | | | LTE Band 13 | 777 ~ 787 | 746 ~ 756 | | | | | | | | EUT Accessory | | | | | | | | | Battery | Manufacturer: Expocell Group, Inc. | | | | | | | | | Model: LIP-2S2PLx18650LT-PTC25 | | | | | | | | | | Note: The EUT is sent from the a | pplicant to TA and the in | formation of the EUT | is declared by the | | | | | | | applicant. | | | | | | | | | ## 3 Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standards: FCC CFR47 Part 27C (2020) ANSI C63.26 (2015) Reference standard: FCC CFR47 Part 2 (2020) KDB 971168 D01 Power Meas License Digital Systems v03r01 # 4 Test Configuration Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, horizontal polarization) and the worst case was recorded. All mode and data rates and positions and RB size and modulations were investigated. Subsequently, only the worst case emissions are reported. The following testing in LTE is set based on the maximum RF Output Power. The following testing in different Bandwidth is set to detailin the following table: Test modes are chosen to be reported as the worst case configuration below for LTE Band 4/12/13: | Test items | Modes | Bandwidth (MHz) | | | | Modulation | | RB | | | Test
Channel | | | | | |------------|----------|-----------------|--------|---------|----------|------------|---------|-------------|--------------|------|-----------------|------|---|---|---| | | | 1.4 | 3 | 5 | 10 | 15 | 20 | QPSK | 16QAM | 1 | 50% | 100% | L | M | Н | | RF Power | LTE 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Output and | | 0 | | | | | | U | O |) | | U | | | | | Effective | LTE 12 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Isotropic | LIL IZ |) |) |) |) | • | - | | U |) | | U |) |) | | | Radiated | LTE 13 | _ | | 0 | 0 | | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Power | LILIS | - | • |) |) | • | - | | U |) | O | U |) |) | | | Radiates | LTE 4 | 0 | - | 0 | - | - | 0 | 0 | - | 0 | - | - | - | 0 | - | | Spurious | LTE 12 | 0 | - | 0 | 0 | - | - | 0 | - | 0 | - | - | - | 0 | - | | Emission | LTE 13 | - | - | 0 | 0 | - | - | 0 | - | 0 | - | - | - | 0 | - | | Note | 1. The m | ark "C |)" mea | ans tha | at this | config | guratio | n is chos | sen for test | ing. | | | | | | | Note | 2. The m | ıark "-' | " meai | ns tha | t this o | configu | uratior | n is not te | esting. | | | | | | | ## 5 Test Case Results ## 5.1 RF Power Output and Effective Isotropic Radiated Power #### **Ambient condition** | Temperature | Relative humidity | Pressure | | | | |-------------|-------------------|----------|--|--|--| | 23°C ~25°C | 45%~50% | 101.5kPa | | | | #### **Methods of Measurement** During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation. ERP can then be calculated as follows: EIRP (dBm) = Output Power (dBm) - Losses (dB) + Antenna Gain (dBi) where:dBd refers to gain relative to an ideal dipole. EIRP (dBm) = ERP (dBm) + 2.15 (dB.) #### **Test Setup** #### Limits No specific RF power output requirements in part 2.1046. Rule Part 27.50(b) (10) specifies that "Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP" Rule Part 27.50(c) (10) specifies that "Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP" Rule Part 27.50(d) (4) specifies that "Fixed, mobile and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP" Rule Part 27.50(h) (2) specifies that "Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power." Rule Part 27.50(a) (3) specifies that "(i) For mobile and portable stations transmitting in the F Test Report Report No.: R2109A0847-R2 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth." | Part 27.50(b)(10)Limit | ≤ 3 W (34.77 dBm) | |------------------------|-------------------| | Part 27.50(c)(10)Limit | ≤ 3 W (34.77 dBm) | | Part 27.50(d)(4)Limit | ≤ 1 W (30 dBm) | #### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U=0.4 dB for RF power output, k = 2, U=1.19 dB for ERP/EIRP. **Test Results** Report No.: R2109A0847-R2 | LTE
Band4 | Channel/ | Index | RB#
RBstart | | Conducted Power (dBm) | | (dBm) | |--------------|----------------|-------|----------------|-------|-----------------------|-------|-------| | Danu4 | Frequency(MHz) | | Rosiari | QPSK | 16QAM | QPSK | 16QAM | | | 10057/1710 7 | 0 | 1#0 | 23.52 | 22.79 | 25.52 | 24.79 | | | 19957/1710.7 | 0 | 6#0 | 23.54 | 23.81 | 25.54 | 25.81 | | 4 4 1 1 1 - | 20475/4722 5 | 0 | 1#0 | 23.81 | 23.15 | 25.81 | 25.15 | | 1.4MHz | 20175/1732.5 | 0 | 6#0 | 23.73 | 23.95 | 25.73 | 25.95 | | | 20202/4754.2 | 0 | 1#5 | 23.88 | 23.42 | 25.88 | 25.42 | | | 20393/1754.3 | 0 | 6#0 | 23.83 | 24.22 | 25.83 | 26.22 | | | 19965/1711.5 | 0 | 1#0 | 23.64 | 22.83 | 25.64 | 24.83 | | | 19905/1711.5 | 0 | 6#0 | 23.56 | 23.83 | 25.56 | 25.83 | | 3MHz | 20175/1732.5 | 0 | 1#0 | 23.32 | 23.96 | 25.32 | 25.96 | | SIVITZ | 20175/1732.5 | 0 | 6#0 | 23.62 | 23.51 | 25.62 | 25.51 | | | 20385/1753.5 | 1 | 1#5 | 23.94 | 23.45 | 25.94 | 25.45 | | | 20365/1755.5 | 1 | 6#0 | 23.83 | 24.31 | 25.83 | 26.31 | | | 19975/1712.5 | 3 | 1#0 | 23.64 | 23.36 | 25.64 | 25.36 | | | 19975/1712.5 | 0 | 6#0 | 23.49 | 23.79 | 25.49 | 25.79 | | 5MHz | 20175/1732.5 | 0 | 1#0 | 23.45 | 24.03 | 25.45 | 26.03 | | SIVITZ | 20175/1752.5 | 0 | 6#0 | 23.56 | 23.84 | 25.56 | 25.84 | | | 20375/1752.5 | 0 | 1#5 | 24.22 | 24.12 | 26.22 | 26.12 | | | | 3 | 6#0 | 23.71 | 23.79 | 25.71 | 25.79 | | | 20000/1715 | 3 | 1#0 | 23.61 | 23.32 | 25.61 | 25.32 | | | 20000/1715 | 0 | 4#0 | 23.54 | 23.77 | 25.54 | 25.77 | | 10MHz | 20175/1732.5 | 0 | 1#0 | 23.23 | 24.18 | 25.23 | 26.18 | | TOWINZ | | 0 | 4#0 | 23.52 | 23.61 | 25.52 | 25.61 | | | 20350/1750 | 4 | 1#5 | 24.00 | 23.67 | 26.00 | 25.67 | | | 20350/1750 | 7 | 4#2 | 23.80 | 23.87 | 25.80 | 25.87 | | | 20025/1717.5 | 3 | 1#0 | 23.60 | 23.38 | 25.60 | 25.38 | | | 20023/1717.3 | 0 | 6#0 | 23.33 | 23.76 | 25.33 | 25.76 | | 15MHz | 20175/1732.5 | 0 | 1#0 | 23.28 | 24.24 | 25.28 | 26.24 | | TOMINZ | 20175/1752.5 | 0 | 6#0 | 23.56 | 23.63 | 25.56 | 25.63 | | | 20325/1747.5 | 8 | 1#5 | 23.98 | 23.68 | 25.98 | 25.68 | | | 20323/1747.3 | 11 | 6#0 | 23.87 | 24.12 | 25.87 | 26.12 | | | 20050/1720 | 3 | 1#0 | 23.56 | 23.42 | 25.56 | 25.42 | | | 20050/1720 | 0 | 6#0 | 23.41 | 23.75 | 25.41 | 25.75 | | 2014⊔→ | 20175/1722 5 | 0 | 1#0 | 23.33 | 24.36 | 25.33 | 26.36 | | 20MHz | 20175/1732.5 | 0 | 6#0 | 23.59 | 23.48 | 25.59 | 25.48 | | | 20200/4745 | 12 | 1#5 | 23.98 | 23.66 | 25.98 | 25.66 | | | 20300/1745 | 15 | 6#0 | 23.73 | 23.91 | 25.73 | 25.91 | Report No.: R2109A0847-R2 | RFIE | est Report | | Report No.: R2109A | | | | | |---------|----------------|-------|--------------------|-------|-----------------|-------|-------| | Band12 | Channel/ | Index | RB# | | ed Power
3m) | ERP | (dBm) | | Danuiz | Frequency(MHz) | muex | RBstart | QPSK | 16QAM | QPSK | 16QAM | | | | 0 | 1#0 | 23.62 | 22.95 | 22.77 | 22.10 | | | 23017/699.7 | 0 | 6#0 | 23.55 | 23.92 | 22.70 | 23.07 | | | | 0 | 1#0 | 23.74 | 23.19 | 22.89 | 22.34 | | 1.4MHz | 23095/707.5 | 0 | 6#0 | 23.50 | 23.73 | 22.65 | 22.88 | | | | 0 | 1#5 | 23.17 | 23.94 | 22.32 | 23.09 | | | 23173/715.3 | 0 | 6#0 | 23.44 | 23.48 | 22.59 | 22.63 | | | | 0 | 1#0 | 23.75 | 23.09 | 22.90 | 22.24 | | | 23025/700.5 | 0 | 6#0 | 23.59 | 23.95 | 22.74 | 23.10 | | | | 0 | 1#0 | 23.22 | 23.70 | 22.37 | 22.85 | | 3MHz | 23095/707.5 | 0 | 6#0 | 23.37 | 23.29 | 22.52 | 22.44 | | | | 1 | 1#5 | 23.71 | 22.94 | 22.86 | 22.09 | | | 23165/714.5 | 1 | 6#0 | 23.54 | 23.84 | 22.69 | 22.99 | | | 00005/504.5 | 3 | 1#0 | 23.48 | 23.13 | 22.63 | 22.28 | | | 23035/701.5 | 0 | 6#0 | 23.52 | 24.09 | 22.67 | 23.24 | | 5.41 | 00005/707.5 | 0 | 1#0 | 23.53 | 23.07 | 22.68 | 22.22 | | 5MHz | 23095/707.5 | 0 | 6#0 | 23.53 | 24.04 | 22.68 | 23.19 | | | 00455/740 5 | 0 | 1#5 | 23.39 | 23.12 | 22.54 | 22.27 | | | 23155/713.5 | 3 | 6#0 | 23.29 | 23.15 | 22.44 | 22.30 | | | 23060/704 | 3 | 1#0 | 23.47 | 23.19 | 22.62 | 22.34 | | | 23000/704 | 0 | 4#0 | 23.62 | 24.10 | 22.77 | 23.25 | | 10MHz | 23095/707.5 | 0 | 1#0 | 23.15 | 24.18 | 22.30 | 23.33 | | TOWINZ | 23093/707.3 | 0 | 4#0 | 23.48 | 23.57 | 22.63 | 22.72 | | | 23130/711 | 4 | 1#5 | 23.55 | 23.09 | 22.70 | 22.24 | | | 23130/711 | 7 | 4#2 | 23.43 | 23.88 | 22.58 | 23.03 | | Band13 | Channel/ | Index | RB# | | ed Power
3m) | ERP | (dBm) | | | Frequency(MHz) | | RBstart | QPSK | 16QAM | QPSK | 16QAM | | | 22205/770.5 | 3 | 1#0 | 23.76 | 23.47 | 20.61 | 20.32 | | | 23205/779.5 | 0 | 6#0 | 23.65 | 23.49 | 20.50 | 20.34 | | ENAL!- | 02020/700 | 0 | 1#0 | 23.72 | 23.36 | 20.57 | 20.21 | | 5MHz | 23230/782 | 0 | 6#0 | 23.61 | 24.19 | 20.46 | 21.04 | | | 23255/784.5 | 0 | 1#5 | 23.60 | 23.43 | 20.45 | 20.28 | | | 23200// 04.0 | 3 | 6#0 | 23.87 | 23.71 | 20.72 | 20.56 | | 10MHz | 23230/782 | 0 | 1#0 | 23.47 | 24.08 | 20.32 | 20.93 | | IUIVITZ | 23230/102 | 0 | 4#0 | 23.82 | 23.38 | 20.67 | 20.23 | ## 5.2 Radiates Spurious Emission #### Ambient condition | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | #### **Method of Measurement** - 1. The testing follows FCC KDB 971168 D01 v03r01 Section 5.8 and ANSI C63.26 (2015). - 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). - 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver. - 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100kHz, VBW=300kHz for 30MHz to 1GHz and RBW=1MHz, VBW=3MHz for above 1GHz, and the maximum value of the receiver should be recorded as (Pr). - 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. - 7. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga 8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dB. Test Report Report No.: R2109A0847-R2 The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration. ## **Test setup** ### 9KHz ~ 30MHz 30MHz ~ 1GHz ### **Above 1GHz** Note: Area side: 2.4mX3.6m ## Limits Rule Part 27.53(h) specifies that "for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB." Rule Part 27.53(f)For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation. Part 27.53 (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following: - (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB; - (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB; - (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations; - (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations; - (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed; | Part 27.53(a)/(h)/(g) | -13 dBm | | |-----------------------|-------------------------------------|---------| | Doub 27 52/f\ Limit | Limit out of the band 1559-1610 MHz | -13 dBm | | Part 27.53(f) Limit | Limit in the band 1559-1610 MHz | -40 dBm | #### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = \pm 1.96$, $U = \pm 3.55$ dB. #### Test Result Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report. LTE Band 4 QPSK 1.4MHz CH-Middle, RB 1 | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3464.25 | -59.77 | 2.70 | 12.70 | Horizontal | -49.77 | -13.00 | 36.77 | 45 | | 3 | 5197.50 | -56.01 | 3.20 | 12.50 | Horizontal | -46.71 | -13.00 | 33.71 | 90 | | 4 | 6930.00 | -62.63 | 4.20 | 11.80 | Horizontal | -55.03 | -13.00 | 42.03 | 180 | | 5 | 8662.50 | -56.41 | 4.40 | 12.50 | Horizontal | -48.31 | -13.00 | 35.31 | 0 | | 6 | 10395.00 | -49.36 | 4.70 | 11.30 | Horizontal | -42.76 | -13.00 | 29.76 | 0 | | 7 | 12127.50 | -50.43 | 5.20 | 13.80 | Horizontal | -41.83 | -13.00 | 28.83 | 45 | | 8 | 13860.00 | -49.09 | 5.70 | 11.30 | Horizontal | -43.49 | -13.00 | 30.49 | 225 | | 9 | 15592.50 | -52.91 | 6.10 | 16.80 | Horizontal | -42.21 | -13.00 | 29.21 | 90 | | 10 | 17325.00 | -48.82 | 6.10 | 14.20 | Horizontal | -40.72 | -13.00 | 27.72 | 135 | Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Horizontal position. LTE Band 4 QPSK 5MHz CH-Middle, RB 1 | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3460.50 | -56.02 | 2.70 | 12.70 | Horizontal | -46.02 | -13.00 | 33.02 | 0 | | 3 | 5191.50 | -56.80 | 3.20 | 12.50 | Horizontal | -47.50 | -13.00 | 34.50 | 90 | | 4 | 6930.00 | -63.15 | 4.20 | 11.80 | Horizontal | -55.55 | -13.00 | 42.55 | 45 | | 5 | 8662.50 | -55.60 | 4.40 | 12.50 | Horizontal | -47.50 | -13.00 | 34.50 | 270 | | 6 | 10395.00 | -48.44 | 4.70 | 11.30 | Horizontal | -41.84 | -13.00 | 28.84 | 0 | | 7 | 12127.50 | -52.32 | 5.20 | 13.80 | Horizontal | -43.72 | -13.00 | 30.72 | 180 | | 8 | 13860.00 | -48.39 | 5.70 | 11.30 | Horizontal | -42.79 | -13.00 | 29.79 | 45 | | 9 | 15592.50 | -52.45 | 6.10 | 16.80 | Horizontal | -41.75 | -13.00 | 28.75 | 135 | | 10 | 17325.00 | -48.86 | 6.10 | 14.20 | Horizontal | -40.76 | -13.00 | 27.76 | 90 | Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor. LTE Band 4 QPSK 20MHz CH-Middle, RB 1 | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3447.75 | -55.70 | 2.70 | 12.70 | Horizontal | -45.70 | -13.00 | 32.70 | 225 | | 3 | 5170.88 | -56.01 | 3.20 | 12.50 | Horizontal | -46.71 | -13.00 | 33.71 | 90 | | 4 | 6930.00 | -61.57 | 4.20 | 11.80 | Horizontal | -53.97 | -13.00 | 40.97 | 0 | | 5 | 8662.50 | -56.53 | 4.40 | 12.50 | Horizontal | -48.43 | -13.00 | 35.43 | 0 | | 6 | 10395.00 | -48.03 | 4.70 | 11.30 | Horizontal | -41.43 | -13.00 | 28.43 | 45 | | 7 | 12127.50 | -51.13 | 5.20 | 13.80 | Horizontal | -42.53 | -13.00 | 29.53 | 315 | | 8 | 13860.00 | -50.63 | 5.70 | 11.30 | Horizontal | -45.03 | -13.00 | 32.03 | 90 | | 9 | 15592.50 | -52.11 | 6.10 | 16.80 | Horizontal | -41.41 | -13.00 | 28.41 | 45 | | 10 | 17325.00 | -48.28 | 6.10 | 14.20 | Horizontal | -40.18 | -13.00 | 27.18 | 180 | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ### LTE Band 12 QPSK 1.4MHz CH-Middle, RB 1 | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1415.00 | -57.01 | 1.70 | 8.70 | Horizontal | -52.16 | -13.00 | 39.16 | 0 | | 3 | 2122.50 | -49.91 | 2.10 | 11.10 | Horizontal | -43.06 | -13.00 | 30.06 | 270 | | 4 | 2830.00 | -66.05 | 2.30 | 13.10 | Horizontal | -57.40 | -13.00 | 44.40 | 45 | | 5 | 3537.50 | -63.11 | 2.60 | 12.70 | Horizontal | -55.16 | -13.00 | 42.16 | 45 | | 6 | 4245.00 | -63.17 | 3.30 | 12.50 | Horizontal | -56.12 | -13.00 | 43.12 | 45 | | 7 | 4952.50 | -60.92 | 3.40 | 12.50 | Horizontal | -53.97 | -13.00 | 40.97 | 270 | | 8 | 5660.00 | -60.98 | 3.30 | 12.50 | Horizontal | -53.93 | -13.00 | 40.93 | 0 | | 9 | 6367.50 | -59.74 | 3.80 | 11.50 | Horizontal | -54.19 | -13.00 | 41.19 | 90 | | 10 | 7075.00 | -55.44 | 4.20 | 11.80 | Horizontal | -49.99 | -13.00 | 36.99 | 180 | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ^{2.} The worst emission was found in the antenna is Horizontal position. ## LTE Band 12 QPSK 5MHz CH-Middle, RB 1 | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1410.60 | -63.86 | 1.70 | 8.70 | Horizontal | -59.01 | -13.00 | 46.01 | 45 | | 3 | 2115.90 | -48.08 | 2.10 | 11.10 | Horizontal | -41.23 | -13.00 | 28.23 | 180 | | 4 | 2821.20 | -66.23 | 2.30 | 13.10 | Horizontal | -57.58 | -13.00 | 44.58 | 0 | | 5 | 3512.50 | -64.90 | 2.60 | 12.70 | Horizontal | -56.95 | -13.00 | 43.95 | 0 | | 6 | 4215.00 | -61.34 | 3.30 | 12.50 | Horizontal | -54.29 | -13.00 | 41.29 | 90 | | 7 | 4917.50 | -61.03 | 3.40 | 12.50 | Horizontal | -54.08 | -13.00 | 41.08 | 270 | | 8 | 5620.00 | -59.16 | 3.30 | 12.50 | Horizontal | -52.11 | -13.00 | 39.11 | 45 | | 9 | 6322.50 | -58.21 | 3.80 | 11.50 | Horizontal | -52.66 | -13.00 | 39.66 | 315 | | 10 | 7025.00 | -56.97 | 4.20 | 11.80 | Horizontal | -51.52 | -13.00 | 38.52 | 180 | Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Horizontal position. ## LTE Band 12 QPSK 10MHz CH-Middle, RB 1 | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1406.40 | -60.34 | 1.70 | 8.70 | Horizontal | -55.49 | -13.00 | 42.49 | 45 | | 3 | 2109.60 | -51.04 | 2.10 | 11.10 | Horizontal | -44.19 | -13.00 | 31.19 | 270 | | 4 | 2812.80 | -65.62 | 2.30 | 13.10 | Horizontal | -56.97 | -13.00 | 43.97 | 180 | | 5 | 3537.50 | -63.76 | 2.60 | 12.70 | Horizontal | -55.81 | -13.00 | 42.81 | 0 | | 6 | 4245.00 | -63.17 | 3.30 | 12.50 | Horizontal | -56.12 | -13.00 | 43.12 | 270 | | 7 | 4952.50 | -60.37 | 3.40 | 12.50 | Horizontal | -53.42 | -13.00 | 40.42 | 45 | | 8 | 5660.00 | -60.21 | 3.30 | 12.50 | Horizontal | -53.16 | -13.00 | 40.16 | 135 | | 9 | 6367.50 | -59.58 | 3.80 | 11.50 | Horizontal | -54.03 | -13.00 | 41.03 | 90 | | 10 | 7075.00 | -56.09 | 4.20 | 11.80 | Horizontal | -50.64 | -13.00 | 37.64 | 0 | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ## LTE Band 13 QPSK 5MHz CH-Middle, RB 1 | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 1568.47 | -51.48 | 1.70 | 8.70 | Horizontal | -46.63 | -40.00 | 6.63 | 90 | | 3 | 2340.00 | -49.93 | 2.10 | 12.00 | Horizontal | -42.18 | -13.00 | 29.18 | 0 | | 4 | 3120.00 | -59.32 | 2.30 | 13.10 | Horizontal | -50.67 | -13.00 | 37.67 | 0 | | 5 | 3901.00 | -63.12 | 2.90 | 12.50 | Horizontal | -55.67 | -13.00 | 42.67 | 270 | | 6 | 4692.00 | -62.13 | 3.10 | 12.50 | Horizontal | -54.88 | -13.00 | 41.88 | 90 | | 7 | 5474.00 | -59.56 | 3.30 | 12.50 | Horizontal | -52.51 | -13.00 | 39.51 | 45 | | 8 | 6256.00 | -60.10 | 3.50 | 12.80 | Horizontal | -52.95 | -13.00 | 39.95 | 180 | | 9 | 7038.00 | -55.69 | 4.20 | 11.80 | Horizontal | -50.24 | -13.00 | 37.24 | 270 | | 10 | 7820.00 | -55.56 | 4.40 | 12.30 | Horizontal | -49.81 | -13.00 | 36.81 | 0 | Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Horizontal position. ## LTE Band 13 QPSK 10MHz CH-Middle, RB 1 | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1572.73 | -51.92 | 1.70 | 8.70 | Horizontal | -47.07 | -40.00 | 7.07 | 180 | | 3 | 2333.60 | -47.89 | 2.10 | 12.00 | Horizontal | -40.14 | -13.00 | 27.14 | 90 | | 4 | 3108.00 | -60.08 | 2.30 | 13.10 | Horizontal | -51.43 | -13.00 | 38.43 | 135 | | 5 | 3885.00 | -60.25 | 2.90 | 12.50 | Horizontal | -52.80 | -13.00 | 39.80 | 135 | | 6 | 4662.00 | -62.01 | 3.10 | 12.50 | Horizontal | -54.76 | -13.00 | 41.76 | 45 | | 7 | 5439.00 | -59.47 | 3.30 | 12.50 | Horizontal | -52.42 | -13.00 | 39.42 | 180 | | 8 | 6216.00 | -61.30 | 3.50 | 12.80 | Horizontal | -54.15 | -13.00 | 41.15 | 45 | | 9 | 6693.00 | -59.25 | 4.20 | 11.80 | Horizontal | -53.80 | -13.00 | 40.80 | 270 | | 10 | 7770.00 | -55.24 | 4.40 | 12.30 | Horizontal | -49.49 | -13.00 | 36.49 | 0 | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ## 6 Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration Date | |---------------------------|--------------|------------|------------------|---------------------|-----------------| | Base Station
Simulator | R&S | CMW500 | 113824 | 2021-05-15 | 2022-05-14 | | Spectrum
Analyzer | R&S | FSV30 | 104028 | 2021-05-15 | 2022-05-14 | | Horn Antenna | Schwarzbeck | BBHA 9120D | 1594 | 2020-12-17 | 2021-12-16 | | Software | R&S | EMC32 | 10.35.10 | 1 | 1 | ******END OF REPORT ****** # **ANNEX A: The EUT Appearance** The EUT Appearance are submitted separately. # **ANNEX B: Test Setup Photos** The Test Setup Photos are submitted separately.