EMC Technologies (NZ) Ltd

Test Report No 80428.1

Report date: 7 May 2008

Radio Frequency Hazard Information

As per Section 1.1310 and Section 2.1091 certification of this transmitter is sought using the Controlled / Occupational exposure limits as detailed in OST/OET Bulletin Number 65.

The transmitter has a radiated power of 5 watts and can be used in a base station environment for employment related uses.

Calculations have also been made using the General Public/Uncontrolled Exposure limits.
Minimum safe distances have been calculated below.
Power density, $\mathrm{mW} / \mathrm{cm}^{2}=\mathrm{E}^{2} / 3770$
Occupational / Controlled Exposure limit: $0.58 \mathrm{~mW} / \mathrm{cm}^{2}(\mathrm{f} / 300=174 \mathrm{MHz} / 300)$
General Population / Uncontrolled exposure limit: $0.12 \mathrm{~mW} / \mathrm{cm}^{2}(\mathrm{f} / 1500=174 \mathrm{MHz} / 1500)$
The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V / m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres: $\mathrm{E}, \mathrm{V} / \mathrm{m}=(\sqrt{ }(30 * \mathrm{P} * \mathrm{G})) / \mathrm{d}$

Controlled/ Occupational

$\mathrm{E}=0.58 \mathrm{~mW} / \mathrm{cm}^{2}=\mathrm{E}^{2} / 3770$
$\mathrm{E}=\sqrt{ } 0.58 * 3770$
$\mathrm{E}=46.8 \mathrm{~V} / \mathrm{m}$

Uncontrolled/ General Public
$\mathrm{E}=0.12 \mathrm{~mW} / \mathrm{cm}^{2}=\mathrm{E}^{2} / 3770$
$\mathrm{E}=\sqrt{ } 0.12 * 3770$
$\mathrm{E}=21.3 \mathrm{~V} / \mathrm{m}$

The rated maximum transmitter power $=5.0$ watts.
This transmitter would typically be operated using a quarter wave whip antenna with a gain of 2.15 dBi (1.64).

As a base station the duty cycle would typically be 50%

Controlled/ Occupational

$\mathrm{d}=\sqrt{ }\left(30 * P * \mathrm{G}^{*} \mathrm{DC}\right) / \mathrm{E}$
$\mathrm{d}=\sqrt{ }(30 * 5 * 1.64 * 0.5) / 46.8$
$\mathrm{d}=0.236$ metres or 23.6 cm

Uncontrolled/ General Public
 $\mathrm{d}=\sqrt{ }(30 * \mathrm{P} * \mathrm{G} * \mathrm{DC}) / \mathrm{E}$
 $\mathrm{d}=\sqrt{ }(30 * 5 * 1.64 * 0.5) / 21.3$
 $\mathrm{d}=0.521$ metres or 52.1 cm

Result: Complies if the user is advised of the above safe distances in the appropriate documentation.

