EMC Technologies (NZ) Ltd

Test Report No 100726.1
Report date: 12 August 2010

Section 15.247(i) - Radio Frequency Hazard Information

As per Section 15.247 (b) (4) spread spectrum transmitters operating in the $2400-2483.5$ MHz band are required to be operated in a manner that ensures that the public is not exposed to RF energy levels in accordance with CFR 47, Section 1.1307(b)(1).

The device when in operation is fixed and a safe distance could be maintained when events are undertaken.

In accordance with Section 1.1310 the Maximum Permissible Exposure (MPE) limits for the General Population / Uncontrolled Exposure of $1 \mathrm{~mW} / \mathrm{cm} 2$ has been applied.

The maximum distance from the antenna at which the MPE is met or exceeded is calculated from the equation relating field strength in V / m, transmit power in watts, transmit antenna gain and separation distance in metres:

E, $\mathrm{V} / \mathrm{m}=(\sqrt{ }(30 * P * G)) / \mathrm{d}$
Power density, mW/cm2 = E2/3770
E for MPE: 1 = E2/3770
$\mathrm{E}=\sqrt{ } 1 * 3770$
$\mathrm{E}=61.4 \mathrm{~V} / \mathrm{m}$
The highest conducted power has been measured to be +15.6 dBm or 0.036 watts.
Attached to the transmitter will be a S2406BFNM whip antenna with 1 m of LMR100 cable giving an overall gain $4.47(6.5 \mathrm{dBi})$ which is the highest gain of the antennas supplied.

Therefore:
$\mathrm{E}=\sqrt{ }(30 * P * G) / d$
$\mathrm{d}=\sqrt{ }(30 * \mathrm{P} * \mathrm{G}) / \mathrm{E}$
$\mathrm{d}=\sqrt{ }(30 * 0.036 * 4.47) / 61.4$
$\mathrm{d}=0.036 \mathrm{~m}$ or 3.6 cm
Result: Complies if a minimum safe distance of 20 cm is specified in the set up instructions for this system.

