

ACCREDITED Certificate No. 2470.01

RF EXPOSURE EVALUATION

SPECIFIC ABSORPTION RATE

SAR TEST REPORT

FOR

TRISQUARE COMMUNICATIONS INC.

900 MHz PORTABLE FHSS XRS PTT RADIO TRANSCEIVER

MODEL(S): TSX300, TSX200, TSX100

IDENTIFIER(S)	FCC ID: O9GTSX300	IC: 3823A-300				
Test Standard(s)	FCC OET Bulletin 65, Supplement C (01-01)					
and Procedure(s)	Industry Canada RSS-102 Issue 2					

Test Report Serial No.

012207O9G-T813-S15U

Test Report Revision No.

Revision 1.0 (Initial Release)

Test Lab and Location

Celltech Compliance Testing & Engineering Lab (Celltech Labs Inc.) 1955 Moss Court Kelowna, BC Canada **V1Y 9L3**

Certificate No. 2470.01

Test Report Prepared By:

Cheri Frangiadakis Test Report Writer Celltech Labs Inc. **Test Report Reviewed By:** Jonathan Hughes **General Manager** Celltech Labs Inc.

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300			
Model(s):	TS	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	Quare Communications	
2007 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					abs Inc.	Page 1 of 42		

Celltech Testing and Engineering Services Lat:	Date(s) of Evaluation January 24, 2007 <u>Report Issue Date</u> January 29, 2007	Date Description of Test(s 2007 Specific Absorption Ratio		Report Revision No. Revision 1.0 <u>RF Exposure Category</u> General Population	Certificate No. 2470.01						
DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION											
Test Lab and Location CELLTECH LABS IN Testing and Engineerin 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3 Phone: 250-448-70 Fax: 250-448-70 e-mail: info@cellted web site: www.cellted	ng Services 47 46 chlabs.com chlabs.com		Company Information TRISQUARE COMMUNICATIONS INC. 1420 Vivion Road, Suite 113 Kansas City, Missouri 64118 United States								
FCC IDENTIFIER: IC IDENTIFIER: Device Model(s):	FCC IDENTIFIER:O9GTSX300IC IDENTIFIER:3823A-300Device Model(s):TSX300, TSX300,										
Test Requirement(s): Test Procedure(s):	Test Requirement(s): FCC 47 CFR § Test Procedure(s): FCC OET Bull Industry Cana			Canada Safety Code 6 nent C (Edition 01-01) ue 2							
Device Description:900 MHz PortaMode of Operation:Frequency HoTransmit Frequency Range(s):906.275 - 923.Max. RF Output Power Tested:0.945 Watts (2Antenna Type(s) Tested:External FixedBattery Type(s) Tested:NiMH 4.8 V, 75Alkaline 1.5 V			ble XRS PTT Ra oping Spread S /50 MHz (ISM Ba 9.8 dBm) ERP (9 Stubby 0 mAh Battery 2850 mAh (Dur	adio Transceiver pectrum (FHSS) and) 923.750 MHz) Pack (Model: TSX-BP) racell Procell) AA (x3)							
Body-Worn Accessories Tested:Plastic Belt-Clip with Generic Ear-MicrophAudio Accessories Tested:Generic Ear-Microph				oring (P/N: TR000020-0	08)						
Max. SAR Level(s) Evaluated: Face-held: 1. Body-worn: 0			0 W/kg (1g) - 50 800 W/kg (1g) -	% duty cycle 50% duty cycle							

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 2 for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

<u>Test Report Approved By:</u> Sean Johnston SAR Lab Manager Celltech Labs Inc.

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	T	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	quare Communications
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					abs Inc.	Page 2 of 42		

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Lat	<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	ACCREDITED
	January 29, 2007	Specific Absorption Rate	General Population	Certificate No. 2470.01

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)	4
3.0 SAR MEASUREMENT SYSTEM	5
4.0 MEASUREMENT SUMMARY	6
5.0 DETAILS OF SAR EVALUATION	7
6.0 EVALUATION PROCEDURES	7
7.0 SYSTEM PERFORMANCE CHECK	8
8.0 SIMULATED EQUIVALENT TISSUES	9
9.0 SAR SAFETY LIMITS	9
10.0 ROBOT SYSTEM SPECIFICATIONS	10
11.0 PROBE SPECIFICATION (ET3DV6)	11
12.0 SAM PHANTOM V4.0C	11
13.0 DEVICE HOLDER	11
14.0 TEST EQUIPMENT LIST	12
15.0 MEASUREMENT UNCERTAINTIES	13
MEASUREMENT UNCERTAINTIES (CONT.)	14
16.0 REFERENCES	15
APPENDIX A - SAR MEASUREMENT DATA	16
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	28
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	31
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	34
APPENDIX E - SYSTEM VALIDATION	40
APPENDIX F - PROBE CALIBRATION	41
APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY	42

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	TS	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	Square Communications
2007 Celltech La	Itech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					abs Inc.	Page 3 of 42	

Celltech
Testing and Engineering Services Lab

<u>Date(s) of Evaluation</u>	Test Report Serial No.	Report Revision No.	
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.0
January 29, 2007	Specific Absorption Rate	General Population	

1.0 INTRODUCTION

This measurement report demonstrates compliance of the TriSquare Communications Inc. Model(s): TSX300, TSX200, TSX100 900 MHz Portable FHSS XRS PTT Radio Transceiver FCC ID: O9GTSX300 with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the provisions of the rules are included within this test report.

2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

Tost Poquiromont(s)			FCC	Rule F	Part 47 (CFR §2.1093		
rest requirement(s)	Health Canada Safety Code 6							
	FCC OET Bulletin 65, Supplement C (01-01)							
rest Procedure(s)			Indust	ry Can	ada RS	S-102 Issue	2	
Device Description	9	00 MI	Hz Portat	ble FHS	SS XRS	PTT Radio	Fransceiv	er
RF Exposure Category		Ger	neral Pop	ulation	/ Uncoi	ntrolled Envir	ronment	
FCC IDENTIFIER				0	9GTSX3	300		
IC IDENTIFIER				3	823A-3	00		
Device Model(s)	TSX300, TSX200, TSX100							
Test Sample Serial No.	None Identical Prototype					уре		
Mode of Operation			Frequer	ncy Ho	oping S	oread Spectr	um	
Transmit Frequency Range(s)	906.2	275 - 9)23.750 N	/IHz			ISM Ba	and
	906.275 MH	z	0.9	38 Wa	tts	29.7 d	Bm	ERP
Max. RF Output Power Tested	915.000 MH	z	0.850 Watts		29.3 dBm		ERP	
	923.750 MH	z	0.945 Watts		29.8 dBm		ERP	
Antenna Type(s) Tested				Extern	al Fixed	Stubby		
Battory Type(s) Tested	NiMH	4	4.8 V	750	mAh	Model: T	SX-BP	Battery Pack
Dattery Type(S) Tested	Alkaline	1	.5 V	2850) mAh	Duracell I	Procell	AA (x3)
Body-worn Accessories Tested	Plastic Belt-Cli	p with	n Metal S	oring	1.5 c	cm spacing P/N: TR000020-008		
Audio Accessories Tested	Gene	Generic Ear-Microphone P/N: None				one		

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	TS	SX300, TSX200, TSX100	900MHz F	900MHz Portable FHSS XRS PTT Radio Transceiver				quare Communications
2007 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						abs Inc.	Page 4 of 42

Date(s) of Evaluation	Test Report Serial No.	<u>Report Revision No.</u>	
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 29, 2007	Specific Absorption Rate	General Population	

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG[™]) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver					equare Communications
2007 Celltech La	abs Inc.	This document is not to be reprodu	uced in whole	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 5 of 42

Celltech Testing and Engineering Services La	

<u>Date(s) of Evaluation</u>	Test Report Serial No.	Report Revision No.	
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 29, 2007	Specific Absorption Rate	General Population	

4.0 MEASUREMENT SUMMARY

	SAR EVALUATION RESULTS													
Test	Freq.	Chan.	Te	st	Battery	Access	sories	DUT Position to Planar	Start Power (ERP)	Measur 1g (V	ed SAR V/kg)	SAR Drift During	Scaled with o 1g (V	d SAR droop V/kg)
Type			MIC	uc	Type	Body-worn	Spacing	Phantom	. ,	Duty	Cycle	lest	Duty	Cycle
	MHz					Audio	cm		Watts	100%	50%	dB	100%	50%
Face	915.000	Mid	Modu Fixed	lated Freq.	NiMH		2.5	Front Side	0.850	1.59	0.795	-1.42	2.20	1.10
Face	906.275	Low	Modu Fixed	lated Freq.	NiMH		2.5	Front Side	0.938	1.41	0.705	-1.23	1.87	0.936
Face	923.750	High	Modu Fixed	lated Freq.	NiMH		2.5	Front Side	0.945	1.47	0.735	-1.23	1.95	0.976
Face	915.000	Mid	Modu Fixed	lated Freq.	Alkaline		2.5	Front Side	0.850	0.958	0.479	-0.619	1.10	0.552
Body	915 000	Mid	Modu	lated	NiMH	Belt-Clip	15	Back Side	0.850	1 18	0 590	-1 32	1.60	0.800
Douy	010.000	IVIG	Fixed	Freq.		Ear-Mic	1.0	Back Olde	0.000	1.10	0.000	-1.02	1.00	0.000
Body	906.275	Low	Modulated Fixed Freq. NiMH		Belt-Clip Ear-Mic	1.5	Back Side	0.938	1.16	0.580	-1.18	1.52	0.761	
Body	923.750	High	Modula Fixed F	ated Freq.	NiMH	Belt-Clip Ear-Mic	- 1.5	Back Side	0.945	1.08	0.540	-1.11	1.39	0.697
Body	915.000	Mid	Modu Fixed	lated Freq.	Alkaline	Belt-Clip Ear-Mic	- 1.5	Back Side	0.850	0.782	0.391	-0.680	0.915	0.457
ANSI /	IEEE C95.1	2005 - S	AFETY I	-IMIT	BRAIN	/ BODY: 1.6	W/kg (avera	aged over 1	gram)	Uncontro	Sp lled Expo	atial Peak osure / Ge	neral Popu	ulation
Test	Date(s)		January	24, 200	7	Jan	uary 24, 200	70	Measure	d Fluid Type	e E	Brain	Body	Unit
Die	lectric		900 MH	lz Brain		900 MHz Body			Atmospheric Pressure			02.2	102.2	kPa
Co	nstant	IEEE T	arget	Meas.	Dev.	IEEE Target Meas.		Dev.	Relative Humidity			36	36	%
	ε _r	41.5	<u>+</u> 5%	42.2	+1.7%	55.0 <u>+</u> 59	% 54.1	-1.6%	Ambient	Temperature	e	23.4	23.4	°C
			900 MH	lz Brain	ı	900 MHz Body			Fluid Temperature			22.5	22.5	°C
Cond σ (n	luctivity nho/m)	IEEE 1	arget	Meas.	Dev.	IEEE Targe	et Meas.	Dev.	Flui	d Depth	2	≥ 15	≥ 15	cm
		0.97	<u>+</u> 5%	0.94	-3.1%	1.05 <u>+</u> 59	% 1.02	-2.9%	ρ(Kg/m³)			1000	
		1.	The me data and	asureme d plots s	ent results howing the	were obtaine e maximum S/	d with the D AR location	UT tested in of the DUT a	the condition re reported	ons described in Appendix	d in this re A.	eport. Det	ailed meas	urement
		2.	If the scaled SAR levels evaluated at the mid channel (50% duty cycle) were \geq 3 dB below the SAR limit, SAR evaluation for the											
			The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled											
Note(s)		3.	The are down ar	a scan end the ba	evaluation atteries we	was performe re replaced w	d with a fully	y charged ba ged batteries	ttery. After s prior to the	[.] the area sca e zoom scan	n was con evaluation	mpleted th า.	e radio wa	s cooled
No	ote(s)	3. 4.	The are down ar The pow levels to also per	a scan e nd the ba ver droc o report formed	evaluation atteries we ps measur scaled SA in the max	was performe re replaced w red by the DA R results as imum SAR lev	d with a full ith fully char SY4 system shown in th vel configura	y charged ba ged batteries for the dura e above test ation and the	attery. After s prior to the ation of the data table evaluation	the area sca zoom scan SAR evaluati . A SAR-ver plot is shown	in was con evaluation ons were sus-Time in Append	added to power dro dix A (SAF	e radio was the measu oop evaluat R Test Plots	red SAR tion was
No	ote(s)	3. 4. 5.	The are down ar The pow levels to also per The fluid of the fluid	a scan e nd the b ver droc o report formed d tempe uid temp	evaluation atteries we ps measur scaled SA in the maxing rature was perature rep	was performe re replaced w red by the DA R results as imum SAR lev measured pr ported during	d with a fully ith fully char SY4 system shown in th vel configura ior to and a the dielectric	y charged ba rged batteries n for the dura e above test ation and the fter the SAR c parameter	attery. After s prior to the ation of the data table evaluation evaluation measureme	the area sca e zoom scan SAR evaluati . A SAR-ver plot is shown s to ensure the ents.	in was con evaluation ons were sus-Time in Append ne temper	added to power dro dix A (SAF	e radio was the measur oop evaluat ? Test Plots ained within	red SAR tion was s). n +/-2°C
Nc	ote(s)	3. 4. 5. 6.	The are down ar The pow levels to also per The fluid of the fluid Dielectri	a scan e nd the b ver droc o report formed d tempe uid temp ectric p c Probe	evaluation atteries we ps measu scaled SA in the maxi rature was perature rep arameters Kit and ar	was performe re replaced w red by the DA R results as imum SAR lev measured pr ported during of the simulat n HP 8753ET	d with a full ith fully char SY4 system shown in th vel configura- tior to and a the dielectric red tissue m Network Ana	y charged ba rged batteries n for the dura e above test ation and the fter the SAR c parameter ixtures were alyzer (see A	tttery. After s prior to the data table evaluation evaluation measurement measured ppendix C)	the area sca e zoom scan SAR evaluati . A SAR-ver plot is shown s to ensure the ents. prior to the Sa	in was col evaluatior ons were sus-Time in Append ne temper AR evalua	mpleted th added to power dro dix A (SAF rature rem ations usin	e radio was the measur oop evaluat R Test Plots ained within g an ALS-F	red SAR tion was s). n +/-2°C PR-DIEL

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver					iquare Communications
2007 Celltech La	bs Inc.	This document is not to be reprodu	uced in whole	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 6 of 42

lesting and Engineering Services Lat

ate(s) of Evaluation	Test Report Serial No.	<u>Report Revision No.</u>	ilac-MR
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificat
January 29, 2007	Specific Absorption Rate	General Population	

5.0 DETAILS OF SAR EVALUATION

D

The TriSquare Communications Inc. Model(s): TSX300, TSX200, TSX100 900 MHz Portable FHSS XRS PTT Radio Transceiver FCC ID: O9GTSX300 was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure environment) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

- 1. The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the outer surface of the SAM phantom (planar section). A 2.5 cm spacing was maintained between the front of the DUT and the outer surface of the SAM phantom (planar section).
- 2. The DUT was tested in a body-worn configuration with the back of the radio placed parallel to the outer surface of the SAM phantom (planar section). The attached belt-clip accessory was touching the SAM phantom (planar section) and provided a 1.5 cm spacing from the back of the DUT to the outer surface of the SAM phantom (planar section). The DUT was evaluated for body-worn SAR with a generic ear-microphone audio accessory connected to the audio port.
- 3. The RF conducted output power of the DUT could not be measured due to a non-detachable antenna. The DUT was evaluated for SAR at the maximum conducted output power level preset by the manufacturer.
- 4. The DUT was evaluated for SAR at the maximum ERP levels measured by Timco Engineering prior to the SAR evaluations (radiated power measurements using the signal substitution method).
- 5. The power drift of the DUT during the SAR evaluations was measured by the DASY4 system.
- 6. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled down and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 7. The DUT was tested in continuous transmit operation at maximum power with a modulated signal on a fixed frequency (frequency hopping disabled) at 100% duty cycle with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 8. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 9. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C).

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Company:	TriSq	uare Communications Inc.	Inc. FCC ID: 09GTSX300 IC ID: 3823A-300					
Model(s):	т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver					quare Communications
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab							abs Inc.	Page 7 of 42

Celltech Testing and Engineering Services Late	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed at the planar section of the SAM phantom with a 900MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an ALS-PR-DIEL Dielectric Probe Kit and HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plot).

	SYSTEM PERFORMANCE CHECK EVALUATION															
Test Date Freq. MHz	SAR 1g (W/kg)			Dielectric Constant _{&r}			Conductivity σ (mho/m)			ρ (15 m/m ³)	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press	
	Freq. MHz	IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	(Kg/m [*])	(°C)	(°C)	(cm)	(%)	(kPa)
Jan 24	Brain	2.70 ±10%	2.58	-4.4%	41.5±5%	42.2	+1.7%	0.97 ±5%	0.94	-3.1%	1000	23.4	22.5	≥ 15	36	102.2
Note	e(s)	1. The fluit temperatur	1. The fluid temperature was measured prior to and after the SAR evaluation to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.													
		2. The SA	R evaluat	ions we	re performe	d within 2	24 hours	of the syst	em perfo	rmance c	heck.					

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz F	Portable FHSS XF	dio Transceiver	Tris	quare Communications	
2007 Celltech La	abs Inc.	This document is not to be reprodu	uced in whole	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 8 of 42

Celltech Testing and Engineering Services Late	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

8.0 SIMULATED EQUIVALENT TISSUES

The 900MHz simulated tissue mixtures consisted of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

900 MHz TISSUE MIXTURES						
INGREDIENT	900 MHz Brain	900 MHz Body				
Water	40.71 %	53.79 %				
Sugar	56.63 %	45.13 %				
Salt	1.48 %	0.98 %				
Bactericide	0.19 %	0.10 %				
HEC	0.99 %	-				

9.0 SAR SAFETY LIMITS

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			
The Spatial Average value of the SAR average	ged over the whole body.				
The Spatial Peak value of the SAR averaged cube) and over the appropriate averaging time	d over any 1 gram of tissue (defined a ne.	s a tissue volume in the shape of a			
The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.					
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.					
Controlled environments are defined as locat of their potential exposure and can exercise	tions where there is potential exposure control over their exposure.	of individuals who have knowledge			

Company:	TriSq	uare Communications Inc.	FCC ID: 09GTSX300 IC ID: 3823A-300				
Model(s):	TSX300, TSX200, TSX100		900MHz Portable FHSS XRS PTT Radio Transceiver			TriSquare Communications	
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					abs Inc.	Page 9 of 42	

Date(s) of Evaluation	Test Report Serial No.	Report Revision No.	ilac-MF
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
Report Issue Date	Description of Test(s)	RF Exposure Category	Certificat
January 29, 2007	Specific Absorption Rate	General Population	

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: RX60L				
Repeatability	0.02 mm				
No. of axis	6				
Data Acquisition Electronic (DAE) System				
Cell Controller					
Processor	AMD Athlon XP 2400+				
Clock Speed	2.0 GHz				
Operating System	Windows XP Professional				
Data Converter					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Softwaro	Measurement Software: DASY4, V4.7 Build 44				
Software	Postprocessing Software: SEMCAD, V1.8 Build 171				
Connecting Lines	Optical downlink for data and status info.; Optical uplink for commands and clock				
DASY4 Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	ET3DV6				
Serial No.	1387				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
Phantom(s)					
Туре	SAM V4.0C				
Shell Material	Fiberglass				
Bottom Thickness	2.0 ±0.1 mm				
Outer Dimensions	Approx. 25 liters				

Company:	TriSquare Communications Inc.		FCC ID:	O9GTSX300 IC ID:		3823A-300		
Model(s):	TSX300, TSX200, TSX100		900MHz Portable FHSS XRS PTT Radio Transceiver			TriSquare Communications		
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs					abs Inc.	Page 10 of 42		

Celltech Testing and Engineering Services Lat	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core Built-in shielding against static charges	
Calibration:	PEEK enclosure material (resistant to organic solvents, glycol) In air from 10 MHz to 2.5 GHz	
Cambradon	In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy $\pm 8\%$)	
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to $>$ GHz)	
Directivity:	$\pm 0.2 \text{ dB}$ in brain tissue (rotation around probe axis)	
Dynamic Range	\pm 0.4 dB in brain tissue (rotation normal to probe axis) : 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB	
Surface Detect:	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces	
Dimensions:	Overall length: 330 mm Tip length: 16 mm	
	Body diameter: 12 mm	
A 12 12	Distance from probe tip to dipole centers: 2.7 mm	N A
Application:	General dosimetry up to 3 GHz Compliance tests of mobile phone	ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix G for specifications of the SAM phantom V4.0C).

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Company:	TriSquare Communications Inc.		FCC ID: 09GTSX300 IC ID:		3823A-300		
Model(s):	TSX300, TSX200, TSX100		900MHz Portable FHSS XRS PTT Radio Transceiver			Tris	quare Communications
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 11 of 42	

SAM Phantom V4.0C

Date(s) of Evaluation	Test R
January 24, 2007	012207
Report Issue Date	Descr
January 29, 2007	Specific

eport Serial No. 7O9G-T813-S15U ription of Test(s) Specific Absorption Rate

ACCREDITED Certificate No. 2470.01

14.0 TEST EQUIPMENT LIST

	TEST EQUIP	MENT	ASSET NO		D	ATE	CALIBRATION
USED	DESCR	RIPTION	ASSET NO.	SERIAL NO.	CALIE	BRATED	DUE DATE
х	Schmid & Partne	er DASY4 System	-	-		-	-
х	-DASY4 Meas	urement Server	00158	1078	N/A		N/A
х	-Robot		00046	599396-01	1	N/A	N/A
х	-D.	AE4	00019	353	21.	Jun06	21Jun07
	-D.	AE3	00018	370	086	eb06	08Feb07
х	-ET3DV6 E	-Field Probe	00016	1387	161	Mar06	16Mar07
	-EX3DV4 E	-Field Probe	00125	3547	14	eb06	14Feb07
	-300MHz Va	lidation Dipole	00023	135	230	Oct06	23Oct07
	-450MHz Va	lidation Dipole	00024	136	07[Dec06	07Dec07
	925MHz \/o	lidation Dinolo	00022	411	Brain	28Mar06	28Mar07
			00022	411	Body	27Mar06	27Mar07
х		lidation Dinala	00020	054	Brain	06Jun06	06Jun07
			00020	054	Body	06Jun06	06Jun07
	-1640MHz Validation Dipole		00211	0180	Brain	07Aug06	07Aug07
	-1800MHz Validation Dipole		00021	247	Brain	08Jun06	08Jun07
				247	Body	09Jun06	09Jun07
	- 1900MHz Validation Dipole		00032	151	Brain	09Jun06	09Jun07
				151	Body	12Jun06	12Jun07
	-2450MHz Va	alidation Dipole	00025	150	Body	24Apr06	24Apr07
		-5200MHz		1031	Body	18Jul06	18Jul07
	5GHz Validation	-5500MHz	00126		Body	14Nov06	14Nov07
	Dipole	5000141-			Brain	15Mar06	15Mar07
		-300010172			Body	18Jul06	18Jul07
х	-SAM Pha	ntom V4.0C	00154	1033	1	N/A	N/A
	-Barski Pla	nar Phantom	00155	03-01	1	N/A	N/A
	-Plexiglas Side	Planar Phantom	00156	161	N/A		N/A
	-Plexiglas Validati	on Planar Phantom	00157	137	1	N/A	N/A
х	ALS-PR-DIEL D	ielectric Probe Kit	00160	260-00953	1	N/A	N/A
х	Gigatronics 865	52A Power Meter	00110	1835801	12Apr06		12Apr07
	Gigatronics 865	52A Power Meter	00007	1835272	03F	eb06	03Feb07
х	Gigatronics 8070	1A Power Sensor	00011	1833542	03	eb06	03Feb07
х	Gigatronics 8070	1A Power Sensor	00013	1833713	03	eb06	03Feb07
х	HP 8753ET N	etwork Analyzer	00134	US39170292	18/	Apr06	18Apr07
х	HP 8648D Si	gnal Generator	00005	3847A00611	1	N/A	N/A
	Rohde & Schwarz SM	/IR40 Signal Generator	00006	100104	06/	Apr06	06Apr07
х	Amplifier Research 5	S1G4 Power Amplifier	00106	26235	N/A		N/A

Company:	TriSq	uare Communications Inc.	FCC ID:	CC ID: O9GTSX300 IC ID: 38		3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz F	Portable FHSS XF	RS PTT Rad	dio Transceiver	Tris	quare Communications
2007 Celltech Labs Inc. This document is not to be reprodu			uced in whole	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 12 of 42

Date(s) of Evaluation	Test Report Serial No.	Report Revision No.	- sunnanter
January 24, 2007	01220709G-1813-5150	Revision 1.0	ilac-M
Report Issue Date	Description of Test(s)	RF Exposure Category	In the second second
January 29, 2007	Specific Absorption Rate	General Population	Certifica

15.0 MEASUREMENT UNCERTAINTIES

UN	CERTAINT	Y BUDGET FOR	R DEVICE EVAL	UATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (900 MHz) 5.5 Norm		Normal	1	1	5.5	×
Axial isotropy of the probe	ial isotropy of the probe 4.7 Rectangular 1.73205		1.732050808	0.7	1.9	x
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	œ
Spatial resolution	0	Rectangular	1.732050808	1	0.0	00
Boundary effects	1	Rectangular	1.732050808	1	0.6	œ
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	x
Detection limit	1	Rectangular	1.732050808	1	0.6	x
Readout electronics	0.3	Normal	1	1	0.3	x
Response time	0.8	Rectangular	1.732050808	1	0.5	8
Integration time	2.6	Rectangular	1.732050808	1	1.5	ø
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	x
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	x
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	œ
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	œ
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	ø
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	ø
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	8
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	8
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	ø
Combined Standard Uncertaint	y				11.24	
Expanded Uncertainty (k=2)					22.48	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Company:	TriSq	uare Communications Inc.	unications Inc. FCC ID: O9GTSX300 IC ID: 3823A-300		FCC ID: O9GTSX300 IC ID:		7	
Model(s):	TS	SX300, TSX200, TSX100	3X200, TSX100 900MHz Portable FHSS XRS PTT Radio Transceiver			Tris	quare Communications	
2007 Celltech La	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs				abs Inc.	Page 13 of 42		

-				
	Date(s) of Evaluation	Test Report Serial No.	Report Revision No.	. white the
	January 24, 2007	012207O9G-T813-S15U	Revision 1.0	ilac-
	Report Issue Date	Description of Test(s)	RF Exposure Category	
	January 29, 2007	Specific Absorption Rate	General Population	Certific

MEASUREMENT UNCERTAINTIES (Cont.)

UN	CERTAINT	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (900 MHz)	5.5	Normal	1	1	5.5	8
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	80
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	8
Spatial resolution	0	Rectangular	1.732050808	1	0.0	80
Boundary effects	1	Rectangular	1.732050808	1	0.6	80
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	8
Detection limit	1	Rectangular	1.732050808	1	0.6	8
Readout electronics	0.3	Normal	1	1	0.3	8
Response time	0	Rectangular	1.732050808	1	0.0	8
Integration time	0	Rectangular	1.732050808	1	0.0	8
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	8
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	8
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	8
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	8
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	8
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	80
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	8
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	8
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	8
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	8
Combined Standard Uncertainty	,				9.57	
Expanded Uncertainty (k=2)					19.14	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	TS	SX300, TSX200, TSX100	900MHz F	Portable FHSS XF	RS PTT Rad	dio Transceiver	TriS	quare Communications
2007 Celltech La	7 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab				abs Inc.	Page 14 of 42		

Date(s) of Evaluation	Test Report Serial No.	Report Revision No.	
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 29, 2007	Specific Absorption Rate	General Population	

16.0 REFERENCES

[1] Federal Communications Commission - "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.

[2] Health Canada - "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.

[3] Federal Communications Commission - "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada - "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.

[5] IEEE Standard 1528-2003 - "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

[6] ANSI/IEEE C95.1-2005 - "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz", New York: IEEE, April 2006.

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	quare Communications
2007 Celltech La	17 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab				abs Inc.	Page 15 of 42		

Celltech	
----------	--

Date(s) of Evaluation	Test Report Serial No.	Report Revision No.	
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 29, 2007	Specific Absorption Rate	General Population	

APPENDIX A - SAR MEASUREMENT DATA

Company:	TriSq	uare Communications Inc.	FCC ID:	FCC ID: 09GTSX300 IC ID:		3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz F	Portable FHSS XF	RS PTT Rad	dio Transceiver	Tris	equare Communications
2007 Celltech Labs Inc. This document is not to be reprodu			uced in whole	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 16 of 42

Callback	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	<u>Report Revision No.</u> Revision 1.0	
Testing and Engineering Services Lat	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Face-Held SAR - NiMH Battery Pack - 915.000 MHz - Mid Channel

DUT: TriSquare; Model: TSX300; Type: 900 MHz Portable FHSS XRS PTT Radio Transceiver; Serial: None

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

4.8V, 750mAh NiMH Battery Pack RF Output Power: 0.850 Watts (ERP) Frequency: 915.000 MHz; Duty Cycle: 1:1 Communication System: Modulated Fixed Frequency Medium: HSL900 Medium parameters used: f = 915 MHz; σ = 0.94 mho/m; ϵ_r = 42.2; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.35, 6.35, 6.35); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 21/06/2006

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - Mid Channel - 915.000 MHz Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - Mid Channel - 915.000 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.2 V/m; Power Drift = -1.42 dB Peak SAR (extrapolated) = 2.20 W/kg SAR(1 g) = 1.59 mW/g; SAR(10 g) = 1.07 mW/g Maximum value of SAR (measured) = 1.77 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	Square Communications
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech La					abs Inc.	Page 17 of 42	

Callback	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	st Report Serial No.Report Revision No.20709G-T813-S15URevision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Z-Axis Scan

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300			
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	equare Communications	
2007 Celltech Labs Inc. This document is not to be reproduc			uced in whole	or in part without the p	prior written pe	ermission of Celltech L	abs Inc.	Page 18 of 42	

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	<u>Report Revision No.</u> Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

SAR-versus-Time Power Droop Evaluation

Face-Held Configuration NiMH Battery Pack Mid Channel 915.000 MHz

Max. SAR: 1.708 mW/g Min. SAR: 1.266 mW/g (-1.30 dB) SAR after 340s: 1.383 mW/g (-0.941 dB) (340s = Zoom Scan Duration) (800s = Area Scan Duration)

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				quare Communications	
2007 Celltech La	abs Inc.	This document is not to be reprodu	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 19 of 42	

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	<u>Report Revision No.</u> Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Face-Held SAR - NiMH Battery Pack - 906.275 MHz - Low Channel

DUT: TriSquare; Model: TSX300; Type: 900 MHz Portable FHSS XRS PTT Radio Transceiver; Serial: None

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

4.8V, 750mAh NiMH Battery Pack RF Output Power: 0.938 Watts (ERP) Frequency: 906.275 MHz; Duty Cycle: 1:1 Communication System: Modulated Fixed Frequency Medium: HSL900 Medium parameters used: f = 906.275 MHz; σ = 0.94 mho/m; ϵ_r = 42.2; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.35, 6.35, 6.35); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 21/06/2006

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - Low Channel - 906.275 MHz Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - Low Channel - 906.275 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.0 V/m; Power Drift = -1.23 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.41 mW/g; SAR(10 g) = 1.01 mW/g Maximum value of SAR (measured) = 1.50 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	quare Communications
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 20 of 42		

Callback	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	<u>Report Revision No.</u> Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Face-Held SAR - NiMH Battery Pack - 923.750 MHz - High Channel

DUT: TriSquare; Model: TSX300; Type: 900 MHz Portable FHSS XRS PTT Radio Transceiver; Serial: None

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

4.8V, 750mAh NiMH Battery Pack RF Output Power: 0.945 Watts (ERP) Frequency: 923.750 MHz; Duty Cycle: 1:1 Communication System: Modulated Fixed Frequency Medium: HSL900 Medium parameters used: f = 923.750 MHz; σ = 0.94 mho/m; ϵ_r = 42.2; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.35, 6.35, 6.35); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 21/06/2006

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - High Channel - 923.750 MHz Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - High Channel - 923.750 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.1 V/m; Power Drift = -1.23 dB Peak SAR (extrapolated) = 2.06 W/kg SAR(1 g) = 1.47 mW/g; SAR(10 g) = 1.06 mW/g Maximum value of SAR (measured) = 1.62 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	equare Communications
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					abs Inc.	Page 21 of 42	

Callback	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Face-Held SAR - Alkaline Batteries - 915.000 MHz - Mid Channel

DUT: TriSquare; Model: TSX300; Type: 900 MHz Portable FHSS XRS PTT Radio Transceiver; Serial: None

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

AA Alkaline Batteries x3 (4.5 V) RF Output Power: 0.850 Watts (ERP) Frequency: 915.000 MHz; Duty Cycle: 1:1 Communication System: Modulated Fixed Frequency Medium: HSL900 Medium parameters used: f = 915.000 MHz; σ = 0.94 mho/m; ϵ_r = 42.2; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.35, 6.35, 6.35); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 21/06/2006

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - Mid Channel - 915.000 MHz Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Face-Held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom - Mid Channel - 915.000 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.2 V/m; Power Drift = -0.619 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.958 mW/g; SAR(10 g) = 0.684 mW/g Maximum value of SAR (measured) = 1.02 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	quare Communications
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					abs Inc.	Page 22 of 42		

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	<u>Report Revision No.</u> Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Body-Worn SAR - NiMH Battery Pack - 915.000 MHz - Mid Channel

DUT: TriSquare; Model: TSX300; Type: 900 MHz Portable FHSS XRS PTT Radio Transceiver; Serial: None

Body-Worn Accessory: Plastic Belt-Clip (with metal spring); Audio Accessory: Generic Ear-Microphone

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

4.8V, 750mAh NiMH Battery Pack RF Output Power: 0.850 Watts (ERP) Frequency: 915.000 MHz; Duty Cycle: 1:1 Communication System: Modulated Fixed Frequency Medium: M900 Medium parameters used: f = 915.000 MHz; σ = 1.02 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.04, 6.04, 6.04); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Mid Channel - 915.000 MHz Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Mid Channel - 915.000 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 36.2 V/m; Power Drift = -1.32 dB Peak SAR (extrapolated) = 1.60 W/kg SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.863 mW/g Maximum value of SAR (measured) = 1.29 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	quare Communications
2007 Celltech La	7 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					abs Inc.	Page 23 of 42	

Callback	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Testing and Engineering Services Lat	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Z-Axis Scan

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300			
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver			Tris	equare Communications		
2007 Celltech Labs Inc. This document is not to be reprodu			uced in whole	or in part without the p	prior written pe	ermission of Celltech L	abs Inc.	Page 24 of 42	

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Body-Worn SAR - NiMH Battery Pack - 906.275 MHz - Low Channel

DUT: TriSquare; Model: TSX300; Type: 900 MHz Portable FHSS XRS PTT Radio Transceiver; Serial: None

Body-Worn Accessory: Plastic Belt-Clip (with metal spring); Audio Accessory: Generic Ear-Microphone

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

4.8V, 750mAh NiMH Battery Pack RF Output Power: 0.938 Watts (ERP) Frequency: 906.275 MHz; Duty Cycle: 1:1 Communication System: Modulated Fixed Frequency Medium: M900 Medium parameters used f = 906.275 MHz; σ = 1.02 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.04, 6.04, 6.04); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Low Channel - 906.275 MHz Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Low Channel - 906.275 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 34.3 V/m; Power Drift = -1.18 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.852 mW/g Maximum value of SAR (measured) = 1.22 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz F	Portable FHSS XF	RS PTT Rad	dio Transceiver	Tris	quare Communications
2007 Celltech La	007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 25 of 42		

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Body-Worn SAR - NiMH Battery Pack - 923.750 MHz - High Channel

DUT: TriSquare; Model: TSX300; Type: 900 MHz Portable FHSS XRS PTT Radio Transceiver; Serial: None

Body-Worn Accessory: Plastic Belt-Clip (with metal spring); Audio Accessory: Generic Ear-Microphone

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

4.8V, 750mAh NiMH Battery Pack RF Output Power: 0.945 Watts (ERP) Frequency: 923.750 MHz; Duty Cycle: 1:1 Communication System: Modulated Fixed Frequency Medium: M900 Medium parameters used: f = 923.750 MHz; σ = 1.02 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.04, 6.04, 6.04); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - High Channel - 923.750 MHz Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - High Channel - 923.750 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.7 V/m; Power Drift = -1.11 dB Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.789 mW/g Maximum value of SAR (measured) = 1.15 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	X300, TSX200, TSX100 900MHz Portable FHSS XRS PTT Rac				dio Transceiver	TriS	quare Communications
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					abs Inc.	Page 26 of 42		

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	<u>Report Revision No.</u> Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Body-Worn SAR - Alkaline Batteries - 915.000 MHz - Mid Channel

DUT: TriSquare; Model: TSX300; Type: 900 MHz Portable FHSS XRS PTT Radio Transceiver; Serial: None

Body-Worn Accessory: Plastic Belt-Clip (with metal spring); Audio Accessory: Generic Ear-Microphone

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

AA Alkaline Batteries x3 (4.5 V) RF Output Power: 0.850 Watts (ERP) Frequency: 915.000 MHz; Duty Cycle: 1:1 Communication System: Modulated Fixed Frequency Medium: M900 Medium parameters used: f = 915.000 MHz; σ = 1.02 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.04, 6.04, 6.04); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 21/06/2006

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Mid Channel - 915.000 MHz Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom - Mid Channel - 915.000 MHz Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.6 V/m; Power Drift = -0.680 dB Peak SAR (extrapolated) = 1.00 W/kg SAR(1 g) = 0.782 mW/g; SAR(10 g) = 0.575 mW/g Maximum value of SAR (measured) = 0.827 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver			Tris	quare Communications	
2007 Celltech La	07 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech L					abs Inc.	Page 27 of 42	

ate(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 29, 2007	Specific Absorption Rate	General Population	Certificate No. 2470.01

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Company:	TriSq	TriSquare Communications Inc.		O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver			Tris	quare Communications	
2007 Celltech La	abs Inc.	This document is not to be reprodu	uced in whole	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 28 of 42

Callback	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	<u>Report Revision No.</u> Revision 1.0	
Testing and Engineering Services Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

System Performance Check - 900 MHz Dipole

DUT: Dipole 900 MHz; Asset: 00020; Serial: 054; Validation: 06/06/2006

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2kPa; Humidity: 36%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 900 MHz; σ = 0.94 mho/m; ϵ_r = 42.2; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(6.35, 6.35, 6.35); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

900 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.63 mW/g

900 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.7 V/m; Power Drift = 0.083 dB Peak SAR (extrapolated) = 3.86 W/kg SAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.79 mW/g

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	quare Communications
2007 Celltech La	abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lat				abs Inc.	Page 29 of 42	

Collhoolo	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Testing and Engineering Services Lat	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

Z-Axis Scan

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	quare Communications
2007 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab				abs Inc.	Page 30 of 42	

6	elltech
	Testing and Engineering Services Lab

Date(s) of Evaluation	Test Report Serial No.	Report Revision No.	
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	ACCREDITED
January 29, 2007	Specific Absorption Rate	General Population	
0000	op como r as comparementario	oonoran opalation	

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	equare Communications
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs				abs Inc.	Page 31 of 42		

900 MHz System Performance Check & DUT Evaluation (Brain)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Wed 24/Jan/2007 Frequency (GHz) FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

******	**********	*******	********	*******
Freq	FCC_eH	IFCC_sH	HTest_e	Test_s
0.8000	41.68	0.90	43.33	0.85
0.8100	41.63	0.90	43.30	0.86
0.8200	41.58	0.90	42.99	0.86
0.8300	41.53	0.90	42.91	0.87
0.8400	41.50	0.91	42.95	0.88
0.8500	41.50	0.92	42.68	0.90
0.8600	41.50	0.93	42.54	0.90
0.8700	41.50	0.94	42.49	0.91
0.8800	41.50	0.95	42.43	0.93
0.8900	41.50	0.96	42.20	0.93
<mark>0.9000</mark>	41.50	0.97	42.20	0.94
0.9100	41.50	0.98	42.18	0.95
0.9200	41.49	0.98	41.97	0.96
0.9300	41.47	0.99	41.90	0.96
0.9400	41.45	0.99	41.77	0.98
0.9500	41.43	0.99	41.64	0.98
0.9600	41.42	1.00	41.61	0.99
0.9700	41.40	1.00	41.48	1.00
0.9800	41.38	1.01	41.62	1.01
0.9900	41.36	1.01	41.32	1.03
1.0000	41.34	1.01	41.22	1.03

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	equare Communications
2007 Celltech La	ibs Inc.	This document is not to be reprodu	uced in whole	or in part without the p	prior written pe	ermission of Celltech L	abs Inc.	Page 32 of 42

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	<u>Report Revision No.</u> Revision 1.0	
ices Lab	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

900 MHz DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter

 Wed 24/Jan/2007

 Frequency (GHz)

 FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon

 FCC_eB FCC Billetin 65 Supplement C (June 2001) Limits for Head Sigma

 FCC_eB FCC Limits for Body Epsilon

 FCC_sB FCC Limits for Body Sigma

 Test_e Epsilon of UIM

 Test_s Sigma of UIM

 Freq
 FCC_eB FCC_sB Test_e Test_s

 0.8000
 55.34
 0.97
 54.96
 0.91

0.8000	55.34	0.97	54.96	0.91
0.8100	55.30	0.97	55.12	0.93
0.8200	55.26	0.97	54.79	0.94
0.8300	55.22	0.97	54.71	0.95
0.8400	55.18	0.98	54.63	0.96
0.8500	55.15	0.99	54.49	0.97
0.8600	55.12	1.00	54.32	0.98
0.8700	55.09	1.01	54.34	0.99
0.8800	55.06	1.03	54.31	1.00
0.8900	55.03	1.04	54.18	1.01
<mark>0.9000</mark>	55.00	1.05	54.07	1.02
0.9100	55.00	1.06	54.01	1.02
0.9200	54.99	1.06	53.82	1.04
0.9300	54.97	1.07	53.84	1.04
0.9400	54.95	1.07	53.79	1.06
0.9500	54.93	1.08	53.50	1.06
0.9600	54.92	1.08	53.59	1.07
0.9700	54.90	1.08	53.46	1.08
0.9800	54.88	1.09	53.42	1.09
0.9900	54.86	1.09	53.37	1.09
1.0000	54.84	1.10	53.12	1.12

Company:	TriSq	riSquare Communications Inc.		: O9GTSX300 IC ID:		3823A-300		
Model(s):	т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver				TriS	quare Communications
2007 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 33 of 42		

<u>ate(s) of Evaluation</u>	Test Report Serial No.	<u>Report Revision No.</u>	Iac-MRA
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate
January 29, 2007	Specific Absorption Rate	General Population	

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver					quare Communications
2007 Celltech Labs Inc. This document is not to be reprodu			uced in whole	or in part without the p	prior written pe	ermission of Celltech L	abs Inc.	Page 34 of 42

	Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Testing and Engineering Services Lats	<u>Report Issue Date</u> January 29, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

FACE-HELD SAR TEST SETUP PHOTOGRAPHS 2.5 cm Spacing from Front of DUT to Planar Phantom

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	del(s): TSX300, TSX200, TSX100 900MHz Portable FHSS XRS PTT Radio Transceiver				Tri:	Square Communications		
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab						abs Inc.	Page 35 of 42	

Celltech Testing and Engineering Services Lat
--

<u>Date(s) of Evaluation</u>	Test Report Serial No.	Report Revision No.	
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Certificate No. 2470.01
January 29, 2007	Specific Absorption Rate	General Population	

BODY-WORN SAR TEST SETUP PHOTOGRAPHS 1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom With Generic Ear-Microphone Audio Accessory

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300	7	
Model(s):	lodel(s): TSX300, TSX200, TSX100			Portable FHSS XF	RS PTT Rad	dio Transceiver	TriS	quare Communications
2007 Celltech Labs Inc. This document is not to be reprodu			uced in whole	or in part without the p	prior written pe	ermission of Celltech L	abs Inc.	Page 36 of 42

DUT PHOTOGRAPHS

Front of DUT

Back of DUT

Back of DUT with Belt-Clip

Top end of DUT

Bottom end of DUT

Company:	TriSc	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	T	TSX300, TSX200, TSX100 900MHz Portable FHSS XRS PTT Radio Transceiver				Tris	quare Communications	
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltec					rmission of Celltech L	abs Inc.	Page 37 of 42	

Date(s) of Evaluation
January 24, 2007
Report Issue Date
January 29, 2007

DUT PHOTOGRAPHS

Left Side of DUT with Belt-Clip (P/N: TR000020-008)

Right Side of DUT with Belt-Clip (P/N: TR000020-008)

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver					quare Communications
2007 Celltech Labs Inc. This document is not to be reprodu			uced in whole	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 38 of 42

Date(s) of Evaluation	
January 24, 2007	
Report Issue Date	I
January 29, 2007	I

DUT PHOTOGRAPHS

DUT with Generic Ear-Microphone Audio Accessory

Company:	TriSq	uare Communications Inc.	FCC ID:	O9GTSX300	IC ID:	3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver					quare Communications
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech La						abs Inc.	Page 39 of 42	

Celltech Testry and Engineering Services Late
--

Date(s) of Evaluation	Test Report Serial No.	Report Revision No.	
January 24, 2007	012207O9G-T813-S15U	Revision 1.0	
<u>Report Issue Date</u>	Description of Test(s)	RF Exposure Category	ACCREDITED
January 29, 2007	Specific Absorption Rate	General Population	Certificate No. 2470.01

APPENDIX E - SYSTEM VALIDATION

Company:	TriSq	uare Communications Inc.	FCC ID:	C ID: 09GTSX300 IC ID: 3823A-300				
Model(s):	т	TSX300, TSX200, TSX100 900MHz Portable FHSS XRS F				dio Transceiver	TriS	quare Communications
2007 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab						abs Inc.	Page 40 of 42

Celltech	Date of Evaluation:		June 06, 2006		Document Issue No.:		SV900-060606-R1.0	
	Evaluation Type:	Syst	tem Validation	Validation Dipole:		900 MHz	Fluid Type:	Brain

900 MHz SYSTEM VALIDATION

Туре:	900 MHz Validation Dipole
Asset Number:	00020
Serial Number:	054
Place of Validation:	Celltech Labs Inc.
Date of Validation:	June 06, 2006

Celltech Labs Inc. hereby certifies that the 900 MHz System Validation was performed on the date indicated above.

Performed by:

Sean Johnston

Approved by:

Spencer Watson

Celltech Labs Inc. 1955 Moss Court, Kelowna, B.C. Canada V1Y 9L3 Tel. 250-448-7047 • Fax. 250-448-7046 • e-mail: info@celltechlabs.com www.celltechlabs.com

Celltech Tetra nd Engineering Services Lie	Date of Evaluation:		June 06, 2006		Documen	t Issue No.:	SV900-060606-R1.0	
	Evaluation Type:	Sys	tem Validation	Validation Dipole:		900 MHz	Fluid Type:	Brain

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 900MHz	Re{Z} = 56.934Ω
	lm{Z} = 4.3789Ω

Return Loss at 900MHz

-22.283dB

Date of Evaluation:		June 06, 2006		Document Issue No.:		SV900-060606-R1.0	
Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	900 MHz	Fluid Type:	Brain

2. Validation Dipole VSWR Data

Date of Evaluation: Ju		June 06, 20	006	Documen	t Issue No.:	SV900-0606	606-R1.0
Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	900 MHz	Fluid Type:	Brain

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

2.0 ± 0.1 mm
Approx. 25 liters
50 cm (W) x 100 cm (L)

Date of Evaluation:		June 06, 2006		Document Issue No.:		SV900-060606-R1.0	
Evaluation Type:	Sys	tem Validation	Validation Validati		900 MHz	Fluid Type:	Brain

5. 900 MHz System Validation Setup

	Date of Evaluation:		June 06, 2006		Document Issue No.:		SV900-060606-R1.0	
Testing and Engineering Services Lab	Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	900 MHz	Fluid Type:	Brain

6. 900 MHz System Validation Dipole

7. Measurement Conditions

The phantom was filled with 900 MHz Brain tissue simulant.

Relative Permittivity:	40.7 (-1.9 % deviation from target)
Conductivity:	0.95 mho/m (-2.0 % deviation from target)
Fluid Temperature:	22.5 °C
Fluid Depth:	≥ 15.0 cm
Environmental Condition	ns:
Ambient Temperature:	23.1 °C
Barometric Pressure:	101.2 kPa
Humidity:	34%

The 900 MHz Brain tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	40.71%
Sugar	56.63%
Salt	1.48%
Bactericide	0.19%
HEC	0.99%
Target Dielectric Parameters at 23 °C	ε _r = 41.5 (+/- 5%) σ = 0.97 S/m (+/- 5%)

Cilliante	Date of Evaluation:		June 06, 2006		Document Issue No.:		SV900-060606-R1.0	
Testing and Engineering Services Lat:	Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	900 MHz	Fluid Type:	Brain

8. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

Date of Evaluation: June 06, 2006		006	Documen	t Issue No.:	SV900-060606-R1.0		
Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	900 MHz	Fluid Type:	Brain

9. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	2.55	10.20	1.62	6.48	2.76
Test 2	2.57	10.28	1.64	6.56	2.79
Test 3	2.57	10.28	1.64	6.56	2.80
Test 4	2.50	10.00	1.60	6.40	2.72
Test 5	2.50	10.00	1.59	6.36	2.72
Test 6	2.53	10.12	1.62	6.48	2.73
Test 7	2.59	10.36	1.65	6.60	2.82
Test 8	2.53	10.12	1.62	6.48	2.75
Test 9	2.53	10.12	1.62	6.48	2.74
Test 10	2.58	10.32	1.65	6.60	2.79
Average	2.55	10.18	1.63	6.50	2.76

The results have been normalized to 1W (forward power) into the dipole.

Targo @ 1 W averag 1 gran	et SAR att Input ged over n (W/kg)	Measur @ 1 Wa averag 1 gi	ed SAR att Input ed over ram	Deviation from Target	Targe @ 1 Wa averag 10 gram	tt SAR htt Input ed over s (W/kg)	Measur @ 1 Wa average 10 gi	ed SAR att Input ed over rams	Deviation from Target
10.8	+/- 10%	10.18	W/kg	-5.7%	6.9	+/- 10%	6.50	W/kg	-5.8%

Callback	Date of Evaluation:		June 06, 2006		Document Issue No.:		SV900-060606-R1.0	
Testing and Engineering Services Lat	Evaluation Type:	Sys	tem Validation	Validati	ion Dipole:	900 MHz	Fluid Type:	Brain

System Validation - Brain Simulant - 900 MHz Dipole - June 6, 2006

DUT: Dipole 900 MHz; Type: D900V2; Serial: 054; Asset: 00020

Ambient Temp: 23.1 °C; Fluid Temp: 22.5 °C; Barometric Pressure: 101.2 kPa; Humidity: 34% Communication System: CW Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL900 (σ = 0.95 mho/m; ϵ_r = 40.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(6.35, 6.35, 6.35); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 08/02/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

900 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.9 V/m; Power Drift = -0.009 dB SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.76 mW/g

900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.3 V/m; Power Drift = -0.005 dB SAR(1 g) = 2.57 mW/g; SAR(10 g) = 1.64 mW/g Maximum value of SAR (measured) = 2.79 mW/g

900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.1 V/m; Power Drift = 0.037 dB SAR(1 g) = 2.57 mW/g; SAR(10 g) = 1.64 mW/g Maximum value of SAR (measured) = 2.80 mW/g

900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.4 V/m; Power Drift = -0.002 dB SAR(1 g) = 2.50 mW/g; SAR(10 g) = 1.60 mW/g Maximum value of SAR (measured) = 2.72 mW/g

900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.4 V/m; Power Drift = -0.036 dB SAR(1 g) = 2.50 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.72 mW/g

900 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.9 V/m; Power Drift = 0.005 dB SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.73 mW/g

900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.8 V/m; Power Drift = 0.092 dB SAR(1 g) = 2.59 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.82 mW/g

900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.9 V/m; Power Drift = -0.027 dB SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.75 mW/g

900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.8 V/m; Power Drift = 0.041 dB SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.74 mW/g

900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.4 V/m; Power Drift = -0.055 dB SAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.79 mW/g

	Date of Evaluation:		June 06, 2006		Document Issue No.:		SV900-060606-R1.0	
Testing and Engineering Services Lab	Evaluation Type:	Sys	tem Validation	Validati	ion Dipole:	900 MHz	Fluid Type:	Brain

1 g average of 10 measurements: 2.55 mW/g 10 g average of 10 measurements: 1.63 mW/g

10. Measured Fluid Dielectric Parameters

900 MHz System Validation (Brain)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Tue 06/Jun/2006 Frequency(GHz) FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test e Epsilon of UIM Test_s Sigma of UIM **** ***** Freq FCC_eHFCC_sHTest_e Test_s 0.8000 41.68 0.90 41.92 0.86 0.8100 41.70 0.87 41.63 0.90 0.8200 41.58 0.90 41.74 0.88

0.8300	41.53	0.90	41.60	0.89
0.8400	41.50	0.91	41.43	0.90
0.8500	41.50	0.92	41.34	0.91
0.8600	41.50	0.93	41.35	0.92
0.8700	41.50	0.94	41.06	0.93
0.8800	41.50	0.95	41.13	0.94
0.8900	41.50	0.96	41.08	0.94
0.9000	41.50	0.97	40.72	0.95
0.9100	41.50	0.98	40.80	0.96
0.9200	41.49	0.98	40.68	0.98
0.9300	41.47	0.99	40.57	0.98
0.9400	41.45	0.99	40.56	0.99
0.9500	41.43	0.99	40.28	1.00
0.9600	41.42	1.00	40.29	1.01
0.9700	41.40	1.00	40.19	1.02
0.9800	41.38	1.01	39.91	1.03
0.9900	41.36	1.01	40.01	1.04
1.0000	41.34	1.01	39.86	1.05

1	7.			
	e		ec	h
	Testing an	d Engine	ering Servic	es Lab

Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 29, 2007	Specific Absorption Mate	General i opulation	Certificate No. 2470.01

APPENDIX F - PROBE CALIBRATION

Company:	TriSq	TriSquare Communications Inc.		O9GTSX300	IC ID:	3823A-300		1	
Model(s):	TS	SX300, TSX200, TSX100	900MHz Portable FHSS XRS PTT Radio Transceiver			TriS	quare Communications		
2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permiss				rmission of Celltech L	abs Inc.	Page 41 of 42			

WIS.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

Client Celltech Labs		Certifi	ate No: ET3-13	87_Mar06
CALIBRATION	CERTIFICAT	E	1.500000 그리가 가방 49.520년 7월 20.520년 7월	
Object	ET3DV6 - SN:1	387 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	Kungalari	
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field p	robes	
Calibration date:	March 16, 2006			
Condition of the calibrated item	In Tolerance			
This calibration certificate docum The measurements and the unce	nents the traceability to na ertainties with confidence	tional standards, which realize the phys probability are given on the following pa	tical units of measure liges and are part of t	ements (SI). he certificate.
All calibrations have been condu	cted in the closed laborat	ory facility: environment temperature (2	2 ± 3)°C and humidit	y < 70%.
Calibration Equipment used (M&	TE critical for calibration)			
Primary Standards	ID #	Cal Date (Calibrated by, Certificate	No.) Sched	uled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-0	6
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-0	6
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-0	6
Reference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)) Aug-0	6
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-0	6
Reference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)) Aug-00	6
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_	Jan06) Jan-07	7
DAE4	SN: 654	2-Feb-06 (SPEAG, No. DAE4-654_	Feb06) Feb-07	7
Secondary Standards	ID #	Check Date (in house)	Sched	uled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check	Nov-05) In hou	se check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check	Nov-05) In hou	se check: Nov 06
	Name	Function	Signa	ture
Calibrated by:	Katja Pokovic	Technical Manager	<u>A</u>	is they
Approved by:	Niels Kuster	Quality Manager	Ň	1800
This calibration certificate shall n	ot be reproduced excent i	n full without written approval of the lab	Issued	: March 16, 2006

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:TSLtissue simulating liquidNORMx,y,zsensitivity in free spaceConFsensitivity in TSL / NORMx,y,zDCPdiode compression pointPolarization φ φ rotation around probe axisPolarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1387

Manufactured: Last calibrated: Recalibrated: September 21, 1999 March 18, 2005 March 16, 2006

1

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Fre	e Space ^A	Diode C	compression ^E	3	
NormX	1.62 ± 10.1%	μ V/(V/m) ²	DCP X	92 mV	
NormY	1.72 ± 10.1%	μV/(V/m) ²	DCP Y	92 mV	
NormZ	1.72 ± 10.1%	μV/(V/m) ²	DCP Z	92 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

ISL 900 MHz	Typical SAR gradient: 5 % per mm
-------------	----------------------------------

Sensor Center to	Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	9.3	5.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ **),** ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.62	1.86	6.35 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.5 9	1.97	6.04 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (\, \, \), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	March 18, 2006
Probe Calibration Date:	March 16, 2006

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

The Kay

ET3DV6-SN:1387

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

150 ± 50 MHz	ConvF	8.6 ± 10%	$\varepsilon_r = 52.3 \pm 5\%$
			$\sigma = 0.76 \pm 5\% \text{ mho/m}$
			(head tissue)
150 ± 50 MHz	ConvF	8.2 ± 10%	$\varepsilon_r = 61.9 \pm 5\%$
			$\sigma = 0.80 \pm 5\% \text{ mho/m}$
			(body tissue)
$300 \pm 50 \text{ MHz}$	ConvF	7.8 ± 9%	$\varepsilon_r = 45.3 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
$450 \pm 50 \text{ MHz}$	ConvF	7.4 ± 8%	$\varepsilon_r = 43.5 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
$450 \pm 50 \text{ MHz}$	ConvF	7.3 ± 8%	$\varepsilon_r = 56.7 \pm 5\%$
			$\sigma = 0.94 \pm 5\% \text{ mho/m}$
			(body tissue)
$750 \pm 50 \text{ MHz}$	ConvF	6.6±7%	$\varepsilon_r = 41.8 \pm 5\%$
			$\sigma = 0.89 \pm 5\% \text{ mho/m}$
			(head tissue)
750 ± 50 MHz	ConvF	6.4 ± 7%	$\varepsilon_r = 55.4 \pm 5\%$
			$\sigma = 0.96 \pm 5\% \text{ mho/m}$
			(body tissue)
$1925 \pm 50 \text{ MHz}$	ConvF	$5.0 \pm 7\%$	$\varepsilon_r = 39.8 \pm 5\%$
			$\sigma = 1.48 \pm 5\% \text{ mho/m}$
			(head tissue)
1925 ± 50 MHz	ConvF	$4.7 \pm 7\%$	$\varepsilon_r = 53.2 \pm 5\%$
			$\sigma = 1.60 \pm 5\% \text{ mho/m}$
			(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1. Please see also Section 4.7 of the DASY4 Manual.

6	elltech
	Testing and Engineering Services Lab

Date(s) of Evaluation January 24, 2007	Test Report Serial No. 012207O9G-T813-S15U	Report Revision No. Revision 1.0	
Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
January 29, 2007	Specific Absorption Rate	General Population	Certificate No. 2470.01

APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY

Company:	TriSq	TriSquare Communications Inc.		D: O9GTSX300 IC ID: 3823A-300		3823A-300		
Model(s):	Т	SX300, TSX200, TSX100	100 900MHz Portable FHSS XRS PTT Radio Transceiver		TriS	quare Communications		
2007 Celltech Labs Inc. This document is not to be reprodu			uced in whole	or in part without the p	prior written pe	rmission of Celltech L	abs Inc.	Page 42 of 42

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Туре No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date 18.11.2001 Fin Brubolt Schmid & Partner Signature / Stáme Engineering AG Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79