Product Technical Specification and Customer Design Guidelines

Q26 Extreme Wireless CPU[®]

WM_DEV_Q26EX_PTS_002 006 December 3, 2009

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where blasting is in progress, where explosive atmospheres may be present, near medical equipment, near life support equipment, or any equipment which may be susceptible to any form of radio interference. In such areas, the Sierra Wireless modem **MUST BE POWERED OFF**. The Sierra Wireless modem can transmit signals that could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem **MUST BE POWERED OFF**. When operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard systems.

Note: Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence.

Limitations of Liability

This manual is provided "as is". Sierra Wireless makes no warranties of any kind, either expressed or implied, including any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability arising under or in connection with the Sierra Wireless product, regardless of the number of events, occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the Sierra Wireless product.

Copyright

© 2009 Sierra Wireless. All rights reserved.

Trademarks

AirCard[®] and "Heart of the Wireless Machine[®]" are filed or registered trademarks of Sierra Wireless. Watcher[®] is a trademark of Sierra Wireless, registered in the European Community. Sierra Wireless, the Sierra Wireless logo, the red wave design, and the red-tipped antenna are trademarks of Sierra Wireless.

wavecom

, ., inSIM[®], "YOU MAKE IT, WE MAKE IT WIRELESS[®]",

WAVECOM[®], WISMO[®], Wireless Microprocessor[®], Wireless CPU[®], Open AT[®] are filed or registered trademarks of Sierra Wireless S.A. in France and/or in other countries.

Windows® is a registered trademark of Microsoft Corporation.

QUALCOMM® is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of the respective owners.

Contact Information

	Phone:	1-604-232-1488
Sales Desk:	Hours:	8:00 AM to 5:00 PM Pacific Time
	E-mail:	sales@sierrawireless.com
Post:	Sierra Wireless 13811 Wireless Way Richmond, BC Canada V6V 3A4	
Fax:	1-604-231-1109	
Web:	www.sierrawireless.com	

Consult our website for up-to-date product descriptions, documentation, application notes, firmware upgrades, troubleshooting tips, and press releases: <u>www.sierrawireless.com</u>

Document History

Level	Date	List of revisions	
001	December 22, 2008	Creation	
002	March 18, 2009	Update power consumption figures add thermal design rules	
003	June 05, 2009	Update for Vbatt range, thermal foam and temperature behavior	
004	August 4, 2009	Reformatted in Sierra Wireless style. Updated UART1 tolerance information as follows: The UART1 interface is a 2.8 volts type. Moreover, it is 3.3 volts tolerant. Updated Standards and Recommendations section.	
005	September 16, 2009	Updated Antenna gain of 4.6dBi and additional information in this paragraph of the Standards Recommendations section. Updated CT104-RXD1* to be MUXed with GPIO37	
006	December 3, 2009	 Standards and Recommendations section: Updated FCC notice by adding to the last sentence of one paragraph regarding FCC multi-transmitter information, deleted the following one sentence regarding compliance, and fixed the values in the following sentence to 4.6dBi (850MHz) and 3.4dBi (1900MHz). Interfaces section: Updated 3V/1V8 UICC/SIM interface bullet Updated USIM/SIM card bullet USIM/SIM Interface section Added Using the USIM is recommended over the SIM card sentence 	

Contents

1.	INTRODUCTION	3
	Overview1	3
	References1	3
	Reference Documents 1	3
	List of Abbreviations1	4
	Web Site Support 1	6
2.	GENERAL DESCRIPTION1	7
	General Information1	7
	Overall Dimensions1	7
	Approvals & Quality1	7
	Telecom Features 1	7
	Interfaces 1	8
	Application Processor1	8
	Connectivity1	8
	Functional Architecture1	9
	RF Functionalities	0
	Application Processor2	0
	Operating System	1
		•
3.	INTERFACES	2
3.	INTERFACES	2 2
3.	INTERFACES	2 2 3
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2	2 2 3 3
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2	2 2 3 3 5
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2	2 2 3 3 5 8
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2	2 2 3 3 5 8 9
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 SPI Bus 2	2 2 3 3 5 8 9 9
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 SPI Bus 2 I2C Bus 3	2 2 3 3 5 8 9 9 4
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 I2C Bus 3 Parallel Interface 3	2 2 3 3 5 8 9 9 4 6
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 I2C Bus 3 Parallel Interface 3 General Description 3	2 3 3 5 8 9 9 4 6 6
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 SPI Bus 2 I2C Bus 3 Parallel Interface 3 General Description 3 Pinout 3	2 3 3 5 8 9 9 4 6 6 7
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 SPI Bus 2 I2C Bus 3 Parallel Interface 3 General Description 3 Pinout 3 Asynchronous Access Bus and Timing 3	2 3 3 5 8 9 9 4 6 6 7 7
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 SPI Bus 2 I2C Bus 3 Parallel Interface 3 General Description 3 Asynchronous Access Bus and Timing 3 AC Characteristic of Asynchronous Accesses 3	2 2 3 3 5 8 9 9 4 6 6 7 7 8 6
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 SPI Bus 2 I2C Bus 3 Parallel Interface 3 General Description 3 Pinout 3 Asynchronous Access Bus and Timing 3 AC Characteristic of Asynchronous Accesses 3 Synchronous Access Bus and Timing 3 AC Characteristic of Asynchronous Accesses 3	2 2 3 3 5 8 9 9 4 6 6 7 7 8 9
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 SPI Bus 2 I2C Bus 3 Parallel Interface 3 General Description 3 Asynchronous Access Bus and Timing 3 AC Characteristic of Asynchronous Accesses 3 Synchronous Access Bus and Timing 3 AC Characteristic of Asynchronous Accesses 4	2 2 3 3 5 8 9 9 4 6 6 7 7 8 9 1 0
3.	INTERFACES 2 General Purpose Connector (GPC) 2 Power Supply 2 Power Supply Description and Ground Plane 2 Power Consumption 2 Electrical Information for Digital I/O 2 Serial Interface 2 SPI Bus 2 I2C Bus 3 Parallel Interface 3 General Description 3 Asynchronous Access Bus and Timing 3 AC Characteristic of Asynchronous Accesses 3 Synchronous Access Bus and Timing 3 AC Characteristic of Asynchronous Accesses 4 Example of Typical Application Using Parallel Bus 4	2 2 3 3 5 8 9 9 4 6 6 7 7 8 9 1 2 2

Keyboard Interface	43
Main Serial Link (UART1)	44
Typical Implementation	44
Auxiliary Serial Link (UART2)	47
Typical Implementation	48
USIM/SIM Interface	49
General Description	49
Typical Implementation with SIM Detection	51
General Purpose Input/Output	53
Analog to Digital Converter	54
Digital to Analog Converter	55
Analog Audio Interface	56
Microphone Features	56
Speaker Features	65
Pin Description	69
Buzzer Output	70
Battery Charging Interface	71
Synoptic	72
Charger Recommendations	73
Charging Algorithm	74
Pre-Charging	76
Temperature Monitoring	76
ON / ~OFF Signal	78
Operating Sequences	78
BOOT Signal	81
Reset Signal (~RESET)	82
Reset sequence	82
External Interrupt	84
VCC_2V8 and VCC_1V8 Output	85
BAT-RTC (Backup Battery)	86
Interface Description	86
Typical Application Electrical Diagram	87
LED0 Signal	88
Digital Audio Interface (PCM)	91
Description	91
USB 2.0 Interface	94
Recommended components	95
RF Interface	96
RF Connections	96

	RF Performance	
	Antenna Specifications	
4.	TECHNICAL SPECIFICATIONS	
	General Purpose Connector Pin-out Description	
	Environmental Specifications	100
	Mechanical Specifications	101
	Physical Characteristics	101
	Mechanical Drawings	101
5.	CONNECTOR AND PERIPHERAL DEVICE REFERENCES	103
	General Purpose Connector	103
	USIM Card Reader	103
	Microphone	103
	Speaker	
	Antenna Cable	104
	RF Antenna	
6.	DESIGN GUIDELINES	105
	Hardware and RF	105
	Thermal Recommendations	105
	EMC Recommendations	106
	Power Supply	106
	Layout Requirements	
	Antenna	
	Mechanical Integration	108
	Operating System Upgrade	108
7.	APPENDIX	109
7.	APPENDIX Standards and Recommendations	109 109
7.	APPENDIX Standards and Recommendations Safety Recommendations (for Information Only)	

List of Figures

Figure 1.	Functional architecture19
Figure 2.	Power supply during GSM burst emission24
Figure 3.	SPI Timing diagrams, Mode 0, Master, 4 wires30
Figure 4.	SPI Timing diagrams with SPIx-LOAD signal, Mode 0, Master, 4 wires31
Figure 5.	Example of 4-wire SPI bus application32
Figure 6.	Example of 3-wire SPI bus application
Figure 7.	I ² C Timing diagrams, Master
Figure 8.	Example of I ² C bus application
Figure 9.	Asynchronous access
Figure 10.	Read synchronous timing40
Figure 11.	Write synchronous timing40
Figure 12.	Example of parallel bus application (NAND)42
Figure 13.	Example of keyboard implementation43
Figure 14.	Example of RS-232 level shifter implementation for UART145
Figure 15.	Example of V24/CMOS serial link implementation for UART146
Figure 16.	Example of full modem V24/CMOS serial link implementation for UART146
Figure 17.	Example of RS-232 level shifter implementation for UART248
Figure 18.	Example of SIM Socket implementation51
Figure 19.	Example of MIC1 input differential connection with LC filter
Figure 20.	Example of MIC1 input differential connection without LC filter59
Figure 21.	Example of MIC1 input single-ended connection with LC filter60
Figure 22.	Example of MIC1 input single-ended connection without LC filter60
Figure 23.	Example of MIC2 input differential connection with LC filter63
Figure 24.	Example of MIC2 input differential connection without LC filter63
Figure 25.	Example of MIC2 input single-ended connection with LC filter64
Figure 26.	Example of MIC2 input single-ended connection without LC filter64
Figure 27.	Example of Speaker differential connection68
Figure 28.	Example of Speaker single-ended connection68
Figure 29.	Example of buzzer implementation70
Figure 30.	Example of LED driven by the BUZZ-OUT output71
Figure 31.	Synoptic of battery charging
Figure 32.	Ni-Cd / Ni-Mh charging waveform74
Figure 33.	Li-Ion full charging waveform

Figure 34.	Example of ADC application	77
Figure 35.	Power-ON sequence (no PIN code activated)	79
Figure 36.	Power-OFF sequence	81
Figure 37.	Example of BOOT pin implementation	82
Figure 38.	Reset sequence waveform	83
Figure 39.	Example of \sim RESET pin connection with switch configuration	84
Figure 40.	Example of \sim RESET pin connection with transistor configuration	84
Figure 41.	Real Time Clock power supply	86
Figure 42.	RTC supplied by a gold capacitor	87
Figure 43.	RTC supplied by a non-rechargeable battery	87
Figure 44.	RTC supplied by a rechargeable battery cell	88
Figure 45.	LED0 state during RESET and Initialization time	90
Figure 46.	Example of GSM activity status implementation	90
Figure 47.	PCM frame waveform	92
Figure 48.	PCM sampling waveform	92
Figure 49.	Example of USB implementation	95
Figure 50.	Mechanical drawing	102
Figure 51.	Thermal foam mounting	105
Figure 52.	Layout requirement	107

List of Tables

Table 1.	Abbreviations14
Table 2.	Web Site Support Links16
Table 3.	RF Frequency Ranges20
Table 4.	Available GPC Interfaces
Table 5.	Input power supply voltage
Table 6.	Maximum voltage ripple (Uripp) vs. Frequency23
Table 7.	Power Consumption without Open AT® Processing
Table 8.	Power supply pin-out27
Table 9.	2.8 Volt type (2V8)
Table 10.	1.8 Volt type (1V8)
Table 11.	Open drain output type28
Table 12.	Reset state definition
Table 13.	SPI Configuration
Table 14.	AC characteristics
Table 15.	Pins description
Table 16.	Pins description
Table 17.	AC characteristics
Table 18.	Pin description
Table 19.	Pinout Definitions
Table 20.	AC Characteristic of Asynchronous Accesses
Table 21.	AC Characteristic of Asynchronous Accesses41
Table 22.	Address bus size details
Table 23.	Keyboard interface pin description43
Table 24.	UART1 interface pin description44
Table 25.	UART2 interface pin description47
Table 26.	USIM interface pin description
Table 27.	USIM interface electrical characteristics51
Table 28.	Pin description of the SIM socket52
Table 29.	GPIO pin description53
Table 30.	ADC pin description55
Table 31.	ADC electrical characteristics
Table 32.	Pin description of the DAC55
Table 33.	Electrical Characteristics of the DAC55

Table 34.	Equivalent circuits of MIC157
Table 35.	Electrical Characteristics of MIC157
Table 36.	Equivalent circuits of MIC261
Table 37.	Electrical Characteristics of MIC262
Table 38.	Speaker information65
Table 39.	Electrical Characteristics of SPK166
Table 40.	Electrical Characteristics of SPK267
Table 41.	Pin definitions
Table 42.	Pin description of PWM/Buzzer output70
Table 43.	Electrical characteristics
Table 44.	Charger recommendations73
Table 45.	Electrical characteristics of Ni-Cd / Ni-Mh battery timing charge74
Table 46.	Electrical characteristics of Li-Ion battery timing charge75
Table 47.	Pin description of battery charging interface76
Table 48.	Electrical characteristics of battery charging interface76
Table 49.	Pin description78
Table 50.	Electrical characteristics of the signals
Table 51.	T _{on/off-hold} minimum values80
Table 52.	Operating mode description81
Table 53.	Pin description82
Table 54.	Electrical characteristics of the signals83
Table 55.	Pin description
Table 56.	Reset command84
Table 57.	Pin description84
Table 58.	Electrical characteristics of the signals85
Table 59.	Pin description85
Table 60.	Electrical characteristics of the signals85
Table 61.	Pin description86
Table 62.	Electrical characteristics of the signals86
Table 63.	LED0 status
Table 64.	Pin description
Table 65.	Electrical characteristics of the signal90
Table 66.	AC characteristics
Table 67.	Pin description of the PCM interface93
Table 68.	Pin description of the USB interface94
Table 69.	Electrical characteristics of the signals94

Table 70.	Antenna specifications	97
Table 71.	GPIO Pinout Definitions	98
Table 72.	Operating Temperatures	100
Table 73.	Operating duration versus temperature	100

->>> 1. Introduction

Overview

This document presents and defines the Q26 Extreme Wireless CPU®.

The Q26 Extreme Wireless CPU® is a multi-mode EDGE 2G / WCDMA 3G / HSxPA (High Speed Downlink & High Speed Uplink Packet Access) solution with dual antenna receive diversity, footprint compatible with other Wireless CPU® Q26 devices.

The Q26 Extreme Wireless CPU[®] supports a powerful open software platform (Open AT[®]). Open AT[®] is the world's most comprehensive cellular development environment, which allows embedded standard ANSI C applications to be natively executed directly on the Wireless CPU[®].

This Product Specification document covers the Wireless CPU[®] alone and does not include the programmable capabilities provided via the use of Open AT[®] Software Suites.

References

Reference Documents

For more details, several reference documents may be consulted. The Wavecom reference documents are provided in the Wavecom document package, contrary to the general reference documents which are not authored by Wavecom.

Please check the web site for the latest documentation available.

First Software version available for Q26 Extreme Wireless CPU® is Open AT® Software Suite v2.30.

Open AT® Software Documentation

- [1] Getting Started with Open AT®
- [2] Basic Development Guide for Open AT®
- [3] ADL User Guide for Open AT[®]
- [4] Open AT[®] Release Note

AT Software Documentation

- [5] Open AT[®] Firmware v7.4 AT Commands Manual (Ref: WM_DEV_OAT_UGD_079-010)
- [6] Open AT[®] Firmware Release Note

General Reference Documents

- [7] "I²C Bus Specification and user guide", Version 3.0, NXP 2007
- [8] ISO 7816-3 Standard

List of Abbreviations

Table 1. Abbreviations

Abbreviation	Definition
AC	Alternating Current
ADC	Analog to Digital Converter
A/D	Analog to Digital conversion
AF	Audio-Frequency
AT	ATtention (prefix for modem commands)
AUX	AUXiliary
CAN	Controller Area Network
СВ	Cell Broadcast
CEP	Circular Error Probable
CLK	CLocK
CMOS	Complementary Metal Oxide Semiconductor
CS	Coding Scheme
CTS	Clear To Send
DAC	Digital to Analog Converter
dB	Decibel
DC	Direct Current
DCD	Data Carrier Detect
DCE	Data Communication Equipment
DCS	Digital Cellular System
DR	Dynamic Range
DSR	Data Set Ready
DTE	Data Terminal Equipment
DTR	Data Terminal Ready
EDGE	Enhanced Data rates for GSM Evolution
EFR	Enhanced Full Rate
EGPRS	Enhanced General Packet Radio Service
E-GSM	Extended GSM
EMC	ElectroMagnetic Compatibility
EMI	ElectroMagnetic Interference
EMS	Enhanced Message Service
EN	ENable
ESD	ElectroStatic Discharges
FIFO	First In First Out

Abbreviation	Definition
FR	Full Rate
FTA	Full Type Approval
GND	GrouND
GPI	General Purpose Input
GPC	General Purpose Connector
GPIO	General Purpose Input Output
GPO	General Purpose Output
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global System for Mobile communications
HR	Half Rate
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
HSxPA	High Speed x(downlink/uplink) Packet Access
I/O	Input / Output
LED	Light Emitting Diode
LNA	Low Noise Amplifier
MAX	MAXimum
MIC	MICrophone
MIN	MINimum
MMS	Multimedia Message Service
МО	Mobile Originated
MT	Mobile Terminated
na	Not Applicable
NF	Noise Factor
NMEA	National Marine Electronics Association
NOM	NOMinal
NTC	Negative Temperature Coefficient
PA	Power Amplifier
Ра	Pascal (for speaker sound pressure measurements)
PBCCH	Packet Broadcast Control CHannel
PC	Personal Computer
PCB	Printed Circuit Board
PCM	Pulse Code Modulation (audio) or Protection Circuit Module (battery)
PDA	Personal Digital Assistant
PFM	Power Frequency Modulation
PSM	Phase Shift Modulation
PWM	Pulse Width Modulation
RAM	Random Access Memory
RF	Radio Frequency
RFI	Radio Frequency Interference

Abbreviation	Definition
RHCP	Right Hand Circular Polarization
RI	Ring Indicator
RST	ReSeT
RTC	Real Time Clock
RTCM	Radio Technical Commission for Maritime services
RTS	Request To Send
RX	Receive
SCL	Serial CLock
SDA	Serial DAta
SMS	Short Message Service
SPI	Serial Peripheral Interface
SPL	Sound Pressure Level
SPK	SPeaKer
SRAM	Static Random Access Memory
TBC	To Be Confirmed
TDMA	Time Division Multiple Access
TP	Test Point
TVS	Transient Voltage Suppressor
ТХ	Transmit
TYP	TYPical
UART	Universal Asynchronous Receiver-Transmitter
UMTS	Universal Mobile Telecommunications System
USB	Universal Serial Bus
USIM	Universal Subscriber Identification Module
USSD	Unstructured Supplementary Services Data
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access

Web Site Support

Table 2.	Web Site Support Links
Table L.	Hos one cappon Ennie

Subject matter	Web site
General information about Wavecom and its range of products:	www.wavecom.com
Specific support about the Q26 Extreme Wireless CPU®:	www.wavecom.com/Q26Extreme
Carrier/Operator approvals:	www.wavecom.com/approvals
Open AT® Introduction:	www.wavecom.com/OpenAT
Developer support for software and hardware:	www.wavecom.com/forum

2. General Description

General Information

The Q26 Extreme Wireless CPU® series is a self-contained GSM/GPRS/EGDE quad-band and HSxPA tri band Wireless CPU® with the following characteristics:

Overall Dimensions

- Dimension:
 - Length: 40 mm
 - Width: 32.2 mm
 - Thickness: 6.3 mm
- X/Y form-factor compatible with Q2686/87 Wireless CPU[®] range

Approvals & Quality

- EU Directive 2002/95/EC on RoHS
 - The Q26 Extreme Wireless CPU[®] is compliant with RoHS (Restriction of Hazardous Substances in Electrical and Electronic Equipment) Directive 2002/95/EC which sets limits for the use of certain restricted hazardous substances.
 - This directive states that "from 1st July 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE)".
- Regulatory: R&TTE directive (CE marking), GCF-CC, PTCRB, FCC/IC.
- Manufacturing: ISO/TS 16949

Telecom Features

- 3GPP FDD Release 6 HSUPA Compliant.
- Tri-Band UMTS/HxDPA (WCDMA/FDD) 2100/1900/850 MHz (band I, II, V)
 - Downlink data rates up to HSDPA Category 8 (7.2 Mbps).
 - Uplink data rates up to HSUPA Category 5 (2 Mbps)
 - Advanced Type III receiver technology supporting simultaneous Receive Diversity and Equalization.
- Quad-Band GSM GPRS EDGE 850/900/1800/1900 MHz
 - GPRS class 12
 - EDGE (E-GPRS) multi-slot class 12
- Dual mode with fully automated handover between 2G and 3G networks
- Voice: HR, FR and EFR; Adaptive multi-rate AMR in GSM & UMTS.

Interfaces

- Digital section running under 2.8 volts and 1.8 volts.
- 3V/1V8 UICC/SIM interface
- Complete interfacing:
 - Power supply
 - Serial link
 - Analog audio
 - Parallel bus 16bits
 - PCM digital audio
 - USIM/SIM card
 - Keyboard
 - USB 2.0 slave FS
 - Serial LCD (not available with AT commands)

Application Processor

Application processor embeds Open AT[®] Software Suite with extensive set of Plug-Ins, supported by M2M Studio, enabling the creation of natively executed code in C and/or Lua script.

- Up to 88 MIPS for application execution
- Includes a low latency, multitasking pre-emptive Operating System

Connectivity

The Q26 Extreme Wireless CPU® has following external connections:

- Two solutions for main RF antenna connection
 - UFL connector
 - Soldered connection
- Diversity RF antenna connection:
 - Soldered connection
- Analogue and digital interfaces:
 - 100 pin I/O connector.

Functional Architecture

The global architecture of the Q26 Extreme Wireless CPU® is described below:

Figure 1. Functional architecture

RF Functionalities

The Radio Frequency (RF) range complies with the Phase II EGSM 900/DCS 1800 and GSM 850/PCS 1900 recommendations. The frequencies are:

RF Bandwidth	Transmit band (Tx)	Receive band (Rx)
GSM 850	824 to 849 MHz	869 to 894 MHz
E-GSM 900	880 to 915 MHz	925 to 960 MHz
DCS 1800	1710 to 1785 MHz	1805 to 1880 MHz
PSC 1900	1850 to 1910 MHz	1930 to 1990 MHz
WCDMA Band I	1920 to 1980 MHz	2110 to 2170 MHz
WCDMA Band II	1850 to 1910 MHz	1930 to 1990 MHz
WCDMA Band V	824 to 849 MHz	869 to 894 MHz

Table 3. RF Frequency Ranges

The Radio Frequency (RF) part is based on a specific quad-band chip with a:

- Direct down conversion Rx architecture
- Linear direct up-conversion Tx architecture
- On chip Tx power control
- Analog I/Q base band interface for all modes
- Integrated Σ - Δ fractional N synthesiser for dual-mode operation
- On chip multi-band true Rx diversity

Application Processor

The Q26 Extreme supports the complete family of software Plug-Ins provided within the Open AT[®] Software Suite (TCP-IP, Internet, GPS, Lua, Security, Bluetooth, aqLink[™]). It also supports VariPower & VariSpeed (26-104MHz) features allowing highly configurable power optimization:

- ARM946 32 bit processor
- Programmable to 104MHz operation
- Internal Memory (8kbyte Cache I\$, 8kbyte D\$)
- Latency time: < 1ms
- Memory access speed up to 52MHz
- 2 user Timers at 13MHz fine tuning (1 for customer)
- 3 External IT with debouncing

Operating System

The Q26 Extreme Wireless CPU[®] is designed to integrate various types of specific process applications such as vertical applications (telemetry, multimedia, automotive).

The Operating System offers a set of AT commands to control the Wireless CPU[®]. With this standard Operating System, some interfaces of the Wireless CPU[®] are not available, since they are dependent on the peripheral devices connected to the Wireless CPU[®].

The Operating System is Open AT[®] compliant.

3. Interfaces

General Purpose Connector (GPC)

A 100-pin connector is provided to interface the Q26 Extreme Wireless CPU[®] with a board containing a serial LCD Wireless CPU[®], a keyboard, a USIM connector, or a battery connection.

The available interfaces on the GPC are described below.

Name	Driven by AT commands	Driven by Open AT®
Serial Interface		Х
Keyboard Interface	X	Х
Main Serial Link	X	Х
Auxiliary Serial Link	X	Х
USIM Interface	X	Х
General Purpose IO	X	Х
Analog to Digital Converter	X	Х
Analog Audio Interface	X	Х
Buzzer Output	X	Х
Battery Charging Interface	X	Х
External Interruption	X	Х
VCC_2V8 and VCC_1V8		
BAT-RTC (Backup Battery)		
LED0 signal	X	Х
Digital Audio Interface (PCM)		Х
USB 2.0 Interface	X	Х

Table 4.Available GPC Interfaces

Power Supply

Power Supply Description and Ground Plane

Electrical Constraints

Only the VBATT input is necessary to supply the Q26 Extreme Wireless CPU®.

1. Operational average current

Recommended values for Operational average max current: 1.1A

2. Peak max current

Recommended values for Peak max current: 2.1A.

The rising time is around 10µs

See subsection g) for worst case description.

3. Ground

The Q26 Extreme Wireless CPU[®] shielding case is the grounding. The ground must be connected to the motherboard through a complete layer on the PCB.

	Vmin	Vnom	Vmax
VBATT1,2	3.4V	3.8V	4.2V

(1): This value must be guarantied during the burst (with **2.1A** Peak in GSM or GPRS mode)

(2): Max operating Voltage Stationary Wave Ratio (VSWR) 2:1

4. Impedance

When the Wireless CPU[®] is supplied with a battery, the total impedance (battery + protections + PCB) should be < 150 m Ω .

5. Recommendations when using DC/DC converter

As the radio power amplifier is directly connected to VBATT, the Wireless CPU[®] is sensitive to any Alternative Current on lines. When a DC/DC converter is used, Wavecom recommends setting the converter frequency in such a way that the resulting voltage does not exceed the values in following table.

Table 6.Maximum voltage ripple (Uripp) vs. Frequency

Freq. (Hz)	Uripp Max (mVpp)
f ≤ 300	80
300 < f ≤ 800	10
800 < f ≤ 1100	30

Freq. (Hz)	Uripp Max (mVpp)		
f > 1100	60		

6. Constraints in Alarm/Off mode

When the Wireless CPU[®] is in Alarm/Off mode, no voltage has to be applied on any pin of the 100-pin connector, except on Vbatt (pins 1 to 4), BAT-RTC (pin 7) for RTC operation or ON/~OFF (pin 19) to power-ON the Wireless CPU[®].

7. Details

Due to the burst emission mode used in GSM/GPRS/EGPRS, the power supply must be able to deliver high current peaks in a short time. During the peaks, the ripple (U_{ripp}) on the supply voltage must not exceed a certain limit).

 In communication mode, a GSM/GPRS class 2 terminal emits 577µs radio bursts every 4.615ms.

Figure 2. Power supply during GSM burst emission

• Directly supplies the RF components with 3.8 V. It is essential to keep a minimum voltage ripple at this connection in order to avoid any phase error.

The RF Power Amplifier current (2.1A max peak in GSM /GPRS mode) flows with a ratio of:

- 1/8 of the time (577µs every 4.615ms for GSM /GPRS cl. 2) and
- 2/8 of the time (1154µs every 4.615ms for GSM /GPRS cl. 10).
- 4/8 of the time (2302µs every 4.615ms for GSM /GPRS cl. 12).

The rising time is around 10µs.

Design Requirements

Attention should be paid:

- to the quality of the power supply:
- linear regulation (recommended) or PWM (Pulse Width Modulation) converter (usable) are preferred for low noise.

- PFM (Power Frequency Modulation) or PSM (Phase Shift Modulation) system must be avoided.
- to the capacity to deliver high current peaks in a short time (burst radio emission).
- that the VBATT line supports peak currents with an acceptable voltage drop which guarantees a VBATT minimal value of **3.4**V.

For PCB design constraints related to power supply tracks, ground planes and shielding, refer to the Design Guidelines section.

Decoupling of Power Supply Signals

Decoupling capacitors on VBATT lines are embedded in the Wireless CPU. Hence, it should not be necessary to add decoupling capacitors close to the Wireless CPU.

However, in case of EMI/RFI problem, VBATT signal may require some EMI/RFI decoupling: parallel 33 pF capacitor close to the Wireless CPU or a serial ferrite bead (or both to get better results). Low frequency decoupling capacitors (22µF to 100µF) may be used to reduce the TDMA noise (217Hz).

Caution: When ferrite beads are used, the recommendation given for the power supply connection must be followed with care (as high current capacity and low impedance).

Power Consumption

Power consumption is dependent on the configuration used. It is for this reason that the following consumption values are given for each mode, RF band and type of software used (AT or Open AT®).

All the following information is given assuming a 50 ohms RF output.

The following consumption values were obtained by performing measurements on the Wireless CPU® samples at a temperature of 25° C.

Three VBATT values are used to measure the consumption, VBATTmin (3.4V), VBATTmax (4.2V) and VBATTtyp (3.8V).

The average current is given for the three VBATT values and the peak current given is the maximum current peak measured with the three VBATT voltages.

For a more detailed description of the operating modes, see the appendix of the AT Command User Guide [5].

First let's define start-up current in view to avoid start issues.

Power Consumption without Open AT® Processing

The following measurement results are relevant when there is no Open AT® application.

For explanation of power consumption mode, please Open AT[®] feature navigator document available on Wavecom website.

Power Consumption without Open AT® Processing

Operating Mode	Operating Mode Power Consumption				
	Parameters	INOM average		11.1	
VBATT=3.8V		Min	Тур	Max	Unit
ALARM Mode			16		μΑ
SLEEP Mode			1.4		mA
ACTIVE Mode			24.5		mA
SLEEP mode with	Case 2G (Paging 9/Rx burst occurrence ~2s)		3.1		mA
telecom stack in Idle	Case 2G (Paging 2/Rx burst occurrence ~0,5s)		6.4		mA
Mode 1	Case WCDMA (Paging 9)		2		mA
ACTIVE mode with	Case 2G (Paging 9/Rx burst occurrence ~2s)		28.6		mA
telecom stack in Idle	Case 2G (Paging 2/Rx burst occurrence ~0,5s)		32.8		mA
Mode 1	Case WCDMA (Paging 9)		27.6		mA
Peak current in	850/900 MHz - PCL5/gam.3 (TX power 33dBm)			2.1	А
GSM/GPRS Mode	1800/1900 MHz - PCL0/gam.3 (TX power 30dBm)			1.7	А
	850/900 MHz - PCL5 (TX power 33dBm)		470		mA
GSM Connected Mode	850/900 MHz - PCL19 (TX power 5dBm)		300		mA
(Voice)	1800/1900 MHz - PCL0 (TX power 30dBm)		420		mA
	1800/1900 MHz - PCL15 (TX power 0dBm)		290		mA
GPRS Transfer Mode	850/900 MHz - gam. 3(TX power 33dBm)		455		mA
class 8 (4Rx/1Tx)	1800/1900 MHz - gam.3(TX power 30dBm)		415		mA
GPRS Transfer Mode	850/900 MHz - gam.3 (TX power 30dBm)		570		mA
class 10 (3Rx/2Tx)	1800/1900 MHz - gam.3 (TX power 27dBm)		500		mA
GPRS Transfer Mode	850/900 MHz - gam.3 (TX power 27dBm)		720		mA
class 12 (1Rx/4Tx)	1800/1900 MHz - gam.3 (TX power 24dBm)		620		mA
EGPRS Transfer Mode	850/900 MHz - gam.6 (TX power 27dBm)		385		mA
class 8 (4Rx/1Tx)	1800/1900 MHz - gam.5 (TX power 26dBm)		380		mA
EGPRS Transfer Mode	850/900 MHz - gam.6 (TX power 24dBm)		480		mA
class 10 (3Rx/2Tx)	1800/1900 MHz - gam.5 (TX power 23dBm)		460		mA
EGPRS Transfer Mode	850/900 MHz - gam.6 (TX power 21dBm)		640		mA
class 12 (1Rx/4Tx)	1800/1900 MHz - gam.5 (TX power 20dBm)		600		mA
	BAND I @ +22 dBm		780	810	mA
	BAND I @ +10 dBm		570		mA
UMTS Connected Mode	BAND II @ +22 dBm		821	920	mA
(Voice)	BAND II @ +10 dBm		570		mA
	BAND V @ +22 dBm		780	825	mA
	BAND V @ +10 dBm		535		mA

Table 7.

Operating Mode	Power Consumption			
	BAND I @ +22 dBm	855	885	mA
	BAND I @ +10 dBm	645		mA
UMTS Data Transfer2	BAND II @ +22 dBm	860	930	mA
384KDITS/S	BAND II @ +10 dBm	635		mA
	BAND V @ +22 dBm	825	870	mA
	BAND V @ +10 dBm	550		mA
	BAND I @ +22 dBm	915	945	mA
	BAND I @ +10 dBm	720		mA
HSDPA Data Transfer2 Cat. 8	BAND II @ +22 dBm	935	1050	mA
7.2Mbits/s	BAND II @ +10 dBm	720		mA
	BAND V @ +22 dBm	875	920	mA
	BAND V @ +10 dBm	625		mA
	BAND I @ +22 dBm	890	920	mA
	BAND I @ +10 dBm	705		mA
HSUPA Data Transfer2	BAND II @ +22 dBm	920	990	mA
2Mbist/s	BAND II @ +10 dBm	710		mA
	BAND V @ +22 dBm	875	920	mA
	BAND V @ +10 dBm	625		mA

TX means that the current peak is the RF transmission burst (Tx burst)

_{RX} means that the current peak is the RF reception burst (Rx burst)

¹ This Mode consumption is dependent on the USIM card used. Some USIM cards respond faster than others, the longer the response time, the higher the consumption. The measurements were performed with a large number of 3V USIM cards, the results in brackets are the minimum and maximum currents measured from among all the USIMs used.

Power Consumption with Open AT® Software

The activation of the Open AT[®] software could increase the power consumption up to 60mA in ACTIVE mode and CONNECTED when the full CPU load is used by the Open AT[®] application.

Power Supply Pin-out

		Table 8. Power supply pin-out
	Signal	Pin number
VBATT		1,2,3,4
GND		Shielding
Caution:	The grounding connectio the ground plane.	\mathfrak{n} is made through the shielding \Rightarrow the four leads must be soldered to
		Λ
	\wedge	

Electrical Information for Digital I/O

The three types of digital I/O on the Q26 Extreme Wireless CPU® are: 2.8Volt CMOS, 1.8Volt CMOS and Open drain.

The three types are described below:

			210 101 () po (210	/		
Parameter		I/O type	Minim.	Тур	Maxim.	Condition
Internal 2.8V power supply		VCC_2V8	2.74V	2.8V	2.86V	
Input / Output pin	VIL	CMOS	-0.5V*		0.84V	
	VIH	CMOS	1.96V		3.2V*	
	VOL	CMOS			0.4V	IOL = - 4 mA
	VOH	CMOS	2.4V			IOH = 4 mA
	IOH				4mA	
	IOL				- 4mA	

Table 9. 2.8 Volt type (2V8)

*Absolute maximum ratings

All 2.8V I/O pins do not accept input signal voltage above the maximum voltage specified above, except for the UART1 interface, which is 3.3V tolerant.

Table 10.	1.8 Volt type (1V8)
-----------	---------------------

Parameter		I/O type	Minim.	Тур	Maxim.	Condition
Internal 1V8 power supply		VCC_1V8	1.76V	1.8V	1.94V	
Input / Output pin	VIL	CMOS	-0.5V*		0.54V	
	VIH	CMOS	1.33V		2.2V*	
	VOL	CMOS			0.4V	IOL = - 4 mA
	VOH	CMOS	1.4V			IOH = 4 mA
	IOH				4mA	
	IOL				- 4mA	

*Absolute maximum ratings

|--|

Signal name	Parameter	I/O type	Minimum	Тур	Maximum	Condition
	VOL	Open Drain			0.4V	
	IOL	Open Drain			8mA	
BUZZER0	VOL	Open Drain			0.4V	
	IOL	Open Drain			100mA	
SDA1/	VTOL	Open Drain			3.3V	Tolerated voltage
GPIO27	VIH	Open Drain	2V			

Signal name	Parameter	I/O type	Minimum	Тур	Maximum	Condition
and	VIL	Open Drain			0.8V	
GPIO26	VOL	Open Drain			0.4V	
	IOL	Open Drain			3mA	

The reset states of the I/Os are given in each interface description chapter. Definitions of these states are given below:

Parameter	Definition
0	Set to GND
1	Set to supply 1V8 or 2V8 depending on I/O type
Pull-down	Internal pull-down with ~60kohms resistor.
Pull-up	Internal pull-up with ~60kohms resistor to supply 1V8 or 2V8 depending on I/O type.
Z	High impedance
Undefined	Caution: undefined must not be used in your application if a special state is required at reset. These pins may be a toggling signal during reset.

Serial Interface

The Q26 Extreme Wireless CPU[®] provides two SPI bus (i.e. for LCD, memories...). or an I²C 2-wire interface.

SPI Bus

Both SPI bus interfaces include:

- A CLK signal
- An I/O signal
- An I signal
- A CS (Chip Select) signal complying with the standard SPI bus (any GPIO).
- An optional Load signal (only the SPIx-LOAD signal)

Characteristics

- Master mode operation
- The CS signal must be any GPIO
- The LOAD signal (optional) is used for the word handling mode (only the SPIx-LOAD signal)
- SPI speed is from 102 kbit/s to 13 Mbit/s in master mode operation
- 3 or 4-wire interface(5-wire possible with the optional SPIx-LOAD signal)
- SPI-mode configuration: 0 to 3
- 1 to 16 bits data length

SPI configuration

			Table 13.	SPI Configura	tion	
Operation	Maximum Speed	SPI- Mode	Duplex	3-wire type	4-wire type	5-wire type
Master	13 Mb/s	0,1,2,3	Half	SPIx-CLK; SPIx-IO; GPIOx as CS	SPIx-CLK; SPIx-IO; SPIx-I; GPIOx as CS	SPIx-CLK; SPIx-IO; SPIx-I; GPIOx as CS; SPIx-LOAD (not muxed in GPIO);

For the 3-wire configuration, SPIx-I/O is used as input and output.

For the 4-wire configuration, SPIx-I/O is used as output only, SPIx-I is used as input only.

For the 5-wire configuration, SPIx-I/O is used as output only, SPIx-I is used as input only. And the dedicated SPIx-LOAD signal is used. It is an additional signal in more than a Chip Select (any other GPIOx)

SPI waveforms

Waveforms for SPI transfer with 4-wire configuration in master mode 0.

Table 14. AC characteristics

Signal	Description	Minimum	Тур	Maximum	Unit
CLK-cycle	SPI clock frequency	0.102		13	MHz
	\wedge	\land		\wedge	

Signal	Description	Minimum	Тур	Maximum	Unit
Data-OUT delay	Data out ready delay time			10	ns
Data-IN-setup	Data in setup time	2			ns
Data-OUT-hold	Data out hold time	2			ns

Waveforms for SPI transfer with the SPIx-LOAD signal configuration in master mode 0 (chip select is not represented).

Figure 4. SPI Timing diagrams with SPIx-LOAD signal, Mode 0, Master, 4 wires

SPI1 Bus: Pins description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with	
SPI1-CLK	23	0	2V8	Z	SPI Serial Clock	GPIO28	
SPI1-IO	25	I/O	2V8	Z	SPI Serial input/output	GPIO29	
SPI1-I	24	I	2V8	Z	SPI Serial input	GPIO30	
SPI1-LOAD	22	0	2V8	Z	SPI load	GPIO31	

For Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition refer to Chapter 3.3, "Electrical information for digital I/O".

SPI2 Bus: Pins Description

Table 16. Pins description							
Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with	
SPI2-CLK	26	0	2V8	Z	SPI Serial Clock	GPIO32	
SPI2-IO	27	I/O	2V8	Z	SPI Serial input/output	GPIO33	
SP2-I	29	Ι	2V8	Z	SPI Serial input	GPIO34	
SPI2-LOAD	28	0	2V8	Z	SPI Load	GPIO35	

See Chapter 3.3 "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

Application Example for 4 wires SPI Bus

The specific feature of 4-wire serial interface (SPI bus) in which the input and output data lines are disassociated. The SPIx-IO signal is used only for ouput data whereas the SPIx-I signal is used only for input data.

Figure 5. Example of 4-wire SPI bus application

One pull-up resistor R1 is needed to set the SPIx-CS level for the reset state. R1 recommended value: 100kohm.

Except for R1, no external components are needed if the electrical specification of the customer application complies with the Q26 Extreme Wireless CPU[®] SPIx interface electrical specification.

Application Example for 3 Wires SPI Bus

The specific feature of 3-wire serial interface (SPI bus) in which the input and output data lines are disassociated. The SPIx-IO signal is used for both output and input data.

Figure 6. Example of 3-wire SPI bus application

One pull-up resistor R1 is needed to set the SPIx-CS level for the reset state. R1 value depends on the peripheral plugged on the SPIx interface. R1 recommended value: 100kohm.

Except for R1, no external components are needed if the electrical specification of the customer application complies with the Q26 Extreme Wireless CPU® SPIx interface electrical specification.

The SPIx-I line is not used in 4-wire configuration. This line can be left open or used as GPIO for other application's functionality.

The SPIx interface voltage range is 2.8V. It can be powered either by VCC_2V8 (pin 10) of the Q26 Extreme Wireless CPU or by any other power supply.

I2C Bus

The I2C interface includes a clock signal (SCL1) and data signal (SDA1) complying with a 100kbit/s-standard interface (standard mode: s-mode).

The I²C bus is always master.

The maximum speed transfer range is 400kbit/s (fast mode: f-mode).

I2C Waveforms

I²C bus waveform in master mode configuration:

Figure 7. I²C Timing diagrams, Master

Signal	Description	Minimum	Тур	Maximum	Unit
SCL1-freq	I ² C clock frequency	100		400	kHz
T-start	Hold time START condition	0.6			μs
T-stop	Setup time STOP condition	0.6			μs
T-free	Bus free time, STOP to START	1.3			μs
T-high	High period for clock	0.6			μs
T-data-hold	Data hold time	0		0.9	μs
T-data-setup	Data setup time	100			ns

Table 17. AC characteristics

I2C Bus Pin-out

Table 18. Pin description							
Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with	
SCL1	44	0	Open drain	Z	Serial Clock	GPIO26	
SDA1	46	I/O	Open drain	Z	Serial Data	GPIO27	

See Chapter Caution:, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

Application Example

The two lines need to be pulled-up to the V_I²C voltage. The V_I²C voltage is dependent on the customer application component connected on the I²C bus. Nevertheless, the VI²C must comply with the Q26 Extreme Wireless CPU[®] electrical specification.

The VCC_2V8 (pin 10) of the Q26 Extreme Wireless CPU[®] may be used to connect the pull-up resistors, if the I²C bus voltage is 2.8 V.

Figure 8. Example of I²C bus application

The pull-up resistor values are selected depending on the mode used. For the Fast mode, it is recommended to use 1kohm resistor in order to ensure the compliance with the I²C specification. For the Standard mode, higher values of resistors may be used to save power consumption.

Parallel Interface

General Description

The Q26 Extreme Wireless CPU[®] offers a 16 bits parallel and 1V8 bus interface. Its characteristics are described below:

- Up to 128 Mega Byte address range per chip select (CS2 and CS3),
- Support for 8, 16, and 32 bit (multiplexed synchronous mode) devices,
- Byte enable signals for 16 bit and 32 bits operation,
- Fully programmable timings based on AHB (a division of the ARM clock at 26 MHz) cycles (except for synchronous mode which is based on CLKBURST cycles at 26 MHz only),
 - individually selectable timings for read and write,
 - 0 to 7 clock cycles for setup,
 - 1 to 32 clock cycles for access cycle,
 - 1 to 8 clock cycles for page access cycle,
 - 0 to 7 clock cycles for hold,
 - 1 to 15 clock cycles for turnaround.
- Page mode Flash memory support,
 - page size of 4, 8, 16 or 32,
- Burst mode Flash memory support up to AHB (26 MHz) clock frequency (for devices sensitive to rising edge of the clock only)
 - AHB, AHB/2, AHB/4 or AHB/8 burst clock output
 - burst size of 4, 8, 16, 32,
 - automatic CLKBURST power-down between accesses,
- Intel mode (WE and OE) and Motorola mode (E and R/W) control signals,
- Synchronous write mode,
- Synchronous multiplexed data/address mode (x32 mode),
- Adaptation to word, halfword, and byte accesses to the external devices.

Pinout

Signal	Pin number	Reset state	I/O	l/O type	Description	Multiplexed with
D0	85	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D1	87	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D2	89	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D3	91	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D4	93	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D5	95	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D6	97	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D7	99	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D8	100	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D9	98	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D10	96	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D11	94	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D12	92	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D13	90	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D14	88	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
D15	86	Pull down	I/O	1V8	Bidirectional data and address line	Not mux
~OE- R/W	81	1	0	1V8	Output enable signal (Intel mode); read not write signal (Motorola mode)	Not mux
~WE-E	84	1	0	1V8	Write enable Signal (Intel mode) Enable signal (Motorola mode)	Not mux
~CS3	83	Pull up	I/O	1V8	User Chip select 3	GPIO44
~CS2	51	Pull up	I/O	1V8	User Chip Select 2	GPIO1/INT2
A1	42	1	0	1V8	This signal has 2 functions: external Address or byte enable 2 for 16 or 32 bits devices.	Not mux
A24	53	Z	I/O	1V8	Address line for external device / Command selection	GPIO2

Table 19. Pinout Definitions

Asynchronous Access Bus and Timing

For all timing diagrams in the following section the notations here after are used:

- ADR is used for address bus A [24,1] or D [15:0].when used as address lines.
- DATA is used for D[15:0] when used as DATA lines
- ~CS is used for ~CS2 or~CS3.
- ~BE is used for A1_~BE2 (Double function on A1 pin).
- ~OE and R/W are used for ~OE_R/W

- ~WE and E are used for ~WE_E
- ~ADV signal (Not available on 100 pins connector) is the address valid signal.

Figure 9. Asynchronous access

The ~ADV signal is mentioned here because synchronous mode devices may require the signal to be asserted when an asynchronous access is performed.

AC Characteristic of Asynchronous Accesses

Signal	Description	Minimum	Тур	Maximum	Unit
TADR_DELAY	ADR delay time from ~CS active			3	ns
TDATA_SETUP	DATA to ~OE setup time	18			ns
TDATA_HOLD	DATA hold time after ~OE inactive	3		4	ns
TDATA_DELAY	DATA delay time from ~CS active			5	ns
TDATA_SECURE	DATA hold time after ~WE inactive or ~CS inactive	-5[1]			ns
TADV_DELAY	ADV delay time from ~CS active and inactive			3	ns
TWE_DELAY	~WE delay time from ~CS active			3[2]	ns
TOE_DELAY	~OE delay time from ~CS active			3[2]	ns
TBE_DELAY	~BE delay time from ~CS active			3	ns

 Table 20.
 AC Characteristic of Asynchronous Accesses

^[1]This timing forces to program at least one cycle for asynchronous.

^[2] These maximum delays depend also on setting of registers

Synchronous Access Bus and Timing

For all timing diagrams in the following section the notations here after are used:

- ADR is used for address bus as A24, A1 or D [15:0].when used as address lines.
- DATA is used for D [15:0]. when used as data lines.
- ~CS is used for ~CS2 or ~CS3.
- ~BE is used for A1_~BE2 (Double function on A1 pin).
- ~OE and R/W are used for ~OE_R/W.
- ~WE and E are used for ~WE_E
- CLKBURST: is the internal clock at 26 MHz (Not available on connector pinout).
- ~ADV signal (Not available on 100 pins connector) is the address valid signal.
- ~BAA: signal (Not available on 100 pins connector): is the burst address advance for synchronous operations.
- ~WAIT signal (Not available on 100 pins connector): is the wait signal for synchronous operation.

Figure 10. Read synchronous timing

Figure 11. Write synchronous timing

AC Characteristic of Asynchronous Accesses

Signal	Description	Minimum	Тур	Maximum	Unit
TDATA_DELAY	CLKBURTS falling edge to DATA valid delay			4	ns
TWE_SETUP	WE to CLKBURST setup time	7			ns
TBE_DELAY	CLKBURST falling edge to BE delay			4	ns
TCLKBURST	CLKBURST clock : period time		38.4		ns
TADR_SETUP	Address bus setup time	7			ns
TADR_HOLD	Address bus hold time	19			ns
TADR_TRISTATE	Address bus tristate time			10	ns
TDATA_SETUP	Data bus setup time	5			ns
TDATA_HOLD	Data bus hold time	3			ns
TCS_SETUP	Chip select setup time	7			ns
TADV_SETUP	ADV setup time	7			ns
TADV_HOLD	ADV hold time	7			ns
TOE_DELAY	Output Enable delay time			13	ns
TBAA_DELAY	BAA delay time			13	ns
TWAIT_SETUP	Wait setup time	5			ns
TWAIT_HOLD	Wait hold time	5			ns

 Table 21.
 AC Characteristic of Asynchronous Accesses

Example of Typical Application Using Parallel Bus

For example, it is possible to interface an NAND memory.

Figure 12. Example of parallel bus application (NAND)

Complement of Information on Address Size Bus

The following table lists the possible configurations depending on address bus size requested on parallel interface.

Address bus size	Address lines	Chip select available	
1	A1	/CS2, /CS3	
2	A1, A24	/CS2, /CS3	

Few signals are multiplexed. It is thus possible to have these configurations.

- ~CS3*, A1, GPIO2
- ~CS3*, A1, A24,
- ~CS3*, ~CS2*, A1, GPIO2
- ~CS3*, ~CS2*, A1, A24

Keyboard Interface

This interface provides 10 connections:

- 5 rows (ROW0 to ROW4) and
- 5 columns (COL0 to COL4).

The scanning is a digital one and debouncing is performed in the Q26 Extreme Wireless CPU®.

No discrete components such as Rs, Cs (Resistors, Capacitors) are needed.

rabio 20. Royboard Interface pin description								
Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with		
ROW0	68	I/O	1V8	0	Row scan	GPIO9		
ROW1	67	I/O	1V8	0	Row scan	GPIO10		
ROW2	66	I/O	1V8	0	Row scan	GPIO11		
ROW3	65	I/O	1V8	0	Row scan	GPIO12		
ROW4	64	I/O	1V8	0	Row scan	GPIO13		
COL0	59	I/O	1V8	Pull-up	Column scan	GPIO4		
COL1	60	I/O	1V8	Pull-up	Column scan	GPIO5		
COL2	61	I/O	1V8	Pull-up	Column scan	GPIO6		
COL3	62	I/O	1V8	Pull-up	Column scan	GPIO7		
COL4	63	I/O	1V8	Pull-up	Column scan	GPIO8		

Table 00	Kaybaard intor	face nin description
i able z 3.	nevpoard inter	ace bin describuon

See Chapter Caution:, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

With the Open AT[®] Software, when the keyboard service is used, the whole multiplexed signals become unavailable for other purposes. In the same way if one or more GPIOs (of this table) are allocated the keyboard service is unavailable.

Figure 13. Example of keyboard implementation

Main Serial Link (UART1)

A flexible 8-wire serial interface is available, complying with V24 protocol signaling, but not with V28 (electrical interface) due to a 2.8 volts interface.

The signals are:

- TX data (CT103-TX)
- RX data (CT104-RX)
- Request To Send (~CT105-RTS)
- Clear To Send (~CT106-CTS)
- Data Terminal Ready (~CT108-2-DTR)
- Data Set Ready (~CT107-DSR).
- Data Carrier Detect (~CT109-DCD)
- Ring Indicator (CT125-RI).

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
CT103-TXD1*	71	I	2V8	Z	Transmit serial data	GPIO36
CT104-RXD1*	73	0	2V8	Z	Transmit serial data	GPIO37
~CT105-RTS1*	72	1	2V8	Z	Request To Send	GPIO38
~CT106-CTS1*	75	0	2V8	Z	Clear To Send	GPIO39
~CT107-DSR1*	74	0	2V8	Z	Data Set Ready	GPIO40
~CT108-2-DTR1*	76	I	2V8	Z	Data Terminal Ready	GPIO41
~CT109-DCD1 *	70	0	2V8	Undefined	Data Carrier Detect	GPIO43
~CT125-RI1 *	69	0	2V8	Undefined	Ring Indicator	GPIO42
CT102-GND*	Shielding leads		GND		Ground	

Table 24. UART1 interface pin description

* See Chapter 3.3 Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and for the reset state definition.

*According to PC view

With the Open AT[®] Software Suite, when the UART1 service is used, the whole multiplexed signals become unavailable for other purposes. In the same way if one or more GPIOs (of this table) are allocated the UART1 service is unavailable.

The rise and fall time of the reception signals (mainly CT103) must be less than 300 ns.

The maximum baud rate of UART1 is 921 kbit/s for the Open AT® Software Suite firmware.

Caution: The Q26 Extreme Wireless CPU[®] is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data loss/corruption during transmission.

Typical Implementation

The level shifter must be a 2.8V with V28 electrical signal compliant.

WM_DEV_Q26EX_PTS_002

Figure 14. Example of RS-232 level shifter implementation for UART1

U1 chip also protects the Wireless CPU against ESD at 15kV. (Air Discharge)

Recommended Components:

- R1, R2: 15kohm
- C1, C2, C3, C4, C5: 1uF
- C6: 100nF
- C7: 6.8uF TANTAL 10V CP32136 AVX
- U1: ADM3307AECP Analog devices
- J1: SUB-D9 female

R1 and R2 are necessary only during Reset state, to force the ~CT1125-RI1 and ~CT109-DCD1 signal to high levels.

The ADM3307AECP chip has a maximum speed of 921kbits/s. If other level shifters are used, ensure that their speeds are compliant with the UART1 useful speed.

The ADM3307AECP can be powered either by VCC_2V8 (pin 10) of the Q26 Extreme Wireless CPU® or by an external regulator at 2.8 volts.

If the UART1 interface is connected directly to a host processor, it is not necessary to use level shifters. The interface can be connected as shown in the figure 15.

V24/CMOS possible design:

Figure 15. Example of V24/CMOS serial link implementation for UART1

The design shown in the above figure is a basic design type.

However, a more flexible design to access this serial link with all the modem signals is shown below:

Figure 16. Example of full modern V24/CMOS serial link implementation for UART1

It is recommended to add 15kohm pull-up resistor on ~CT125-RI1 and ~CT109-DCD1 to set high level for reset state.

The UART1 interface is a 2.8 volts type. Moreover, it is 3.3 volts tolerant.

For use with 5-wire serial interface

• Signal: CT103-TXD1*, CT104-RXD1*, ~CT105-RTS1*, ~CT106-CTS1*

 $WM_DEV_Q26EX_PTS_002$

- The signal ~CT108-2-DTR1* must be managed by following the V24 protocol signaling, if you want to use the slow idle mode.
- Other signals and their multiplexes are not available.
- Please refer to technical appendixes of AT Commands Manual [5] for more information.

For use with 4-wire serial interface

- CT103-TXD1*, CT104-RXD1*, ~CT105-RTS1*, ~CT106-CTS1*
- The signal ~CT108-2-DTR1* must be configured at low level.
- Other signals and their multiplexes are not available.
- Please refer to technical appendixes in the AT Commands Manual [5] for more information.

For use with 2-wire serial interface

This case is possible for connected external chip, but not recommended (and forbidden for AT command or modem use)

The flow control mechanism has to be managed at the customer side.

- CT103-TXD1*, CT104-RXD1*
- The signal ~CT108-2-DTR1* must be configured at low level.
- The signals ~CT105-RTS1*, ~CT106-CTS1* are not used, please configure the AT command (AT+IFC=0,0 see AT command User Guide [5]).
- The signal ~CT105-RTS1* must be configured at low level.
- Other signals and their multiplexes are not available.
- Please refer to technical appendixes in the AT Commands Manual [5] for more information.

Auxiliary Serial Link (UART2)

An auxiliary serial interface (UART2) is available on Q26 Extreme Wireless CPU[®]. This interface may be used to connect a Bluetooth or a GPS chip controlled by an Open AT[®] Plug-in.

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
CT103-TXD2*	31	Ι	1V8	Z	Transmit serial data	GPIO14
CT104-RXD2*	30	0	1V8	Z	Receive serial data	GPIO15
~CT106-CTS2*	32	0	1V8	Z	Clear To Send	GPIO16
~CT105-RTS2*	33	Ι	1V8	Z	Request To Send	GPIO17

Tahla 25	IIART2	interface	nin	description
Table 20.	UANIZ	intenace	μπ	uescription

See Chapter Caution:, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

* According to PC view

Caution: The Q26 Extreme Wireless CPU[®] UART2 is designed to operate using all the serial interface signals. In particular, it is recommended to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission.

The maximum baud rate of UART2 is 921 kbit/s for the Open AT® Software Suite firmware.

Typical Implementation

The voltage level shifter must be a 1.8 volts with V28 electrical signal compliant.

Figure 17. Example of RS-232 level shifter implementation for UART2

Recommended components:

- Capacitors
 - C1: 220nF
 - C2, C3, C4: 1µF
- Inductor
 - L1: 10µH
- RS-232 Transceivers
 - U1: LINEAR TECHNOLOGY LTC[®]2804IGN
 - J1: SUB-D9 female

The LTC2804 may be powered either by VCC_1V8 (pin 5) of the Q26 Extreme Wireless CPU[®] or by an external regulator at 1.8 volts.

The UART2 interface may be connected directly to other components, if the voltage interface is 1.8V.

For use with 4-wire serial interface

- CT103-TXD2*, CT104-RXD2*, ~CT105-RTS2*, ~CT106-CTS2*
- The signal ~CT108-2-DTR2* must be configured at low level.
- Other signals and their multiplexes are not available.

• Please refer to technical appendixes in the AT Commands Manual [5] for more information.

For use with 2-wire serial interface

This case is possible for connected external chip, but not recommended (and forbidden for AT command or modem use)

The flow control mechanism has to be managed at the customer side.

- CT103-TXD2*, CT104-RXD2*
- The signals ~CT105-RTS2*, ~CT106-CTS2* are not used, you must configure the AT command (AT+IFC=0,0 see AT Commands Manual [5]).
- The signal ~CT105-RTS2* must be configured at low level.
- Other signals and their multiplexes are not available.
- Please refer to technical appendixes in the AT Commands Manual [5] for more information.

USIM/SIM Interface

The Universal Subscriber Identification Module (USIM) may be directly connected to the Q26 Extreme Wireless CPU[®] via this dedicated interface. Using the USIM is recommended over the SIM card.

General Description

The five signals are:

- SIM-VCC: USIM power supply
- ~SIM-RST: reset
- SIM-CLK: clock
- SIM-IO: I/O port
- SIMPRES: USIM card detect

The USIM interface controls a 1V8/3V USIM.

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
SIM-CLK	14	0	2V9 / 1V8	0	USIM Clock	Not mux
~SIM-RST	13	0	2V9 / 1V8	0	USIM Reset	Not mux
SIM-IO	11	I/O	2V9 / 1V8	*Pull-up	USIM Data	Not mux
SIM-VCC	9	0	2V9 / 1V8		USIM Power Supply	Not mux
SIMPRES	12	Ι	1V8	Z	USIM Card Detect	GPIO18

Table 26. USIM interface pin description

*USIM-IO pull-up is about 10kohm

* See Chapter 3.3 "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

Parameter	Conditions	Minim.	Тур	Maxim.	Unit
SIM-IO VIH	IIH = ± 20μA	0.7xSIMVCC			V
SIM-IO VIL	IIL = 1mA			0.4	V
~SIM-RST, SIM-CLK VOH	Source current = 20µA	0.9xSIMVCC			V
SIM-IO VOH	Source current = 20µA	0.8xSIMVCC			
~SIM-RST, SIM-IO, SIM-CLK VOL	Sink current = -200µA			0.4	V
SIM-VCC Output Voltage	SIMVCC = 2.9V IVCC= 1mA	2.84	2.9	2.96	v
	SIMVCC = 1.8V IVCC= 1mA	1.74	1.8	1.86	V
SIM-VCC current	VBATT = 3.8V			10	mA
SIM-CLK Rise/Fall Time	Loaded with 30pF		20		ns
~SIM-RST, Rise/Fall Time	Loaded with 30pF		20		ns
SIM-IO Rise/Fall Time	Loaded with 30pF		0.7	1	μs
SIM-CLK Frequency	Loaded with 30pF			3.25	MHz

Table 27.USIM interface electrical characteristics

When **SIMPRES** is used, a **low to high** transition means that the USIM card is inserted and a **high to low** transition means that the USIM card is removed.

Typical Implementation with SIM Detection

Note:

- Recommended components:
 - R1: 100 kohm
 - C1: 470 pF
 - C2: 100 nF
 - D1: ESDA6V1SC6 from ST
 - D2: DALC208SC6 from SGS-THOMSON
 - J1: ITT CANNON CCM03 series

The capacitor (C2) placed on the SIM-VCC line must not exceed 330 nF.

Signal	Pin number	Description			
VCC	1	SIM-VCC			
RST	2	~SIM-RST			
CLK	3	SIM-CLK			
CC4	4	SIMPRES with 100 k Ω pull-down resistor			
GND	5	GROUND			
VPP	6	Not connected			
I/O	7	SIM-IO			
CC8	8	VCC_1V8 of Wireless CPU (pin 5)			

General Purpose Input/Output

The Q26 Extreme Wireless CPU[®] provides up to 45 General Purpose I/Os, used to control any external device such as an LCD or a Keyboard backlight.

Signal	Pin number	I/O	I/O type*	Reset state	Multiplexed with
GPIO0	43	I/O	2V8	Undefined	32kHz**
GPIO1	51	I/O	1V8	Pull-up	~CS2 / INT2
GPIO2	53	I/O	1V8	Z	A24
GPIO3	50	I/O	1V8	Z	INT0
GPIO4	59	I/O	1V8	Pull-up	COL0
GPIO5	60	I/O	1V8	Pull-up	COL1
GPIO6	61	I/O	1V8	Pull-up	COL2
GPIO7	62	I/O	1V8	Pull-up	COL3
GPIO8	63	I/O	1V8	Pull-up	COL4
GPIO9	68	I/O	1V8	0	ROW0
GPIO10	67	I/O	1V8	0	ROW1
GPIO11	66	I/O	1V8	0	ROW2
GPIO12	65	I/O	1V8	0	ROW3
GPIO13	64	I/O	1V8	0	ROW4
GPIO14	31	I/O	1V8	Z	CT103-TXD2
GPIO15	30	I/O	1V8	Z	CT104-RXD2
GPIO16	32	I/O	1V8	Z	~CT106-CTS2
GPIO17	33	I/O	1V8	Z	~CT105-RTS2
GPIO18	12	I/O	1V8	Z	SIMPRES
GPIO19	45	I/O	2V8	Z	Not mux
GPIO20	48	I/O	2V8	Undefined	Not mux
GPIO21	47	I/O	2V8	Undefined	Not mux
GPIO22	57	I/O	2V8	Z	Not mux*
GPIO23	55	I/O	2V8	Z	Not mux
GPIO24	58	I/O	2V8	Z	Not mux
GPIO25	49	I/O	2V8	Z	INT1
GPIO26	44	I/O	Open drain	Z	SCL1

Table 29. GPIO pin description

Signal	Pin number	I/O	I/O type*	Reset state	Multiplexed with
GPIO27	46	I/O	Open drain	Z	SDA1
GPIO28	23	I/O	2V8	Z	SPI1-CLK
GPIO29	25	I/O	2V8	Z	SPI1-IO
GPIO30	24	I/O	2V8	Z	SP1-I
GPIO31	22	I/O	2V8	Z	SPI1_LOAD
GPIO32	26	I/O	2V8	Z	SPI2-CLK
GPIO33	27	I/O	2V8	Z	SPI2-IO
GPIO34	29	I/O	2V8	Z	SPI2-I
GPIO35	28	I/O	2V8	Z	SPI2_LOAD
GPIO36	71	I/O	2V8	Z	CT103-TXD1
GPIO37	73	I/O	2V8	1	CT104-RXD1
GPIO38	72	I/O	2V8	Z	~CT105-RTS1
GPIO39	75	I/O	2V8	Z	~CT106-CTS1
GPIO40	74	I/O	2V8	Z	~CT107-DSR1
GPIO41	76	I/O	2V8	Z	~CT108-2-DTR1
GPIO42	69	I/O	2V8	Undefined	~CT125-RI1
GPIO43	70	I/O	2V8	Undefined	~CT109-DCD1
GPIO44	83	I/O	2V8	Pull-up	PWM1 / ~CS3

See Chapter 3.3, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

* If a Bluetooth module is used with the Q26 Extreme Wireless CPU[®], these GPIOs must be reserved.

** With the Open $AT^{\ensuremath{\mathbb{R}}}$ Software Suite see "AT Commands Manual " [5].

- Reset State:
 - 0: Set to GND
 - 1: Set to supply 1V8 or 2V8 depending on I/O type.
 - Pull-down: Internal pull-down with ~60k resistor.
 - Pull-up: Internal pull-up with ~60k resistor to supply 1V8 or 2V8 depending on I/O type.
 - Z: High impedance.
 - Undefined: caution, undefined must not be used in your application if a special state at reset is needed. These pins may be of toggling signals.

Analog to Digital Converter

Two Analog to Digital Converter inputs are provided by the Q26 Extreme Wireless CPU[®]. The converters are **more than 10-bit resolution**, ranging from 0 volt to 2 volts.

ADC1 / BAT-TEMP input can be used, typically, to monitor external temperature, useful for safety power off in case of application over heating (for Li-Ion battery).

ADC2 input can be used for customer application.

		,	•	
Signal	Pin number	I/O	I/O type	Description
ADC1/BAT-TEMP*	20	I	Analog	A/D converter
ADC2	21	I	Analog	A/D converter

Table 30. ADC pin description

* This input can be used for a battery charging temperature sensor, see Chapter 0, "Battery Charging interface".

Parameter		Min	Тур	Мах	Unit
Maximum output code			1635		LSB
Sampling period		0,5		3*	S
Input signal range		0		2	V
Input impedance	ADC1/BAT-TEMP		1M		Ω
	ADC2		1M		Ω

Table 31.ADC electrical characteristics

*Sampling rate only for ADC2 and Open $AT^{\ensuremath{\text{\scriptsize B}}}$ application.

Digital to Analog Converter

One Digital to Analog Converter (DAC) input is provided by the Wireless Microprocessor®.

The converter is 8-bit resolution, guaranteed monotonic with a range from 0V to 2.3V. This output assumes a typical external load of $2k\Omega$ and 50pF in parallel to GND.

Table 32. Pin description of the DA

Signal	Pin number	I/O	I/O type	Description
DAC0	82	0	Analog	D/A converter

Table 33.	Electrical Characteristics of t	the DAC

Parameter	Min	Тур	Max	Unit
Resolution	-	8	-	bits
Maximum Output voltage	2.1	2.2	2.3	V

Parameter	Min	Тур	Max	Unit
Minimum Output voltage	0	-	40	mV
Output voltage after reset	-	1.147	-	V
Integral Accuracy	-5	-	+5	LSB
Differential Accuracy	-1	-	+1	LSB
Full scale settling time (load: 50pF // 2kΩ to GND)	-	40	-	μs
One LSB settling time (load: $50pF // 2k\Omega$ to GND)	-	8	-	μs

Analog Audio Interface

Two different microphone inputs and two different speaker outputs are supported. The Q26 Extreme Wireless CPU[®] also includes an echo cancellation feature and noise reduction, which allows hands-free function.

In some cases, ESD protection must be added on the audio interface lines.

Microphone Features

The connection can be either differential or single-ended but using a differential connection in order to reject common mode noise and TDMA noise is strongly recommended. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path.

The gain of MIC inputs is internally adjusted and can be tuned using an AT command.

Both can be configured in differential or single ended.

The MIC2 inputs already include the biasing for an electret microphone allowing an easy connection.

MIC1 Microphone Inputs

By default, the MIC1 inputs are single-ended but it can be configured in differential.

The MIC1 inputs do not include an internal bias. The MIC1 input needs to have an external biasing if an electret microphone is used.

AC coupling is already embedded in the Q26 Extreme Wireless CPU®.

Table 34. Equivalent circuits of MIC1

Table 35. Electrical Characteristics of MIC1

Parameters			Тур	Max	Unit	
DC Characteristics			N/A		V	
AC Characteristics 200 Hz < F < 4 kHz	Z1	70	120	160	kΩ	
	AT+VGT*=3500(4)		13.8	18.6***		
Working voltage (MIC1P-MIC1N)	AT+VGT*=2000(4)		77.5	104***	mVrms	
	AT+VGT*=700(4)		346	465***		
Maximum rating voltage	Positive			+7.35	V	
(MIC1P or MIC1N)	Negative	-0.9			v	

*The input voltage depends of the input micro gain set by AT command. Please refer to the document :AT command User Guide [7]

**Because MIC2P is internally biased, it is necessary to use a coupling capacitor to connect an audio signal provided by an active generator. Only a passive microphone can be directly connected to the MIC2P and MIC2N inputs.

*** This value is obtained with digital gain = 0 and for frequency = 1 kHz:

⁽⁴⁾ This value is given in dB, but it's possible to toggle to index value. Please refer to the document :AT command User Guide [7]

Warning: The voltage input value for MIC1 can't exceed the maximum working voltage, otherwise clipping will appear.

MIC1 Differential Connection example

Figure 19. Example of MIC1 input differential connection with LC filter

Note: Depending on the design, audio quality may be good without L1, L2, C2, C3, and C4. Moreover, if there is an EMI perturbation, this filter may reduce the TDMA noise. The filter (L1, L2, C2, C3, and C4) is not mandatory. If this filter is not used, then the capacitor must be removed and the coil replaced with 0 ohm resistors, as shown in the following diagram.

Figure 20. Example of MIC1 input differential connection without LC filter

The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.

Vbias may be VCC_2V8 (pin 10) of Q26 Extreme Wireless CPU[®], but it is possible to use another 2 volts to 3 volts supply voltage depending on the micro characteristics.

Caution: If an external supply is used other than VCC_2V8 (pin 10), it is important to make sure that the voltage is clean and free from noise, otherwise, the audio quality will be degraded.

- Recommended components:
 - R1: 4.7kohm (for Vbias equal to 2.8V)
 - R2, R3: 820 ohm
 - R4: 1kohm
 - C1: 12pF to 33pF (need to be tuned, as per the design)
 - C2, C3, C4: 47pF (need to be tuned as per the design)
 - C5: 2.2uF +/- 10%
 - L1, L2: 100nH (need to be tuned as per the design)

MIC1 Single-Ended Connection Example

Figure 21. Example of MIC1 input single-ended connection with LC filter

The single-ended design is not recommended to improve TDMA noise rejection. Usually, it is difficult to eliminate TDMA noise from a single-ended design.

It is recommended to add L1 and C2 footprint and a LC EMI filter, in order to eliminate the TDMA noise.

When not used, the filter may be removed by replacing L1 with 0 ohm resistor and by disconnecting C2, as shown in the following diagram.

Figure 22. Example of MIC1 input single-ended connection without LC filter

- Recommended components:
 - R1: 4.7 kohm (for Vbias equal to 2.8V)
 - R2: 820 ohm
 - C1: 12pF to 33pF (need to tuned, as per the design)
 - C2: Must be tuned, as per the design.

• L1: Must be tuned, as per the design.

Vbias must be very "clean" to avoid bad performance in case of single-ended implementation. It is highly recommended to use the VCC_2V8 supply which is available on the system connector (pin 10), in order to avoid this problem.

The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.

MIC2 Microphone Inputs

By default, the MIC2 inputs are differential ones, but it can be configured in single ended. They already include the convenient biasing for an electret microphone. The electret microphone can be directly connected on those inputs, thus allowing easy connection to a handset.

AC coupling is already embedded in the Wireless CPU®.

DC equivalent circuit	AC equivalent circuit
MIC2P R2 MIC2N R2 GND	$\begin{array}{c} \text{MIC2P} & \square & \overbrace{Z2} \\ \text{MIC2N} & \square & \overbrace{Z2} \\ \end{array} \\ \end{array}$

Table 36.Equivalent circuits of MIC2

Table 37. Electrical Characteristics of MIC2	Table 37.
--	-----------

Paramet	ers	Min	Тур	Мах	Unit
	MIC2+	2	2.1	2.2	V
Internal biasing	Output current		0.5	1.5	mA
DO Onaraciensilos	R2	1650	1900	2150	Ω
	Z2 MIC2P (MIC2N=Open)	1.1	1.0		kΩ
AC Characteristics 200 Hz <f<4 khz<="" td=""><td>Z2 MIC2N (MIC2P=Open)</td><td>1.1</td><td>1.5</td><td>1.0</td></f<4>	Z2 MIC2N (MIC2P=Open)	1.1	1.5	1.0	
	Z2 MIC2P (MIC2N=GND)	0.0	1 1	1.4	
	Z2 MIC2N (MIC2P=GND)0.91.11.4Impedance between MIC2P and MIC2N1.31.62		1.1	1.4	
			2		
	AT+VGT*=3500(4)		13.8	18.6 ***	
(MIC2P-MIC2N)	AT+VGT*=2000(4)		77.5	104***	mVrms
	AT+VGT*=700(4)		346	466***	
Maximum rating voltage	Positive			+7.35**	N
(MIC2P or MIC2N)	Negative	-0.9			v

*The input voltage depends of the input micro gain set by AT command. Please refer to the document : AT command User

Guide[7] **Because MIC2P is internally biased, it is necessary to use a coupling capacitor to connect an audio signal provided by an active generator. Only a passive microphone can be directly connected to the MIC2P and MIC2N inputs.

*** This value is obtained with digital gain = 0 and for frequency = 1 Hz..

⁽⁴⁾ This value is given in dB, but it's possible to toggle to index value. Please refer to the document :AT Command Manual [7]

Warning: WARNING: The voltage input value for MIC2 can't exceed the maximum working voltage, otherwise clipping will appear.

Note: Depending on the design, the audio quality may be good without L1, L2, C2, C3, and C4. Moreover, if there is an EMI perturbation, this filter may reduce the TDMA noise. This filter (L1, L2, C2, C3, and C4) is not mandatory. If this filter is not used, then capacitor must be removed and the coil replaced with 0 ohm resistors, as shown in the following diagram.

Figure 24. Example of MIC2 input differential connection without LC filter

The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.

Recommended components:

- C1: 12pF to 33pF (need to be tuned as per the design)
- C2, C3, C4: 47pF (need to be tuned as per the design)
- L1, L2: 100nH (need to be tuned as per the design)

MIC2 Single-Ended Connection Example

Figure 25. Example of MIC2 input single-ended connection with LC filter

The internal input resistor value becomes 1150 ohm, due to the connection of MIC2N to the ground plane.

The single-ended design is not recommended to improve TDMA noise rejection. Usually, it is difficult to eliminate TDMA noise from a single-ended design.

It is recommended to add L1, C2 footprint and a LC filter, in order to eliminate the TDMA noise.

When not used, the filter can be removed by replacing L1 with a 0 ohm resistor and by disconnecting C2, as shown in the following diagram.

Figure 26. Example of MIC2 input single-ended connection without LC filter

The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.

Recommended components:

• C1: 12pF to 33pF (need to be tuned, as per the design)

WM_DEV_Q26EX_PTS_002

- C2: Must be tuned, as per the design.
- L1: Must be tuned, as per the design.

Speaker Features

The connection is single-ended on SPK1 and is differential or single-ended on SPK2. Using a differential connection to reject common mode noise and TDMA noise is strongly recommended. Moreover in single-ended mode, the power is divided by 4. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path.

Parameter	Тур	Unit	Connection
Z (SPK1P, SPK1N)	16 or 32	Ω	single-ended mode
Z (SPK2P, SPK2N)	4	Ω	single-ended mode
Z (SPK2P, SPK2N)	8	Ω	Differential mode

Table 38. Speaker information

Speakers Outputs Power

The both speakers maximum power output are not similar, that is due to the different configuration between the Speaker1 which is only single ended and the speaker2 which can be differential, so speaker2 can provides more power.

The maximal specifications given below are available with the maximum power output configuration values set by an AT command. The typical values are recommended.

SPK1 Speaker Outputs

With the SPK1 interface, only single ended speaker connection is allowed

Equivalent circuits of SPK1

Table 39.	Electrical	Characteristics	of	SPK1
1 0.010 001		0	•••	•••••

	Parameters	Min	Тур	Max	Unit	
Biasing voltage	-			1.30		V
Output swing	RL=16Ω: AT+VGR=-1600**; single-ended		-	1.7	-	Vpp
voltage	RL=32Ω; AT+VGR=-1600**; single-ended		-	1.9	2.75	Vpp
RL	Load resistance		14.5	32	-	Ω
	Output current;	RL=16Ω	-	40	85	mA
1001	single-ended; peak value	RL=32Ω	-	22	-	mA
POUT	RL=16Ω; AT+VGR*=-1600**		-	25		mW
RL=32Ω; AT+VGR*=-1600**		-	16	27	mW	
RPD	Output pull-down resistance at p	ower-down	28	40	52	kΩ

*The output voltage depends of the output speaker gain set by AT command. Please refer to the document AT command User Guide [7]. ** This value is given in dB, but it's possible to toggle to index value. Please refer to the document :AT command User Guide [7]

SPK2 Speaker Outputs

The SPK2 interface allows differential and single ended speaker connection

Equivalent circuits of SPK2

Table 40. Electrical Characteristics of SP
--

	Parameters	Min	Тур	Max	Unit
Biasing voltage	SPK2P and SPK2N		1.30		V
	RL=8 Ω : AT+VGR=-1000 [*] ; single ended	-	-	2	Vpp
Output swing	RL=8Ω: AT+VGR=-1000*; differential	-	-	4	Vpp
voltage	RL=32Ω: AT+VGR=-1000*; single ended	-	-	2.5	Vpp
	RL=32Ω: AT+VGR=-1000*; differential	-	-	5	Vpp
RL	Load resistance	6	8	-	Ω
IOUT	Output current; peak value; RL=8 Ω	-	-	180	mA
POUT	RL=8Ω; AT+VGR=-1000*;	-	-	250	mW
RPD	Output pull-down resistance at power-down	28	40	52	kΩ
VPD	Output DC voltage at power-down	-	-	100	mV

*The output voltage depends of the output speaker gain set by AT command. Please refer to the document: AT command User Guide [7].This value is given in dB, but it's possible to toggle to index value.

If a singled ended solution is used with the speaker2 output, only one of the both SPK2 has to be chosen. The result is a maximal output power divided by 4.

Differential Connection

Figure 27. Example of Speaker differential connection

Impedance of the speaker amplifier output in differential mode is:

 $R \le 1$ ohm +/-10 %.

The connection between the Wireless CPU pins and the speaker must be designed in order to keep the serial impedance lower than 3 ohms in differential mode.

Single-ended Connection

Typical implementation:

Figure 28. Example of Speaker single-ended connection

 6.8μ F < C1 < 47μ F (depends on speaker characteristics and output power).

C1 = C2.

R1 = Zhp.

Use of a single-ended connection results in output power loss (- 6 dB) when compared to a differential connection.

Nevertheless, in a 32 ohms speaker case, you should use a cheaper and smaller solution: R1 = 82 ohms and $C2 = 6.8 \mu F$ (ceramic).

The connection between the Wireless CPU pins and the speaker must be designed in order to keep the serial impedance lower than 1.5 ohm in differential mode.

When SPK1 channel is used, only SPK1P is useful, SPK1N may be left open.

Recommended Characteristics for the Speaker

- Type: 10 mW, electro-magnetic.
- Impedance:
 - Z = 8 ohm for hands-free (SPK2),
 - Z = 32 ohm for headset kit (SPK1).
- Sensitivity: 110 dB SPL minimum (0 dB = 20μ Pa).
- Frequency response compatible with the GSM specifications.

Pin Description

Signal	Pin number	I/O	I/O type	Description
MIC1P	40	I	Analog	Microphone 1 positive input
MIC1N	38	I	Analog	Microphone 1 negative input
MIC2P	36	I	Analog	Microphone 2 positive input
MIC2N	34	I	Analog	Microphone 2 negative input
SPK1P	35	0	Analog	Speaker 1 positive output
SPK1N	37	0	Analog	Speaker 1 negative output
SPK2P	39	0	Analog	Speaker 2 positive output
SPK2N	41	0	Analog	Speaker 2 negative output

Table 41. Pin definitions

Buzzer Output

This output is controlled by a pulse width modulation controller and may be used only as buzzer.

BUZZER0 is an open drain output. A buzzer can be directly connected between this output and VBATT. The maximum current is 100 mA (PEAK).

			,		
Signal	Pin number	I/O	I/O type	Reset state	Description
BUZZER0	15	0	Open drain	Z	Buzzer output

Table 42.	Pin description of PWM/Buzzer output	
-----------	--------------------------------------	--

See Chapter 3.3, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

Table 43.	Electrical characteristics

Parameter	Condition	Minimum	Maximum	Unit
VOL on	lol = 100mA		0.4	V
IPEAK	VBATT = VBATTmax		100	mA
Frequency		1	50000	Hz

The maximum peak current is 80 mA and the maximum average current is 40 mA. A diode against transient peak voltage must be added as described below.

Figure 29. Example of buzzer implementation

Where:

- R1 must be selected in order to limit the current at IPEAK max
- C1 = 0 to 100 nF (depends on the buzzer type)
- D1 = BAS16 (for example)

Recommended characteristics for the buzzer:

- Electro-magnetic type
- Impedance: 7 to 30 ohms

- Sensitivity: 90 dB SPL min @ 10 cm
- Current: 60 to 90 mA

BUZZ-OUT output may also be used to drive a LED as shown in the Figure 33.

Figure 30. Example of LED driven by the BUZZ-OUT output

R1 value depends on the LED (D1) characteristics.

Battery Charging Interface

The Q26 Extreme Wireless CPU[®] supports one battery charging circuit, two algorithms and one hardware charging mode (pre-charging) for 3 battery technologies:

- Ni-Cd (Nickel-Cadmium) with algorithm 0
- Ni-Mh (Nickel-Metal Hydride) with algorithm 0
- Li-Ion (Lithium-Ion) with the embedded PCM (Protection Circuit Module).algorithm 1

The two algorithms control a switch, which connects the CHG-IN signal to the VBATT signal. The algorithm controls the frequency and the connected time of the switching. During the charging procedure, battery charging level is monitored and when Li-Ion algorithm is used, battery temperature is monitored via the ADC1/BAT-TEMP input.

One more charging procedure is provided by the Q26 Extreme Wireless CPU[®]. This is called "Precharging" mode, but is a special charging mode because it is activated only when the Wireless CPU[®] is OFF. Control is in this case only performed by the hardware. The purpose of this charging mode is to avoid battery damage by preventing the battery from being discharged to below the minimum battery level.

Synoptic

Figure 31. Synoptic of battery charging

Q26 Extreme Wireless CPU[®] charging circuit is composed of a transistor switch (between CHG-IN pin6, 8 and VBATT pin 1, 2, 3, 4). Charging is controlled by 2 software's algorithms.

A dedicated ADC input BAT-TEMP (pin 20) for temperature monitoring (only for Li-Ion battery technology).

To use the charging functionality, 3 hardware items are required:

- Charger power supply
 - It provides a DC current power supply limited to 800mA and with voltage range, according to the battery choice and to the Q26 Extreme Wireless CPU[®] specification.
- Battery
 - The charging functionality must be used with rechargeable battery only. Three battery types are supported: Li-Ion, Ni-Mh and Ni-Cd.
 - If the Q26 Extreme Wireless CPU[®] is not powered (VBATT pin 1,2,3,4) by a rechargeable battery, it is mandatory to left open the CHG-IN input (pin 6,8).
- Analog temperature sensor
 - Analog temperature sensor is only used for Li-Ion batteries to monitor the battery temperature. This sensor is composed of NTC sensor and several resistors.

Charger Recommendations

The following table defines and specifies the AC/DC adapter for a battery cell.

Parameter	Min	Тур	Мах	Unit	Remark
Input voltage	90		265	Vac	
Input frequency	45		65	Hz	
Output voltage limit			6	V	No load
Output voltage limit	4.6			V	lo max
Output current	(1)	1C(2)	(3)	mA	
Output Voltage			150	m\/nn	lo max
Ripple			150	шүрр	Vout=5.3V

Table 44.Charger recommendations

Note: See the cell battery specifications for conditions of current charging.

Note: **1C** = Nominal capacity (of the battery cell).

Note: See the cell battery specifications for conditions of current charging.

We recommend, the output voltage (Vo) falls under 1.18V in less than 1 second, when the adapter AC/DC is unplugged.

Charging Algorithm

Ni-Cd / Ni-Mh Charging Algorithm

To charge the battery, the algorithm measures battery level when the switch is open (time T2) and charges the battery by closing the switch (time T3). When the battery is charged (battery voltage has reached BattLevelMax) the switch is open for time T3.

Parameter	Min	Тур	Мах	Unit
T1		1		S
T2		0.1		S
Т3		5		S

Note: T1,T2,T3 and BattLevelMax may be configured by AT command.

The battery level is monitored by the software (but not temperature).

The Li-Ion algorithm provides battery temperature monitoring, which is highly recommended to prevent battery damage during the charging phase.

Li-Ion Charging Algorithm

The Li-Ion charger algorithm can be broken down into three phases:

- 1. Constant charge
- **2.** Beginning of pulse charge
- **3.** End of pulse charge

The three phases can be seen on the following waveform for full charging:

Table 46.

Electrical characteristics of Li-Ion battery timing charge

Parameter		Min	Тур	Мах	Unit
Step 1 switching	Closed		Always		S
Oten O switzkinn	Open		0.1		s
Step 2 Switching	Closed		1		s
Step 3 switching	Open	0.1		3	s
	Closed		1		S

Pre-Charging

When a charger DC power supply is connected to the CHG-IN input and if the voltage battery is between 2.8V* and 3.2V, a constant current of 50mA is provided to the battery.

When the battery is able to supply the Q26 Extreme Wireless CPU[®], it is automatically powered on and the software algorithm is activated to finish the charge.

* For the Lithium-ion battery, the minimum voltage must be higher than PCM lock level.

Note: When pre-charging is launched, the LED0 output blinks automatically.

Warning: The Q26 Extreme Wireless CPU® can not release the PCM protection inside Lithium battery pack. Voltage forbidden on the CHG-IN signal if no battery connected on VBATT signals.

Temperature Monitoring

Temperature monitoring is only available for the Li-Ion battery with algorithm 1. The ADC1/BAT-TEMP (pin 20) input must be used to sample the temperature analog signal provided by an NTC temperature sensor. The minimum and maximum temperature range may be set by AT command.

Signal	Pin number	I/O	I/O type	Description
CHG-IN	6,8	I	Analog	Current source input
BAT-TEMP	20	I	Analog	A/D converter

Pin description of battery charging interface

Table 48.

Table 47.

8. Electrical characteristics of battery charging interface

Para	Minimum	Тур	Maximum	Unit	
Charging operating temperature		0		50	°C
	Maximum output code		1635		LSB
ADC1/BAT-TEMP	Sampling rate		216		S/s
(pin 20)	Input Impedance (R)		1		MΩ
	Input signal range	0		2	V
	Voltage (for I=Imax)	4.8*			V
CHG-IN (pin 6, 8)	Voltage (for I=0)			6*	V
	DC Current	400**		800	mA

* To be configured as specified by the battery manufacturer

** : Take care ; this value has to be selected in function of the power consumption mode used: please refer to the power consumption tables § 3.2.2.

Schematic

The VCC_2V8 (pin 10) voltage provided by the Q26 Extreme Wireless CPU[®] may be used to polarize the NTC. However, the additional resistors R1 and R2, must be used to adjust the maximum voltage of the ADC input to 2volts.

If any other polarized voltage is used, the resistors must be adapted.

It is not recommended to used the VCC_1V8 (pin 5) voltage.

Figure 34. Example of ADC application

The R(t) resistor is the NTC and must be close to the battery., it is usually integrated into the battery.

Warning: The Charger DC power supply must have an output current limited to 800mA.

The maximum Charger output current, provided to the battery, must be accorded to the battery electrical characteristics.

Li-lon batteries must be used with the embedded PCM (Protection Circuit Module).

The maximum charging voltage is up to 4,3V (Software drive)

At the first plug, if the batter Li-ion is locked by its PCM, the charger function does not work.

At the first plug, if the battery Li-ion is locked by its PCM the charger function doesn't work.

ON / ~OFF Signal

This input is used to switch the Q26 Extreme Wireless CPU® ON or OFF.

A high-level signal must be provided on the ON/~OFF pin to switch ON the Wireless CPU[®]. The voltage of this signal has to be maintained higher than 0.8 x VBATT during a minimum of 1500ms. This signal can be left at high level until switch-off.

To switch OFF the Wireless CPU[®], the ON/OFF pin must be released. The Wireless CPU[®] can be switched off via the Operating System.

Table 49.	Pin description

Signal	Pin number	I/O	I/O type	Description
ON/~OFF	19	I	CMOS	Wireless CPU® Power-ON

Table 50. Electrical characteristics of the signals

Parameter	I/O type	Minimum	Maximum	Unit
VIL	CMOS		VBATT x 0.2	V
VIH	CMOS	VBATT x 0.8	VBATT	V

Warning: All external signals must be inactive when the Wireless CPU[®] module is OFF to avoid any damage when starting and allow the Wireless CPU[®] to start and stop correctly.

Operating Sequences

Power-ON

Once the Wireless CPU[®] is supplied, the application must set the ON/OFF signal to high to start the Wireless CPU[®] power-ON sequence. The ON/OFF signal must be held high during a minimum delay of **T**_{on/off-hold} (Minimum hold delay on the ON/~OFF signal) to power-ON. After this delay, an internal mechanism maintains the Wireless CPU[®] in power-ON condition.

During the power-ON sequence, an internal reset is automatically performed by the Wireless CPU[®] for 40ms (typical). Any external reset should be avoided during this phase.

Once initialization is completed (timing is USIM- and network-dependent), the AT interface answers "OK" to the application. For further details, please check the AT Commands Manual [5].

Figure 35. Power-ON sequence (no PIN code activated)

The duration of the firmware power-up sequence depends on:

• the need to perform a recovery sequence if the power has been lost during a flash memory modification.

Other factors have a minor influence

- the number of parameters stored in EEPROM by the AT commands received so far
- the ageing of the hardware components, especially the flash memory
- the temperature conditions

The *recommended* way to de-assert the ON/~OFF signal is to use either an AT command or WIND indicators: the application must detect the end of the power-up initialization and de-assert ON/~OFF afterwards.

- Send an "AT" command and wait for the "OK" answer: once the initialization is complete the AT interface answers « OK » to "AT" message¹.
- Wait for the "+WIND: 3" message: after initialization, the Wireless CPU[®], if configured to do so, will return an unsolicited "+WIND: 3" message. The generation of this message is enabled or disabled via an AT command.

Note: See also "AT Commands Manual" [5] for more information on these commands.

Proceeding thus – by software detection - will always prevent the application from de-asserting the ON/~OFF signal too early.

If WIND indicators are disabled or AT commands unavailable or not used, it is still possible to deassert ON/~OFF after a delay long enough ($T_{on/off-hold}$) to ensure that the firmware has already completed its power-up initialization.

¹ If the application manages hardware flow control, the AT command can be sent during the initialisation phase.

The table below gives the minimum values of $T_{on/off-hold}$:

Table 51.	T _{on/off-hold} minimum values
Open AT® Firmware	Ton/off-hold
	Safe evaluations of the firmware power-up time
Open AT® Software Suite v2.30	8 s (TBC)

The above figure take the worst cases into account: power-loss recovery operations, slow flash memory operations in high temperature conditions, and so on. But, they are safe because they are large enough to ensure that ON/~OFF is not deasserted too early.

Additional notes

- Typical power-up initialization time figures for best cases conditions (no power-loss recovery, fast and new flash memory...) approximate 3.5 seconds in every firmware version. But releasing ON/~OFF after this delay does not guarantee that the application will actually start-up if for example the power plug has been pulled off during a flash memory operation, like a phone book entry update or an AT&W command...
- The ON/~OFF signal can be left at a high level until switch OFF. But this is not recommended as it will prevent the AT+CPOF command from performing a clean power-off. (see also Note in section 0 on Power-OFF for an alternate usage)
- When using a battery as power source, it is not recommended to let this signal high:
- If the battery voltage is too low and the ON/~OFF signal at low level, an internal mechanism switches OFF the Wireless CPU[®]. This automatic process prevents the battery to be over discharged and optimize its life span.
- During the power-ON sequence, an internal reset is automatically performed by the Wireless CPU® for 40 ms (typical). Any external reset should be avoided during this phase.
- After a reset (hardware or software), if the ON/~OFF signal is OFF (Low level) the Wireless CPU® switches OFF.

Power-OFF

To power-OFF the Wireless CPU[®] correctly, the application must reset the ON/OFF signal and then send the AT+CPOF command to deregister from the network and switch off the Wireless CPU[®].

Once the "OK" response is issued by the Wireless CPU®, the power supply can be switched off.

BOOT Signal

A specific BOOT control pin is available to download the Q26 Extreme Wireless CPU[®] only if the standard XModem download, controlled with AT command, is not possible).

A specific PC software program, provided by Wavecom, is needed to perform this specific download.

The BOOT pin must be connected to VCC_1V8 for this specific download.

BOOT	Operating mode	Comment
Leave open	Normal use	No download
Leave open	Download XModem	AT command for Download AT+WDWL
1	Download specific	Need Wavecom PC software

For more information, see Q26 Extreme Wireless CPU® / Open AT® Software Suite AT Command User Guide [5].

This BOOT pin must be left open either for normal use or XModem download.

However, in order to render the development and maintenance phases easier, it is <u>highly</u> <u>recommended</u> to set a test point, either a jumper or a switch on the VCC_1V8 (pin 5) power supply.

Table 53. Pin description							
Signal	Pin number	I/O	I/O type	Description			
BOOT	16	I	1V8	Download mode selection			
VCC_1V8 (pin 5) Switch							
		2		> BOOT (pin 16)			

Figure 37. Example of BOOT pin implementation

Reset Signal (~RESET)

This signal is used to force a reset procedure by providing low level for at least 200µs. This signal must be considered as an emergency reset only. A reset procedure is already driven by the internal hardware during the power-up sequence.

This signal may also be used to provide a reset to an external device (at power-up only). If no external reset is necessary, this input may be left open. If used (emergency reset), it must be driven by an open collector or an open drain.

The Wireless CPU[®] remains in reset mode as long as the ~RESET signal is held low.

Caution: This signal should only be used for "emergency" resets.

An Operating System reset is to be preferred to a hardware reset.

Reset sequence

To activate the "emergency" reset sequence, the ~RESET signal must be set to low for 200µs minimum. As soon as the reset is completed, the AT interface answers "OK" to the application.

Figure 38. Reset sequence waveform

At power-up, the ~RESET time (Rt) is carried out after switching ON the Wireless CPU[®]. It is generated by the internal Q26 Extreme Wireless CPU[®] voltage supervisor.

The ~RESET time is provided by the internal RC component. To keep the same time, it is not recommended to connect another R or C component on the ~RESET signal. Only a switch or an open drain gate is recommended.

Ct is the cancellation time required for the Q26 Extreme Wireless CPU[®] initialization. Ct is automatically carried out by the Q26 Extreme Wireless CPU[®] after a hardware reset.

Parameter	Minimum	Тур	Maximum	Unit
Input Impedance (R)*		100		kΩ
Input Impedance (C)		10		nF
~RESET time (Rt) 1	200			μs
~RESET time (Rt) 2 at power up only	20	40	100	ms
Cancellation time (Ct)		34		ms
VH	0.57			V
VIL	0		0.57	V
VIH	1.33			V

Table 54. Electrical characteristics of the signals

* internal pull-up V_{H:} Hysterisis Voltage

1 This reset time is the minimum to be carried out on the ~RESET signal when the power supply is already stabilized.

2 This reset time is internally carried out by the Wireless CPU[®] power supply supervisor only when the Wireless CPU[®] power supplies are powered ON.

Table 55.	Pin description
10010 001	

Signal	Pin number	Ι/Ο	I/O type	Description
~RESET	18	I/O Open Drain	1V8	Wireless CPU® Reset

Figure 39. Example of ~RESET pin connection with switch configuration

Figure 40. Example of ~RESET pin connection with transistor configuration

Open collector or open drain transistor may be used. If an open collector is selected, T1 may be a Rohm DTC144EE.

Table 56	Reset command
Table 00.	neset command

Reset command	~RESET (pin 18)	Operating mode
1	0	Reset activated
0	1	Reset inactive

External Interrupt

The Q26 Extreme Wireless CPU[®] provides three external interrupt inputs. These interrupt inputs can be activated on:

- High to low edge
- Low to high edge
- Low to high and high to low edge

When used, the interrupt inputs must not be left open.

If not used, they must be configured as GPIOs.

Table 57. Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
INT2	51	I	1V8	Pull-up	External Interrupt 2	~CS2 / GPIO1
INT1	49	I	2V8	Z	External Interrupt 1	GPIO25
INT0	50	I	1V8	Z	External Interrupt 0	GPIO3

See Chapter Caution:, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

Parameter		Minimum	Maximum	Unit			
	VIL		0.84	V			
	VIH	1.96		V			
	VIL		0.54	V			
INTO , INTZ	VIH	1.33		V			

Tahla 58	Electrical characteristics	of the signals
Table 50.	LIEULI IUAI UNAI AULEI ISLIUS	UI LITE SIGNAIS

VCC_2V8 and VCC_1V8 Output

These outputs may be used to power some external functions and only available when the Wireless CPU is ON.

Table 59.	Pin description

Signal	Pin number	I/O	I/O type	Description
VCC_2V8	10	0	Supply	Digital supply
VCC_1V8	5	0	Supply	Digital supply

Parameter		Minimum	Тур	Maximum	Unit
	Output voltage	2.74	2.8	2.86	V
VCC_2Vo	Output Current			15	mA
	Output voltage	1.76	1.8	1.94	V
VCC_1V0	Output Current			15	mA

Table 60.Electrical characteristics of the signals

These digital power supplies are mainly used to:

- Pull-up signals such as I/O
- Supply the digital transistors driving the LEDs
- Supply the SIMPRES signal
- Act as a voltage reference for ADC interface AUX-ADC (only for VCC_2V8)

The maximum current to be provided by each output is 15 mA.

BAT-RTC (Backup Battery)

The Q26 Extreme Wireless CPU[®] provides an input/output to connect a Real Time Clock (RTC) power supply.

Interface Description

This pin is used as a back-up power supply for the internal **R**eal **T**ime **C**lock. The RTC is supported by the Wireless CPU[®] when VBATT is available, but a back-up power supply is needed to save date and time when VBATT is switched off (VBATT = 0V).

Figure 41. Real Time Clock power supply

If the RTC is not used, this pin can be left open.

If VBATT is available, the back-up battery can be charged by the internal 2.5V power supply regulator.

Table 61.Pin description

Signal	Pin number	I/O	I/O type	Description
BAT-RTC	7	I/O	Supply	RTC Back-up supply

Parameter	Minimum	Тур	Maximum	Unit
Input voltage	1.85		3.0	V
Input current consumption*		3.3		μA
Output voltage		2.45		V
Output current			2	mA

*Provided by an RTC back-up battery when Wireless CPU® power supply is off (VBATT = 0V).

Typical Application Electrical Diagram

Super Capacitor

Figure 42. RTC supplied by a gold capacitor

Estimated range with 0.47 Farad Gold Cap: 4 hours minimum.

<u>Note</u>:

The Gold Capacitor maximum voltage is 2.5 V.

Non-Rechargeable Battery

Figure 43. RTC supplied by a non-rechargeable battery

The diode D1 is mandatory, in order to protect the non-rechargeable battery. Estimated range with 85 mAh battery: 800 h minimum.

Rechargeable Battery Cell

Figure 44. RTC supplied by a rechargeable battery cell

Estimated range with 2 mAh rechargeable battery: ~15 hours.

Warning: Before battery cell assembly ensures that cell voltage is lower than 2.75 V to avoid any damage to the Wireless CPU.

LED0 Signal

LED0 is an open drain output. A LED and a resistor can be directly connected between this output and VBATT.

When the Q26 Extreme Wireless CPU[®] is OFF, if 2.8V < VBATT < 3.2V and a charger is connected on CHG-IN inputs, this output flashes (100 ms ON, 900 ms OFF) to indicate the pre-charging phase of the battery.

When the Q26 Extreme Wireless CPU® is ON, this output is used to indicate network status.

Table 63. LED0 status							
Wireless CPU® state	VBATT status	LED0 status	Wireless CPU® status				
	VBATT<2.8V or VBATT> 3.2V	OFF	Wireless CPU® is OFF				
Wireless CPU® OFF	2.8V < VBATT < 3.2V	Pre-charge flash LED ON for 100 ms, OFF for 900 ms	Wireless CPU® is OFF, Pre-charging mode (charger must be connected on CHG-IN to activate this mode)				
Wireless CPU® ON	VBATT > 3.2V	Permanent	Wireless CPU® switched ON, not registered on the network				
		Slow flash LED ON for 200 ms, OFF for 2 s	Wireless CPU® switched ON, registered on the network				
		Quick flash LED ON for 200 ms, OFF for 600 ms	Wireless CPU® switched ON, registered on the network, communication in progress				
		Very quick flash LED ON for 100ms, OFF for 200ms	Wireless CPU® switched on, software downloaded is either corrupted or non-compatible ("BAD SOFTWARE")				

Table 64. Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description
LED0	17	0	Open Drain Output	1 and Undefined	LED driving

See Chapter Caution:, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

Figure 45. LED0 state during RESET and Initialization time

LED0 state is high during the RESET time and undefined during the software initialization time. During software initialization time, for 2 seconds max after RESET cancellation, the LED0 signal is toggling and does not provide Wireless CPU[®] status. After the 2s period, the LED0 provides the true status of the Wireless CPU[®].

Table 65.	Electrical characteristics of the	signal

Parameter	Condition	Minimum	Тур	Maximum	Unit
VOL				0.4	V
IOUT				8	mA

The GSM activity status indication signals LED0 (pin 17) may be used to drive a LED. This signal is an open-drain digital transistor in accordance to the Wireless CPU activity status.

Figure 46. Example of GSM activity status implementation

R1 value may be harmonized depending on the LED (D1) characteristics.

Digital Audio Interface (PCM)

Digital audio interface (PCM) interface mode allows connectivity with audio standard peripherals. It can be used, for example, to connect an external audio codec.

The programmability of this mode provides the ability to address a large range of audio peripherals.

PCM features:

- IOM-2 compatible device on physical level
- Master mode only with 6 slots by frame, user only on **slot 4**
- Bit rate single clock mode at 768 kHz only
- 16 bits data word MSB first only
- Linear Law only (no compression law)
- Long Frame Synchronization only
- Push-pull configuration on PCM-OUT and PCM-IN

The digital audio interface configuration cannot differ from that specified above.

Description

The PCM interface consists of 4 wires:

- **PCM-SYNC** (output): The frame synchronization signal delivers an 8kHz frequency pulse that synchronizes the frame data in and the frame data out.
- **PCM-CLK** (output): The frame bit clock signal controls data transfer with the audio peripheral.
- **PCM-OUT** (output): The frame "data out" relies on the selected configuration mode.
- **PCM-IN** (input): The frame "data in" relies on the selected configuration mode.

Table 66. AC characteristics

Signal	Description	Minimum	Тур	Maximum	Unit
Tsync_low + Tsync_high	PCM-SYNC period		125		μs
Tsync_low	PCM-SYNC low time		93		μs
Tsync_high	PCM-SYNC high time		32		μs
TSYNC-CLK	PCM-SYNC to PCM-CLK time		-154		ns
TCLK-cycle	PCM-CLK period		1302		ns
TIN-setup	PCM-IN setup time	50			ns
TIN-hold	PCM-IN hold time	50			ns
TOUT-delay	PCM-OUT delay time			20	ns

Table 67	Pin description of the PCM interface

Signal	Pin number	I/O	I/O type	Reset state	Description
PCM-SYNC	77	0	1V8	Pull-down	Frame synchronization 8kHz
PCM-CLK	79	0	1V8	Pull-down	Data clock
PCM-OUT	80	0	1V8	Pull-up	Data output
PCM-IN	78	I	1V8	Pull-up	Data input

See Chapter Caution:, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and Reset state definition.

USB 2.0 Interface

A 4-wire USB slave interface is available which complies with USB 2.0 protocol signaling. But it is not compliant with the electrical interface, due to the 5V of VPAD-USB.

The USB interface signals are VPAD-USB, USB-DP, USB-DM and GND.

USB interface features:

- 12Mbit/s full-speed transfer rate
- 3.3V typ compatible
- USB Softconnect feature
- CDC 1.1 ACM compliant

Note: A 5V to 3.3V typ voltage regulator is needed between the external interface power in line (+5V) and the Wireless CPU[®] line (VPAD-USB).

Signal	Pin number	I/O	I/O type	Description
VPAD-USB	52	Ι	VPAD_USB	USB Power Supply
USB-DP	54	I/O	VPAD_USB	Differential data interface positive
USB-DM	56	I/O	VPAD_USB	Differential data interface negative

Table 68. Pin description of the USB interface

Table 69.	Electrical characteristics	of the signals

Parameter	Min	Тур	Max	Unit
VPAD-USB, USB-DP, USB-DM	3.0	3.3	3.6	V
VPAD-USB Input current consumption		8		mA

Typical diagram is presented below:

Figure 49. Example of USB implementation

Recommended components

- R1: 1MOhm
- C1, C3: 100nF
- C2, C4: 2.2µF
- D1: STF2002-22 from SEMTECH
- U1: LP2985AIM 3.3V from NATIONAL SEMICONDUCTOR

The regulator used is a 3.3V regulator. It supplies via J1 when the USB wire is plugged.

The EMI/RFI filter with ESD protection is D1. The D1 internal pull-up resistor, used to detect the full speed, is not connected, because it is embedded in the Wireless CPU.

R1 and C1 must be close to J1.

RF Interface

Q26 Extreme Wireless CPU[®] supports two antennas (main and diversity). The impedance is 50 ohms nominal and the DC impedance is 0 ohm.

RF Connections

U.FL Connector for main antenna

A wide variety of cables fitted with U.FL connectors is offered by different suppliers.

Soldered solution for main and diversity antenna

The soldered solution will preferably be based on an RG178 coaxial cable.

Note:	The Q26 Extreme Wireless CPU® does not support an antenna switch for a car kit, but this function can be implemented externally and can be driven using a GPIO.
Note:	The antenna cable and connector should be selected in order to minimize losses in the frequency bands used for GSM 850/900MHz and 1800/1900MHz.
Note:	0.5dB may be considered as the maximum value of loss between the Wireless CPU [®] and an external connector.

RF Performance

RF performance is compliant with the ETSI GSM 05.05 recommendation.

The main Receiver parameters are:

- GSM850 Reference Sensitivity = -104 dBm Static & TUHigh
- E-GSM900 Reference Sensitivity = -104 dBm Static & TUHigh
- DCS1800 Reference Sensitivity = -102 dBm Static & TUHigh
- PCS1900 Reference Sensitivity = -102 dBm Static & TUHigh
- 3G Band I 2100 Reference Sensitivity = -106.7 dBm Static & TUHigh
- 3G Band II 1900 Reference Sensitivity = -106.7 dBm Static & TUHigh
- 3G Band V 850 Reference Sensitivity = -106.7 dBm Static & TUHigh
- Selectivity @ 200 kHz: > +9 dBc
- Selectivity @ 400 kHz: > +41 dBc
- Linear dynamic range: 63 dB
- Co-channel rejection: >= 9 dBc

Transmitter parameters:

- Maximum output power (EGSM & GSM850): 33 dBm +/- 2 dB at ambient temperature
- Maximum output power (GSM1800 & PCS1900): 30 dBm +/- 2 dB at ambient temperature
- Minimum output power (EGSM & GSM850): 5 dBm +/- 5 dB at ambient temperature
- Minimum output power (GSM1800 & PCS1900): 0 dBm +/- 5 dB at ambient temperature
- Maximum output power (3G all band): 24 dBm +1/-3 dB at ambient temperature

Antenna Specifications

The antenna must meet the following requirements:

• The optimum operating frequency depends on the application. Either a dual-band or quadband antenna will operate in these frequency bands and have the following characteristics:

Characteristic		Q26 Extreme Wireless CPU®							
		E-GSM 900	DCS 1800	GSM 850 and WCDMA band V	PCS 1900 and WCDMA band II	WCDMA band I			
TX Frequency		880 to 915 MHz	1710 to 1785 MHz	824 to 849 MHz	1850 to 1910 MHz	1920 to 1980 MHz			
RX Frequency		925 to 1805 to 960 MHz 1880 MHz		869 to 894 MHz	1930 to 1990 MHz	2110 to 2170 MHz			
Impedanc	e	50 Ω							
VSWR	Rx max	1.5:1							
Tx max		1.5:1							
Typical radiated gain		0dBi in one direction at least							

Table 70.	Antenna specifications
-----------	------------------------

>> 4. Technical Specifications

General Purpose Connector Pin-out Description

			Signa	al Name	F	Pin	Signal	Name			
Description	1/0*	Voltage	Mux	Nominal	Nu	mber	r Nominal	Mux	Voltage	1/0*	Description
Power Supply	1	VBATT		VBATT	1	2	VBATT		VBATT	I	Power Supply
Power Supply	I	VBATT		VBATT	3	4	VBATT		VBATT	I	Power Supply
1.8V Supply Output	0	VCC_1V8		VCC_1V8	5	6	CHG-IN		CHG-IN	I	Charger input
RTC Battery connection	I/O	BAT-RTC		BAT-RTC	7	8	CHG-IN		CHG-IN	I	Charger input
USIM Power Supply	0	1V8 or 3V		SIM-VCC	9	10	VCC_2V8		VCC_2V8	0	2.8V Supply Output
USIM Data	I/O	1V8 or 3V		SIM-IO	11	12	SIMPRES	GPIO18	VCC_1V8	I	USIM Detection
USIM reset	0	1V8 or 3V		~SIM-RST	13	14	SIM-CLK		1V8 or 3V	0	USIM Clock
Buzzer Output	0	Open Drain		BUZZER0	15	16	BOOT		VCC_1V8	I	Not Used
LED0 Output	0	Open Drain		LED0	17	18	~RESET		VCC_1V8	I/O	RESET Input
ON / ~OFF Control	I	VBATT		ON/~OFF	19	20	BAT- TEMP		Analog	I	Analog temperature
Analog to Digital Input	I	Analog		ADC2	21	22	GPIO31	SPI1- LOAD	VCC_2V8	I/O	
SPI1 Clock	0	VCC_2V8	GPIO28	SPI1-CLK	23	24	SPI1-I	GPIO30	VCC_2V8	I	SPI1 Data Input
SPI1 Data Input / Output	I/O	VCC_2V8	GPIO29	SPI1-IO	25	26	SPI2-CLK	GPIO32	VCC_2V8	0	SPI2 Clock
SPI2 Data Input / Output	I/O	VCC_2V8	GPIO33	SPI2-IO	27	28	GPIO35	SPI2- LOAD	VCC_2V8	I/O	
SPI2 Data Input	I	VCC_2V8	GPIO34	SPI2-I	29	30	CT104- RXD2	GPIO15	VCC_1V8	0	Auxiliary RS232 Receive
Auxiliary RS232 Transmit	I	VCC_1V8	GPIO14	CT103- TXD2	31	32	~CT106- CTS2	GPIO16	VCC_1V8	0	Auxiliary RS232 Clear To Send
Auxiliary RS232 Request To Send	I	VCC_1V8	GPIO17	~CT105- RTS2	33	34	MIC2N		Analog	I	Micro 2 Input Negative
Speaker 1 Output Positive	0	Analog		SPK1P	35	36	MIC2P		Analog	I	Micro 2 Input Positive
Speaker 1 Output Negative	0	Analog		SPK1N	37	38	MIC1N		Analog	I	Micro 1 Input Negative
Speaker 2 Output Positive	0	Analog		SPK2P	39	40	MIC1P		Analog	I	Micro 1 Input Positive
Speaker 2 Output Negative	0	Analog		SPK2N	41	42	A1	**	VCC_1V8	0	Address bus 1
	I/O	VCC_2V8	32kHz	GPIO0	43	44	SCL1	GPIO26	Open Drain	0	I ² C Clock
	I/O	VCC_2V8		GPIO19	45	46	SDA1	GPIO27	Open Drain	I/O	I ² C Data
	I/O	VCC_2V8		GPIO21	47	48	GPIO20		VCC_2V8	I/O	
Interruption 1 Input	I	VCC_2V8	GPIO25	INT1	49	50	INT0	GPIO3	VCC_1V8	I	Interruption 0 Input

Table 71. GPIO Pinout Definitions

Description	I/O*	Voltage	Signa	al Name	F	Pin mber	Signal	Name	Voltage	I/O*	Description
	I/O	VCC_1V8	**	GPIO1	51	52	VPAD- USB		VPAD- USB	I	USB Power supply input
	I/O	VCC_1V8	A24	GPIO2	53	54	USB-DP		VPAD- USB	I/O	USB Data
	I/O	VCC_2V8	**	GPIO23	55	56	USB-DM		VPAD- USB	I/O	USB Data
	I/O	VCC_2V8	**	GPIO22	57	58	GPIO24		VCC_2V8	I/O	
Keypad column 0	I/O	VCC_1V8	GPIO4	COL0	59	60	COL1	GPIO5	VCC_1V8	I/O	Keypad column 1
Keypad column 2	I/O	VCC_1V8	GPIO6	COL2	61	62	COL3	GPIO7	VCC_1V8	I/O	Keypad column 3
Keypad column 4	I/O	VCC_1V8	GPIO8	COL4	63	64	ROW4	GPIO13	VCC_1V8	I/O	Keypad Row 4
Keypad Row 3	I/O	VCC_1V8	GPIO12	ROW3	65	66	ROW2	GPIO11	VCC_1V8	I/O	Keypad Row 2
Keypad Row 1	I/O	VCC_1V8	GPIO10	ROW1	67	68	ROW0	GPIO9	VCC_1V8	I/O	Keypad Row 0
Main RS232 Ring Indicator	0	VCC_2V8	GPIO42	~CT125- RI	69	70	~CT109- DCD1	GPIO43	VCC_2V8	0	Main RS232 Data Carrier Detect
Main RS232 Transmit	I	VCC_2V8	GPIO36	CT103- TXD1	71	72	~CT105- RTS1	GPIO38	VCC_2V8	I	Main RS232 Request To Send
Main RS232 Receive	0	VCC_2V8	GPIO37	CT104- RXD1	73	74	~CT107- DSR1	GPIO40	VCC_2V8	0	Main RS232 Data Set Ready
Main RS232 Clear To Send	0	VCC_2V8	GPIO39	~CT106- CTS1	75	76	~CT108-2- DTR1	GPIO41	VCC_2V8	I	Main RS232 Data Terminal Ready
PCM Frame Synchro	0	VCC_1V8		PCM- SYNC	77	78	PCM-IN		VCC_1V8	I	PCM Data Input
PCM Clock	0	VCC_1V8		PCM-CLK	79	80	PCM-OUT		VCC_1V8	0	PCM Data Output
Read enable		VCC_1V8		~OE-R/W	81	82	DAC0		Analog	0	
Chip select 3		VCC_1V8		GPIO44/ ~CS3	83	84	~WE-E		VCC_1V8		Write enable
DATA bus		VCC_1V8		D0	85	86	D15		VCC_1V8		DATA bus
DATA bus		VCC_1V8		D1	87	88	D14		VCC_1V8		DATA bus
DATA bus		VCC_1V8		D2	89	90	D13		VCC_1V8		DATA bus
DATA bus		VCC_1V8		D3	91	92	D12		VCC_1V8		DATA bus
DATA bus		VCC_1V8		D4	93	94	D11		VCC_1V8		DATA bus
DATA bus		VCC_1V8		D5	95	96	D10		VCC_1V8		DATA bus
DATA bus		VCC_1V8		D6	97	98	D9		VCC_1V8		DATA bus
DATA bus		VCC_1V8		D7	99	100	D8		VCC_1V8		DATA bus

* The I/O direction information is only for the nominal signal. When the signal is configured in GPIO, it can always be an Input or an Output.

 ** For more information about the multiplexing of these signals, see "General purpose input /output", section 0

Environmental Specifications

Wavecom specifies the following temperature range for the Q26 Extreme Wireless CPU® product.

The Q26 Extreme Wireless CPU® is compliant with the following operating class.

Conditions	Temperature range
Operating / Class A	-20 °C to +55°C
Operating / Storage / Class B	-30 °C to +75°C

Table 72.	Operating Temperatures
Table 72.	Operating Temperatures

Function Status Classification:

Class A:

The Wireless CPU® remains fully functional, meeting GSM performance criteria in accordance with ETSI requirements, across the specified temperature range.

Class B:

Operating Class B restrictions depends on Q26 Extreme implementation; refer to section 6.1.1 for optimized implementation,

The Wireless CPU® remains functional, across the specified temperature range. Some GSM parameters may occasionally deviate from the ETSI specified requirements. Auto shut down is implemented for protection against extreme temperature (deactivated for emergency calls), refer table for communication characteristic in extreme T° environment.

The table below show sample measurements in lab environment conditions (Environmental specifications will be available after Q26 Extreme environmental qualification plan).Operating duration versus temperature

Mode	Ambient temperature (°C)	RF Power (dBm)	Operating duration (min)
GSM/GPRS/EGPRS Class 8	75	Max	∞
GPRS/EGPRS Class 10	70	Max	∞
GPRS/EGPRS Class 10	75	Max	1
GPRS/EGPRS Class 12	65	Max	x
GPRS/EGPRS Class 12	70	Max	2
WCDMA	70	< 0	x
WCDMA	65	Max	∞
WCDMA	70	Max	2
HSDPA 7.2 Mbits/s	70	< 0	∞
HSDPA 7.2 Mbits/s	60	Max	x

Table 73. Operating duration versus temperature

Mode	Ambient	RF Power	Operating
	temperature (°C)	(dBm)	duration (min)
HSDPA 7.2 Mbits/s	65	Max	2

Test condition: Q26 Extreme plug in a starter kit light with forced air circulation Vbatt = 3.8V. (See 0 for starter kit light picture.)

Mechanical Specifications

Physical Characteristics

The Q26 Extreme Wireless CPU® has a complete self-contained shield.

- Overall dimensions : 32.2x40x6.3 mm (except shielding pins)
- Weight : 11,8 g

Mechanical Drawings

The mechanical specifications of the Q26 Extreme Wireless CPU® are shown in the following page.

5. Connector and Peripheral **Device References**

General Purpose Connector

The GPC is a 100-pin connector with 0.5mm pitch from the from PANASONIC Group's P5K series, with the following reference:

AXK600347BN1

The matting connector has the following reference:

AXK500147BN1J

The stacking height is 3.0 mm.

Wavecom recommends that you use the AXK500147BN1J connector for your application to benefit from Wavecom prices. For more information, contact Wavecom, specifying the Wavecom connector reference: WM18868.

For further details see the GPC data sheets in the appendix. More information is also available from:

http://panasonic-denko.co.jp/ac/e/control/connector/base-base/p5k/index.jsp

USIM Card Reader

- AMPHENOL C707 series (see <u>http://www.amphenol.com</u>)
- JAE (see <u>http://www.jae.co.jp</u>)
- MOLEX 99228-0002 (connector) / MOLEX 91236-0002 (holder) (see http://www.molex.com)

Microphone

Possible suppliers:

- HOSIDEN
- PANASONIC
- PEIKER

Speaker

Possible suppliers:

- SANYO
- HOSIDEN
- PRIMO
- PHILIPS

Antenna Cable

There is a main connection for 2G and 3G and a diversity connection only for 3G.

For the main connection we have two possibilities:

- UF-L pigtails connection on the bottom side
- Coaxial cable soldered to the RF pad (opposite side of the UF-L connector) on the top side

For the diversity connection the only possibility is to solder a coaxial cable to the second RF pad (no UF-L connector on the opposite side) on the top side.

A wide variety of cables fitted with UF-L connectors is offered by HIROSE:

- UF-L pigtails, Ex: Ref = **U.FL-2LP(V)-04-A-(100)**
- UF-L Ref = **U.FL-R-SMT**
- UF-L cable assemblies,
- Between series cable assemblies.

More information is also available from http://www.hirose-connectors.com/.

For the coaxial cable soldered on the RF pad the following references have been certified for mounting on the Q26 Extreme Wireless CPU®:

- RG178
- RG316

RF Antenna

RF antennas and support for antenna adaptation can be obtained from manufacturers such as:

- TAOGLAS (http://www.taoglas.com)
- HIRSCHMANN (<u>http://www.hirschmann.com/</u>)

6. Design Guidelines

The purpose of the following paragraphs is to present design guidelines.

Hardware and **RF**

Thermal Recommendations

The Q26 Extreme is natively equipped with a foam improving thermal dissipation for a better behavior in extreme conditions.

In order to improve thermal dissipation in the customer board, it is recommended to add a copper area (without solder mask) on both side of the customer PCB. Both sides shall be connected with thermal via.

Figure 51. Thermal foam mounting

EMC Recommendations

The EMC tests must be performed on the application as soon as possible to detect any potential problems.

When designing, special attention should be paid to:

- Possible spurious emission radiated by the application to the RF receiver in the receiver band
- ESD protection **is mandatory** on all signals which have external accessibility (typically human accessibility).
 - Typically, ESD protection is mandatory for the:
 - USIM (if accessible from outside)
 - Serial link
- EMC protection on audio input/output (filters against 900MHz emissions)
- Biasing of the microphone inputs
- Length of the USIM interface lines (preferably <10cm)
- Ground plane: Wavecom recommends a common ground plane for analog/digital/RF grounds.
- A metallic case or plastic casing with conductive paint are recommended

Note: The Wireless CPU[®] does not include any protection against over-voltage.

Power Supply

The power supply is one of the key issues in the design of a terminal.

A weak power supply design could, in particular, affect:

- EMC performance
- The emission spectrum
- The phase error and frequency error

Warning: Careful attention should be paid to:the quality of the power supply: low ripple, PFM or PSM systems should be avoided (PWM converter preferred), and the capacity to deliver high current peaks in a short time (pulsed radio emission).

Layout Requirements

CHIPS & BORING DIAMETER

of the WISMO QUIK mechanical insertion pins

Antenna

Warning: Wavecom strongly recommends working with an antenna manufacturer either to develop an antenna adapted to the application or to adapt an existing solution to the application.

Both the mechanical and electrical antenna adaptation is one of the key issues in the design of the GSM/UMTS terminal.

Mechanical Integration

Attention should be paid to:

- Antenna cable integration (bending, length, position, etc)
- Leads of the Wireless CPU[®] to be soldered to the Ground plane

Operating System Upgrade

The Q26 Extreme Wireless CPU[®] Operating System is stored in flash memory and can easily be upgraded.

Caution: In order to follow regular changes in the 3GPP standard and to offer a state-of-the-art Operating System, Wavecom recommends that the application designed around a Wireless CPU® (or Wireless CPU® based product) allow easy Operating System upgrades on the Wireless CPU® via the standard X-modem protocol. Therefore, the application shall either allow a direct access to the Wireless CPU® serial link through an external connector or implement any mechanism allowing the Wireless CPU® Operating System to be downloaded via X-modem.

The Operating System file can be downloaded to the modem using the X-modem protocol. The AT+WDWL command allows the download process to be launched (see the description in the AT Command User Guide [5]).

The serial signals required to proceed with X-modem downloading are:

Rx, Tx, RTS, CTS and GND.

The Operating System file can also be downloaded to the modem using the DOTA (download over the air) feature. This feature is available with the Open AT[®] interface. For more details, please, refer to the Open AT[®] documentation 0.

>>> 7. Appendix

Standards and Recommendations

The Q26 Extreme Wireless CPU[®] connected on a development kit board application is compliant with the following requirements:

- R&TTE:
 - Spectrum: EN 301 511 v 9.0.2
 - Safety: EN 60950-1:2005 (Ed 2.0)
 - EMC: EN 301 489-1v 1.8.1, EN 301 489-7 v1.3.1, EN 301 489-24 v1.4.1
- GCF-CC and NAPRD.03 versions will be specified as soon as certification will be started (most updated version applicable at this time)

Federal Communications Commission (FCC) rules and Regulations: Power listed on the Grant is conducted for Part 22 and conducted for Part 24

This device is to be used only for mobile and fixed applications. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter within a host device, except in accordance with FCC multi-transmitter product procedures.

Antennas used for this OEM module must not exceed a gain of 4.6dBi (850MHz) and 3.4dBi (1900MHz) respectively. This device is approved as a module to be installed in other devices.

Installed in other portable devices, the exposure conditions require a separate equipment authorization.

The license module had a FCC ID label on the module itself. The FCC ID label must be visible through a window or it must be visible when an access panel, door or cover is easily removed.

If not, a second label must be placed on the outside of the device that contains the following text:

Contains FCC ID: O9EQ26EX

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. this device may not cause harmful interference,
- **2.** this device must accept any interference received, including interference that may cause undesired operation.

Caution: Manufacturers of mobile or fixed devices incorporating Q26 Extreme Wireless CPU® are advised to clarify any regulatory questions, have their completed product tested, have product approved for FCC compliance, and include instructions according to above mentioned RF exposure statements in end product user manual.

Please note that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Safety Recommendations (for Information Only)

For the efficient and safe operation of your GSM device, please read the following information carefully.

RF Safety

General

Your GSM terminal is based on the GSM standard for cellular technology. The GSM standard is spread all over the world. It covers Europe, Asia and some parts of America and Africa. This is the most used telecommunication standard.

Your GSM terminal is actually a low power radio transmitter and receiver. It sends out as well as receives radio frequency energy. When you use your GSM application, the cellular system which handles your calls controls both the radio frequency and the power level of your cellular modem.

Exposure to RF Energy

There has been some public concern on possible health effects of using GSM terminals. Although research on health effects from RF energy has focused on the current RF technology for many years, scientists have begun research regarding newer radio technologies, such as GSM. After existing research had been reviewed, and after compliance to all applicable safety standards had been tested, it has been concluded that the product was fitted for use.

If you are concerned about exposure to RF energy there are things you can do to minimize exposure. Obviously, limiting the duration of your calls will reduce your exposure to RF energy. In addition, you can reduce RF exposure by operating your cellular terminal efficiently by following the guidelines below.

Efficient Terminal Operation

For your GSM terminal to operate at the lowest power level, consistent with satisfactory call quality:

If your terminal has an extendable antenna, extend it fully. Some models allow you to place a call with the antenna retracted. However your GSM terminal operates more efficiently with the antenna when it is fully extended.

Do not hold the antenna when the terminal is "IN USE". Holding the antenna affects call quality and may cause the modem to operate at a higher power level than needed.

Antenna Care and Replacement

Do not use the GSM terminal with a damaged antenna. If a damaged antenna comes into contact with the skin, a minor burn may result. Replace a damaged antenna immediately. You may repair antenna to yourself by following the instructions provided to you. If so, use only a manufacturer-approved antenna. Otherwise, have your antenna repaired by a qualified technician.

Buy or replace the antenna only from the approved suppliers list. Using of unauthorized antennas, modifications or attachments could damage the terminal and may violate local RF emission regulations or invalidate type approval.

General Safety

Driving

Check the laws and the regulations regarding the use of cellular devices in the area where you have to drive as you always have to comply with them. When using your GSM terminal while driving, please:

- give full attention to driving,
- pull-off from the road and park before making or answering a call if driving conditions so require.

Electronic Devices

Most electronic equipment, for example in hospitals and motor vehicles is shielded from RF energy. However, RF energy may affect some improperly shielded electronic equipment.

Vehicle Electronic Equipment

Check your vehicle manufacturer representative to determine if any on-board electronic equipment is adequately shielded from RF energy.

Medical Electronic Equipment

Consult the manufacturer of any personal medical devices (such as pacemakers, hearing aids, etc) to determine if they are adequately shielded from external RF energy.

Turn your terminal **OFF** in health care facilities when any regulations posted in the area instruct you to do so. Hospitals or health care facilities may be using RF monitoring equipment.

Aircraft

Turn your terminal OFF before boarding any aircraft.

- Use it on the ground only with crew permission.
- Do not use it in the air.

To prevent possible interference with aircraft systems, Federal Aviation Administration (FAA) regulations require you should have prior permission from a crew member to use your terminal while the aircraft is on the ground. In order to prevent interference with cellular systems, local RF regulations prohibit using your modem while airborne.

Children

Do not allow children to play with your GSM terminal. It is not a toy. Children could hurt themselves or others (by poking themselves or others in the eye with the antenna, for example). Children could damage the modem, or make calls that increase your modem bills.

Blasting Areas

To avoid interfering with blasting operations, turn your unit OFF when you are in a "blasting area" or in areas posted: "turn off two-way radio". Construction crew often uses remote control RF devices to set off explosives.

Potentially Explosive Atmospheres

Turn your terminal **OFF** when in any area with a potentially explosive atmosphere. Though it is rare, but your modem or its accessories could generate sparks. Sparks in such areas could cause an explosion or fire resulting in bodily injuries or even death.

Areas with a potentially explosive atmosphere are often, but not always, clearly marked. They include fuelling areas such as petrol stations; below decks on boats; fuel or chemical transfer or storage facilities; and areas where the air contains chemicals or particles, such as grain, dust, or metal powders.

Do not transport or store flammable gas, liquid, or explosives, in the compartment of your vehicle which contains your terminal or accessories.

Before using your terminal in a vehicle powered by liquefied petroleum gas (such as propane or butane) ensure that the vehicle complies with the relevant fire and safety regulations of the country in which the vehicle is used.

