Dynamic Frequency Selection (DFS) Test Report FCC Part15 Subpart E

Product Name	:	Wireless LAN Access Point					
Model No.	:	H3C WA2612-AGN, WL-607					
FCC ID	:	O9C-WL607					
Applicant	:	Hangzhou H3C Technologies Co., Ltd.					
Address	:	310 Liuhe Road, Zhijiang Science					
		Park, Hangzhou 310053, P.R.China					

Date of Receipt	: 2009/09/16	
Issued Date	: 2009/11/23	
Report No.	: 09BS090R-RF-FCC-DFS	
Report Version	: V1.0	

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

DFS Test Report Issued Date: 2009/11/23

Issued Date: 2009/11/23 Report No. : 09BS090R-RF-FCC-DFS

Product Name	:	Wireless LAN Access Point
Applicant	:	Hangzhou H3C Technologies Co., Ltd.
Address	:	310 Liuhe Road, Zhijiang Science Park, Hangzhou 310053,
		P.R.China
Model No.	:	H3C WA2612-AGN, WL-607
EUT Voltage	:	48Vdc, 180mA (POE Input)
Trade Name	:	H3C, 3Com
Applicable Standard	:	FCC CFR Title 47 Part 15 Subpart E: 2008
		FCC OET Order 06-96A (2006)
		Industry Canada RSS-210 Issue 7
Test Result	:	Pass
Performed Location	:	SuZhou EMC laboratory
		No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech
		Development Zone., SuZhou, China
		TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098
		FCC Registration Number: 800392
Operation Mode	:	Master device
(5250~5350MHz,		Slaver device with radar detection function
5470~5725MHz)		Slaver device without radar detection function
Documented By	:	Alice Ni
		(Alice Ni)
Reviewed By	:	Marlinchen
		• • • • • • •
		(Marlin Chen)
Approved By	:	lenechang.
		(Gene Chang)

Content

Iten	ns	Page
1.	UNII DEVICE INFORMATION	4
2.	TEST EQUIPMENT	5
3.	DFS DETECTION THRESHOLD AND RESPONSE REQUIREMENT	6
4.	RADAR WAVE PARAMETERS	7
5.	TEST SETUP	10
6.	RADAR WAVEFORM CALIBRATION	11
7.	TEST PROCEDURES	15
7.1.	U-NII DETECTION BANDWIDTH	15
7.2.	CHANNEL AVAILABILITY CHECK	15
7.3.	IN-SERVICE MONITORING FOR CHANNEL MOVE TIME, CHANNEL CLOSING	
TRA	NSMISSION TIME AND NON-OCCUPANCY PERIOD	18
7.4.	STATISTICAL PERFORMANCE CHECK	19
8.	TEST RESULT	20
8.1.	DETECTION BANDWIDTH	20
8.2.	CHANNEL AVAILABLE CHECK ······	22
8.2.1	. TEST RESULT WITH A RADAR BURST AT THE BEGINNING OF THE CHANNEL	
AVA	AILABILITY CHECK TIME	23
8.2.2		
CHE	ECK TIME	23
8.3.	IN-SERVICE MONITORING FOR CHANNEL MOVE TIME, CHANNEL CLOSING	
TRA	NSMISSION TIME AND NON-OCCUPANCY PERIOD	24
8.3.1	. CHANNEL MOVE TIME AND CLOSING TRANSMISSION TIME	24
8.3.2	2. NON-OCCUPANCY PERIOD	27
8.4.	STATISTICAL PERFORMANCE CHECK	28

1. UNII Device Information

- 1. The wireless LAN access point H3C WA2612-AGN operates in the following bands:
 - a. 2412~2462MHz
 - b. 5180~5240MHz
 - c. 5260~5320MHz
 - d. 5500~5700MHz
 - e. 5745~5825MHz
- 2. The maximum mean EIRP of the device for 5GHz band is 23.88dBm, and the minimum possible mean EIRP is -1dBm.
- 3. The device installed with 3*Tx and 3*Rx antenna delivery. Antenna corresponding gains are 8dBi for 5GHz. 0dBi gain was used to set the -63dBm threshold level (-64dBm +1 dB) during calibration of the test setup Antenna information shown below: Manufacturer: Airgain Mode number: N2480-100C
- 4. System test was performed with the designated MPEG test file (download from NTIA) that streams full motion video at 30 frames per second from the Master to the Client IP based system.
- 5. This Master does not exceed 27dBm EIRP, so no transmit power control is implemented.
- 6. The Master requires 1 minute for completing its power-on cycle.
- 7. Information regarding the parameters of the detected Radar Waveforms is not available to the end user.
- 8. For the 5250~5350 MHz and 5470~5725 MHz bands, the Master device provides, on aggregate, uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a random algorithm.
- 9. The Master can not operate in 5600~5650 MHz band in USA and Canada.

2. Test Equipment

Dynamic Frequency Selection (I	DFS) / AC-6
--------------------------------	-------------

Instrument	Manufacturer	Туре No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	N9020A	MY49100159	2009-05-06
Vector Signal Generator	Agilent	E4438C	102168	2009-04-26

Instrument	Manufacturer	Туре No.	Serial No
Splitter/Combiner (Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400424
Splitter/Combiner (Qty: 2)	MCLI	PS3-7	4463/4464
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912
Laptop PC	Asus	N80V	8BN0AS226971468
RF Cable (Qty: 6)	Mini-Circuits	N/A	DFS-1~6

Software	Manufacturer	Function		
Pulse Building Agilent		Radar Signal Generation Software		
DFS Tool	Agilent	DFS Test Software		

3. DFS Detection Threshold and Response Requirement

1. Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see note)				
\geq 200 milliwatt	-64 dBm				
< 200 milliwatt -62 dBm					
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the					
test transmission waveforms to account for variations in measurement equipment. This will ensure					
that the test signal is at or above the detection threshold level to trigger a DFS response.					
DES Desponse requirement values					

2. DFS Response requirement values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over
	remaining 10 second period. (See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 80% of the 99% power bandwidth (See Note 3)

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

• For the Short pulse radar Test Signals this instant is the end of the Burst.

• For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.

• For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

4. Radar Wave Parameters

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width	PRI (µsec)	Number of	Minimum	Minimum
	(µsec)		Pulses	Percentage of	Number of
				Successful Detection	Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Type 1-4)			80%	120	

Short Pulse Radar Test Waveforms

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. For Short Pulse Radar Type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

Long Pulse Radar Test Waveform

Radar	Pulse	Chirp	PRI	Number of	Number	Minimum	Minimum
Туре	Width	Width	(µsec)	Pulses per	of	Percentage of	Number of
	(µsec)	(MHz)		Burst	Bursts	Successful	Trials
						Detection	
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

1) The transmission period for the Long Pulse Radar test signal is 12 seconds.

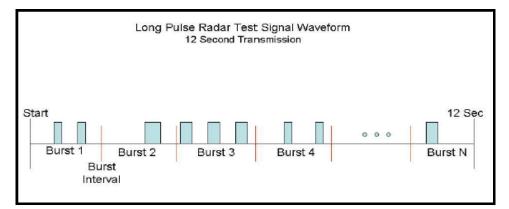
2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst_Count.

3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.

4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.

5) Each pulse has a linear frequency modulated chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Bursts may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and

a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.


6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the random time interval between the first and second pulses is chosen independently of the random time interval between the second and third pulses.

7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12,000,000 / Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst_Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen randomly.

A representative example of a Long Pulse Radar Type waveform:

- 1) The total test waveform length is 12 seconds.
- 2) Eight (8) Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.

7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 – 3,000,000 microsecond range).

Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Туре	Width	(µsec)	per	Rate	Sequence	Percentage of	Number
	(µsec)		Нор	(kHz)	Length (msec)	Successful	of Trials
						Detection	
6	1	333	9	0.333	300	70%	30

Frequency Hopping Radar Test Waveform

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: 3

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

5. Test Setup

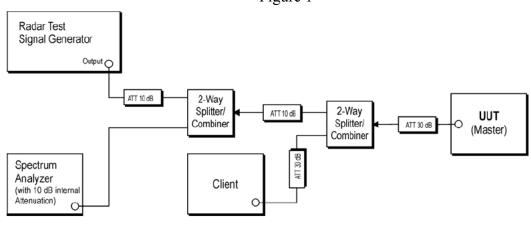
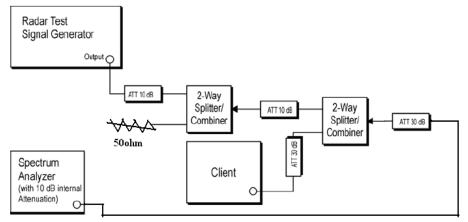
Conducted Test Setup

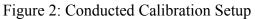
The sections below contain block diagrams that focus on the Radar Waveform injection path for each of the different conducted setups to be used. Each setup consists of a signal generator, analyzer (spectrum analyzer or vector signal analyzer), Master Device, Client Device, plus power combiner/splitters and attenuators. The Client Device is set up to Associate with the Master Device. The designation of the UUT (Master Device or Client Device) and the device into which the Radar Waveform is injected varies among the setups.

Other topologies may be used provided that: (1) the radar and UUT signals can be discriminated from each other on the analyzer and (2) the radar DFS Detection Threshold level at the UUT is stable.

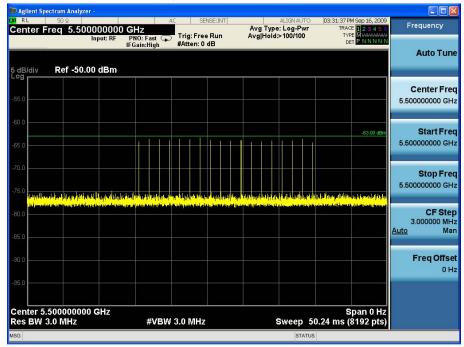
To address point (1), for typical UUT power levels and typical minimum antenna gains, the topologies shown will result in the following relative amplitudes of each signal as displayed on the analyzer: the Radar Waveform level is the highest, the signal from the UUT is the next highest, while the signal from the device that is associated with the UUT is the lowest. Attenuator values may need to be adjusted for particular configurations.

To address point (2), the isolation characteristic between ports 1 and 2 of a power combiner/splitter are extremely sensitive to the impedance presented to the common port, while the insertion loss characteristic between the common port and (port 1, for example) are relatively insensitive to the impedance presented to (port 2, in this example). Thus, the isolation between ports 1 and 2 should never be part of the path that establishes the radar DFS Detection Threshold. The 10 dB attenuator after the signal generator is specified as a precaution; since many of the radar test waveforms will require typical signal generators to operate with their ALC turned off, the source match will generally be degraded from the closed loop specifications.

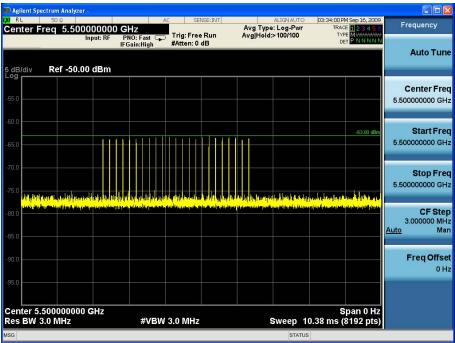



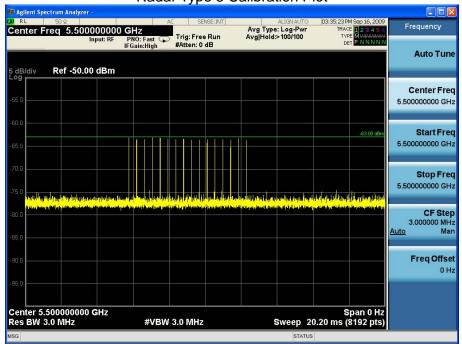

Figure 1

6. Radar Waveform Calibration

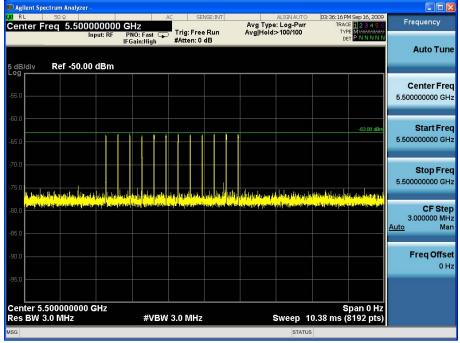

The following equipment setup was used to calibrate the conducted radar waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz and 3 MHz.

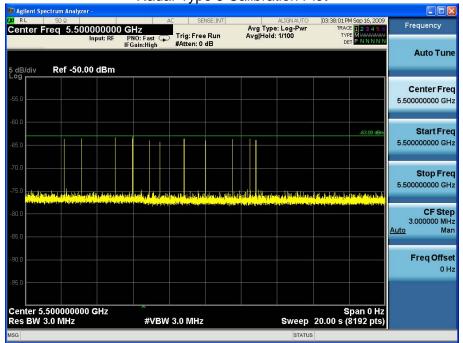
The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -63dBm due to the interference threshold level.





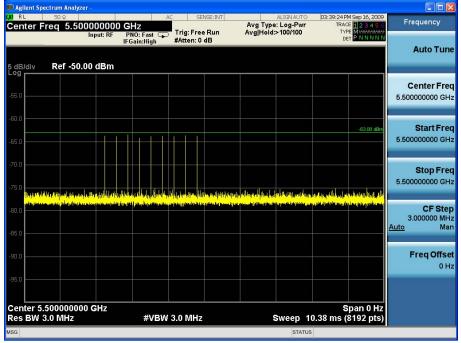
Radar Type 1 Calibration Plot





Radar Type 3 Calibration Plot

Radar Type 4 Calibration Plot



Radar Type 5 Calibration Plot

Radar Type 6 Calibration Plot

7. Test Procedures

7.1. U-NII Detection Bandwidth

Set up the generating equipment as shown in Figure 1, or equivalent. Set up the DFS timing monitoring equipment as shown in Figure 1. Set up the overall system for either radiated or conducted coupling to the UUT. Adjust the equipment to produce a single Burst of the Short Pulse Radar Type 1 at the center frequency of the UUT Operating Channel at the specified DFS Detection Threshold level.

Set the UUT up as a standalone device (no associated Client or Master, as appropriate) and no traffic. Frame based systems will be set to a talk/listen ratio of 0%/100% during this test. Generate a single radar Burst, and note the response of the UUT. Repeat for a minimum of 10 trials. The UUT must detect the Radar Waveform using the specified U-NII Detection Bandwidth criterion.

Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 1 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion. Record the highest frequency (denote as FH) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies above FH is not required to demonstrate compliance.

Starting at the center frequency of the UUT operating Channel, decrease the radar frequency in 1 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 4. Record the lowest frequency (denote as FL) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies below FL is not required to demonstrate compliance. The U-NII Detection Bandwidth is calculated as follows:

U-NII Detection Bandwidth = FH - FL

The U-NII Detection Bandwidth must meet the U-NII Detection Bandwidth criterion. Otherwise, the UUT does not comply with DFS requirements. This is essential to ensure that the UUT is capable of detecting Radar Waveforms across the same frequency spectrum that contains the significant energy from the system. In the case that the U-NII Detection Bandwidth is greater than or equal to the 99 percent power bandwidth for the measured FH and FL, the test can be truncated and the U-NII Detection Bandwidth can be reported as the measured FH and FL.

7.2. Channel Availability Check

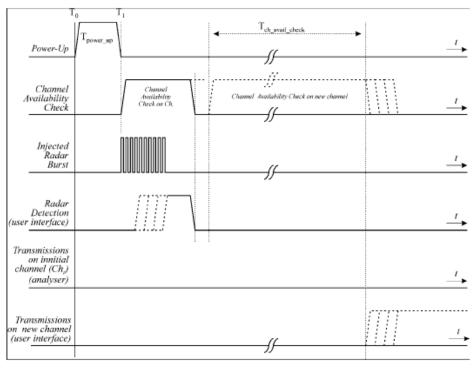
The Initial Channel Availability Check Time tests that the UUT does not emit beacon, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms and only needs to be performed one time.

a) The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the UUT is powered on, the spectrum analyzer will be set to zero span modes with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
b) The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle. This measurement can be used to determine the length of the power-on cycle if it is not supplied by the manufacturer. If the spectrum analyzer sweep is started at the same time the UUT is powered on

and the UUT does not begin transmissions until it has completed the cycle, the power-on time can be determined by comparing the two times.

Radar Burst at the Beginning of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time. This is illustrated as shown below.


a) The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections on configuration for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.

b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.

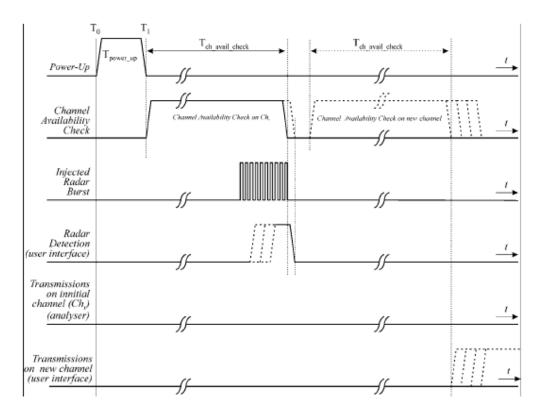
c) A single Burst of one of the Short Pulse Radar Types 1-4 will commence within a 6 second window starting at T1. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

d) Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.

e) Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

Radar Burst at the End of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1dB occurs at the end of the Channel Availability Check Time. This is illustrated as shown below.


a) The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.

b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.

c) A single Burst of one of the Short Pulse Radar Types 1-4 will commence within a 6 second window starting at T1 + 54 seconds. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

d) Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.

e) Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

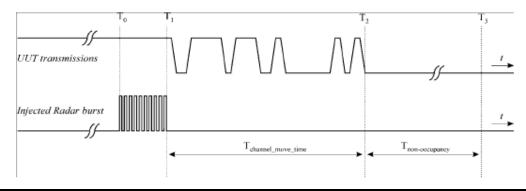
7.3. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

These tests define how the following DFS parameters are verified during In-Service Monitoring;

- Channel Closing Transmission Time
- Channel Move Time
- Non-Occupancy Period

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the UNII device (In-Service Monitoring).

a) One frequency will be chosen from the Operating Channels of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands.


b) In case the UUT is a U-NII device operating as a Client Device (with or without DFS), a UNII device operating as a Master Device will be used to allow the UUT (Client device) to Associate with the Master Device. In case the UUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will associate with the UUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.

c) Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

d) At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 1-4, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

e) Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure shown below illustrates Channel Closing Transmission Time.

f) When operating as a Master Device, monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.

g) In case the UUT is U-NII device operating as Client Device with In-Service Monitoring, perform steps a) to f).

Page: 18 of 18

7.4. Statistical Performance Check

The steps below define the procedure to determine the minimum percentage of successful detection requirements when a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

a) One frequency will be chosen from the Operating Channels of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands.

b) In case the UUT is a U-NII device operating as a Client Device (with or without Radar Detection), a U-NII device operating as a Master Device will be used to allow the UUT (Client device) to Associate with the Master Device. In case the UUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will associate with the UUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
c) Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

d) At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types 1-6, at levels defined shown above, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

e) Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 1-4 and 6 to ensure detection occurs.

f) Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.

g) In case the UUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps a) to f).

8. Test Result

8.1. Detection Bandwidth

		2	0 MI	Hz S	ignal	Bar	ndwie	lth			
		EU	JT F	requ	ency	= 55	500N	ſHz			
Radar Frequency		DFS	S De	tectio	on Ti	rials	(1=E	Detec	tion,	Blan	k= No Detection)
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5489											0%
5490 Fl	1	1	1	1	1	1	1	1	1	1	100%
5491	1	1	1	1	1	1	1	1	1	1	100%
5492	1	1	1	1	1	1	1	1	1	1	100%
5493	1	1	1	1	1	1	1	1	1	1	100%
5494	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5496	1	1	1	1	1	1	1	1	1	1	100%
5497	1	1	1	1	1	1	1	1	1	1	100%
5498	1	1	1	1	1	1	1	1	1	1	100%
5499	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5501	1	1	1	1	1	1	1	1	1	1	100%
5502	1	1	1	1	1	1	1	1	1	1	100%
5503	1	1	1	1	1	1	1	1	1	1	100%
5504	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5506	1	1	1	1	1	1	1	1	1	1	100%
5507	1	1	1	1	1	1	1	1	1	1	100%
5508	1	1	1	1	1	1	1	1	1	1	100%
5509 Fh	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1		1	1	1		1	1	1	80%
20 MHz Detection Bandy	vidth	= Fl	n-Fl	= 55	09M	Hz -	5490	OMH	z = 1	I9MH	
EUT 99% Bandwidth = 1	6.6N	1Hz									
$16.6 MHz \times 80\% = 13.3 M$	ſHz										

		4	0 M	Hz S	ignal	Bar	ndwie	dth			
		EU	JT F	requ	ency	= 55	510N	1Hz			
Radar Frequency		DFS	5 Det	tectio	on Tr	rials	(1=D)etec	tion,	Blan	k= No Detection)
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5489											0%
5490 Fl	1	1	1	1	1	1	1	1	1	1	100%
5491	1	1	1	1	1	1	1	1	1	1	100%
5492	1	1	1	1	1	1	1	1	1	1	100%
5493	1	1	1	1	1	1	1	1	1	1	100%
5494	1	1	1	1	1	1	1	1	1	1	100%
5495	1	1	1	1	1	1	1	1	1	1	100%
5496	1	1	1	1	1	1	1	1	1	1	100%
5497	1	1	1	1	1	1	1	1	1	1	100%
5498	1	1	1	1	1	1	1	1	1	1	100%
5499	1	1	1	1	1	1	1	1	1	1	100%
5500	1	1	1	1	1	1	1	1	1	1	100%
5501	1	1	1	1	1	1	1	1	1	1	100%
5502	1	1	1	1	1	1	1	1	1	1	100%
5503	1	1	1	1	1	1	1	1	1	1	100%
5504	1	1	1	1	1	1	1	1	1	1	100%
5505	1	1	1	1	1	1	1	1	1	1	100%
5506	1	1	1	1	1	1	1	1	1	1	100%
5507	1	1	1	1	1	1	1	1	1	1	100%
5508	1	1	1	1	1	1	1	1	1	1	100%
5509	1	1	1	1	1	1	1	1	1	1	100%
5510	1	1	1	1	1	1	1	1	1	1	100%
5511	1	1	1	1	1	1	1	1	1	1	100%
5512	1	1	1	1	1	1	1	1	1	1	100%
5513	1	1	1	1	1	1	1	1	1	1	100%
5514	1	1	1	1	1	1	1	1	1	1	100%
5515	1	1	1	1	1	1	1	1	1	1	100%
5516	1	1	1	1	1	1	1	1	1	1	100%
5517	1	1	1	1	1	1	1	1	1	1	100%
5518	1	1	1	1	1	1	1	1	1	1	100%
5519	1	1	1	1	1	1	1	1	1	1	100%
5520	1	1	1	1	1	1	1	1	1	1	100%
5521	1	1	1	1	1	1	1	1	1	1	100%

5522	1	1	1	1	1	1	1	1	1	1	100%
5523	1	1	1	1	1	1	1	1	1	1	100%
5524	1	1	1	1	1	1	1	1	1	1	100%
5525	1	1	1	1	1	1	1	1	1	1	100%
5526	1	1	1	1	1	1	1	1	1	1	100%
5527	1	1	1	1	1	1	1	1	1	1	100%
5528	1	1	1	1	1	1	1	1	1	1	100%
5529	1	1	1	1	1	1	1	1	1	1	100%
5530 Fh	1	1	1	1	1	1	1	1	1	1	100%
5531											0%
40 MHz Detection Bandwidth = Fh - Fl = 5530MHz - 5490MHz = 40MHz											
EUT 99% Bandwidth = 36.5MHz											
$36.5 MH_Z \times 80\% = 29.0 MH_Z$											

8.2. Channel Available Check

The following results reflect both 20 MHz and 40 MHz Channel Bandwidth operation.

Initial Channel Availability Check Time

8.2.1. Test result with a radar burst at the beginning of the Channel Availability Check Time Channel 100 5500MHz

8.2.2. Test result with radar burst at the end of the Channel Availability Check Time Channel 100 5500MHz

09.108 s Inpu					SE:INT		ALIGN AUTO		M Sep 29, 2009	Marker
	it: RF P IF(NO: Fast Gain:High		ig: Free I tten: 0 di		Avg Ty	pe: Log-Pwr	TRAC TYP DE	E 123456 WWWWWWW T P N N N N N	Select Marker
Ref Offset -34 Ref -54.00 d	dB I Bm							Mkr1 -63.4	109.1 s 47 dBm	1
		•	1						+ -63.00 dBm	Norm
										Del
										Fixed
lan secola di successo	and the states	enter te	n, in his suit	a a secondad a se	ndi at natiskin	bilantalla	and the second second second	ekili tekileki komo t	a da glinda postella	
										c
										Properties
	_									Мо
Center 5.500000000 GHz Span 0 Hz tes BW 3.0 MHz VBW 3.0 MHz Sweep 300.0 s (8192 pts)										1 0
	Ref -54.00 d	Ref -54.00 dBm	Ref -54.00 dBm	lef -54.00 dBm 1 <	lef -54.00 dBm 1 <	lef -54.00 dBm lef -54.00 dBm	lef -54.00 dBm lef -54.00 dBm	Ref -54.00 dBm Image: Constraint of the second se		1 4.3300 dBr 1 4.3300 dBr

Test Item	Limit	Results
Channel Availability Check Time	60 s	Pass

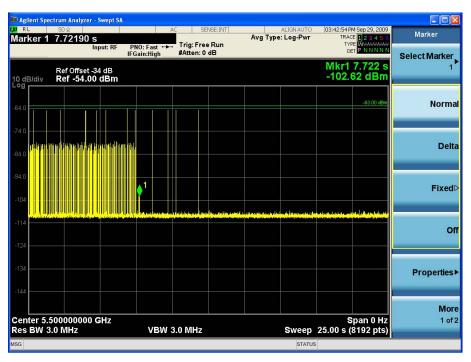
8.3. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

The following results reflect both 20 MHz and 40 MHz Channel Bandwidth operation.

8.3.1. Channel Move Time and Closing Transmission Time

Channel Move Time, Channel Closing Transmission Time for Type 1 radar

Channel Move Time, Channel Closing Transmission Time for Type 2 radar


	50 Ω		A	C SEN	SE:INT		ALIGN AUTO		4 Sep 29, 2009	Marker
arker 1 ∆	200.000		NO: Fast 🔸	Trig: Free		Avg Type	: Log-Pwr	TRAC TYP	E 1 2 3 4 5 6 E WWWWWWW	Wiai Kei
		IF	Gain:High	#Atten: 0 d	В					Select Marker
	Ref Offset -34 Ref -54.00						Δ	Mkr1 20 -47	00.0 ms 7.85 dB	1
									-63.00 dBm	Norm
4.0 <mark>X2</mark>										Norm
1.0										
1.0										Del
.0										Fixed
04 1∆2										
14	en den det in det de trans	at to the deposite	tiollate discol	a stadard a stad	le la la dia la dia	<mark>hallond reda</mark>	and in although for	lag analatia data	de la proprio posterio	
24										c
24										
34										Properties
44										
										Мо
enter 5.50 es BW 3.0		SHz	VBW 3	.0 MHz			Sweep	S 12.00 s (1	pan 0 Hz 8192 pts)	1 of
3							STATUS		, see 1997	

Channel Move Time, Channel Closing Transmission Time for Type 3 radar

Channel Move Time, Channel Closing Transmission Time for Type 4 radar

				19		- Swept SA	ctrum Analyzer	
Marker	03:38:26 PM Sep 29, 2009 TRACE 1 2 3 4 5 6	ALIGNAUTO Type: Log-Pwr	Avg	SENSE:INT	AC	0 ms	^{50 Ω} Δ 200.00	x/ RL Marker '
Select Marker	TYPE WWWWWWWW DET P N N N N N			: Free Run en: 0 dB	:Fast ↔ Trig in:High #Att	nput: RF PI		
1	Mkr1 200.0 ms -48.45 dB	Δ				³⁴ dB) dBm	Ref Offset - Ref -54.0	10 dB/div Log
Norma	-63.00 dBm							-64.0 X2
								-74.0
Delta								-84.0
Fixed								-94.0
Tixeu	terror of the part of the second second	in a data a contra		146-1-1-1-1-1-1	al south at net sate		2	-104
Of			ante finadese	and a line of the second second				-114
								-124
Properties								-134
More								-144
1 of 2	Span 0 Hz 12.00 s (8192 pts)	Sweep		Hz	VBW 3.0 M	GHz	500000000 .0 MHz	Center 5 Res BW
		STATUS						MSG

Channel Move Time, Channel Closing Transmission Time for Type 5 radar

Channel Move Time, Channel Closing Transmission Time for Type 6 radar

	ctrum Analyzer - S	owept SA								
Marker 1	^{50 Ω} Δ 200.000	ms	AC		SE:INT	Avg T	ALIGNAUTO	TRACE	Sep 30, 2009	Marker
mantor		out: RF PNO		Trig: Free F #Atten: 0 d				TYPE DE1	PNNNN	Select Marker
10 dB/div	Ref Offset -34 Ref -54.00	l dB dBm					Δ	Mkr1 20 -48	0.0 ms 3.29 dB	1
-64.0 X2									-63.00 dBm	Normal
-74.0										Delta
-84.0 -										Fire db
-104	12 Kanada kanadika ka	allelle at an	والمراقع والمراجع	entral production of the pro-	al de statue	u de la la contra	ada yalduk merinik	الرأيم مانزن بينار		Fixed⊳
-114										Off
-134										Properties▶
-144										More
Res BW 3	500000000 G 8.0 MHz	ΠZ	VBW 3.	0 MHz			Sweep	s 12.00 s (8	pan 0 Hz 3192 pts)	1 of 2
MSG							STATUS			

Test Item	Limit	Results	
Channel Move Time	10 s	Pass	
Channel Clasing Transmission Time	200ms + an aggregate of 60ms over	Basa	
Channel Closing Transmission Time	remaining 10 second period.	Pass	

8.3.2. Non-Occupancy Period

RL	50 Ω 4.74301 s		AC	SENSE:INT		ALIGNAUTO	03:03:17 PN TRACE	Sep 29, 2009	Marker
arker 1	Input	RF PNO: Fa		Free Run n: 0 dB	5 /		TYPI DE	123456 WWWWWWWW PNNNNN	Select Marker
) dB/div	Ref Offset -34 d Ref -54.00 dE	B 3m			5		Mkr1 - -63.4	4.743 s I8 dBm	1
1 4.0								-63.00 dBm	Norm
4.0									
4.0									Delt
4.0									
04									Fixed
14	and a standard and a standard	ant the state of the	un inter in monitolit.	nada ataptantalat	, energe des la sete la the	u deba de ordran e	فيغواه مسرفتين فيغ	an a	
24									C
34									_
44									Properties
									Мо
enter 5. es BW 3	500000000 GH .0 MHz		'BW 3.0 MH	łz		Sweep 1	S 850 ks (8	pan 0 Hz 3192 pts)	1 of

30 Minute Non-Occupancy Period (using Type 1 radar)

Test Item	Limit	Results
Non-Occupancy Period	30 minutes	Pass

8.4. Statistical Performance Check

A U-NII device operating as a Client Device associates with the UUT (Master) at 5500 MHz. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test. The device can also utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs.

The Radar Waveform generator sends the individual waveform for each of radar type $1\sim6$ with a level equal to the DFS detection threshold level + 1dB (-63dBm).

The following results reflect both 20 MHz and 40 MHz Channel Bandwidth operation.

Trial	Pulse Width	PRI (us)	Pulses/Burst	1=Detection Blank=No	
Number	(us)			Detection	
1	1	1428	18	1	
2	1	1428	18	1	
3	1	1428	18	1	
4	1	1428	18	1	
5	1	1428	18	1	
6	1	1428	18	1	
7	1	1428	18	1	
8	1	1428	18	1	
9	1	1428	18	1	
10	1	1428	18	1	
11	1	1428	18	1	
12	1	1428	18	1	
13	1	1428	18	1	
14	1	1428	18	1	
15	1	1428	18	1	
16	1	1428	18	1	
17	1	1428	18	1	
18	1	1428	18	1	
19	1	1428	18	1	
20	1	1428	18	1	
21	1	1428	18	1	
22	1	1428	18	1	
23	1	1428	18	1	
24	1	1428	18	1	
25	1	1428	18	1	
26	1	1428	18	1	
27	1	1428	18	1	
28	1	1428	18	1	
29	1	1428	18	1	
30	1	1428	18	1	
50					

Type 1 Radar Statistical Performance

Trial	Pulse Width	PRI (us)	Pulses/Burst	1=Detection Blank=No
Number	(us)			Detection
1	1.2	214	28	1
2	3.6	194	29	1
3	3.9	205	29	1
4	1.7	152	24	1
5	4.4	158	28	1
6	1.8	204	23	1
7	2.6	175	28	1
8	2.4	166	25	1
9	1.5	219	24	1
10	1.2	190	23	1
11	4.9	156	29	1
12	1.7	190	29	1
13	4.3	158	26	1
14	1.5	191	24	1
15	2.2	180	28	1
16	4.9	151	26	1
17	1.7	170	29	1
18	4.9	209	24	1
19	3.6	185	29	1
20	4.6	153	24	1
21	1.7	215	24	1
22	5.0	156	26	1
23	4.9	184	26	1
24	3.2	197	24	1
25	1.1	164	26	1
26	2.9	218	29	1
27	3.7	200	23	1
28	2.6	155	29	1
29	4.4	156	23	1
30	1.0	185	28	1

Type 2 Radar Statistical Performance

Trial	Pulse Width	PRI (us)	Pulses/Burst	1=Detection Blank=No
Number	(us)			Detection
1	8.8	445	16	1
2	5.2	366	16	1
3	7.3	291	18	1
4	5.4	428	16	1
5	6.2	423	16	1
6	9.3	302	16	1
7	5.8	354	18	1
8	8.7	383	16	1
9	7.4	419	18	1
10	6.5	466	18	1
11	8.8	278	16	1
12	8.1	439	17	1
13	9.2	453	17	1
14	7.6	432	17	1
15	8.2	498	18	1
16	7.6	320	16	1
17	7.8	378	18	1
18	8.3	279	17	1
19	9.5	375	16	1
20	5.7	475	16	1
21	6.0	408	18	1
22	7.2	500	18	1
23	6.8	292	17	1
24	8.2	301	16	1
25	6.4	255	16	1
26	6.8	315	16	1
27	5.9	500	17	1
28	5.5	282	18	1
29	9.0	420	18	1
30	8.5	355	18	1
	Detectio		100% (>60%)	

Type 3 Radar Statistical Performance

Type 4 Radar Statistical Performance									
Trial	Pulse Width	PRI (us)	Pulses/Burst	1=Detection					
Number	(us)			Blank=No Detection					
1	17.8	353	16	1					
2	13.4	355	16	1					
3	15.0	300	12	1					
4	19.8	495	15	1					
5	18.5	448	15	1					
6	13.3	292	12	1					
7	13.4	495	14	1					
8	17.6	316	15	1					
9	11.5	328	15	1					
10	12.1	271	14	1					
11	19.7	323	16	1					
12	14.7	385	13	1					
13	11.6	318	14	1					
14	13.6	446	15	1					
15	12.6	475	13	1					
16	12.1	341	14	1					
17	14.9	431	15	1					
18	17.2	471	15	1					
19	13.2	447	12	1					
20	13.5	262	13	1					
21	15.6	442	13	1					
22	11.9	481	16	1					
23	11.9	385	16	1					
24	19.0	380	15	1					
25	14.5	345	15	1					
26	18.0	291	13	1					
27	10.8	498	14	1					
28	19.4	314	12	1					
29	13.1	287	15	1					
30	19.5	280	14	1					
	Detectio	n Percentage		100% (>60%)					

In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is as follows: $\frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4} = (100\% + 100\% + 100\% + 100\%)/4 = 100\% (>80\%)$

Trial	See the type 5 Radar Characteristics at the end of this rep File name	1=Detection
Number		Blank=No
		Detection
1	Statistical_Check_RandParm_For_Radar_Type_5_1_trail	1
2	Statistical_Check_RandParm_For_Radar_Type_5_2_trail	1
3	Statistical_Check_RandParm_For_Radar_Type_5_3_trail	1
4	Statistical_Check_RandParm_For_Radar_Type_5_4_trail	1
5	Statistical_Check_RandParm_For_Radar_Type_5_5_trail	1
6	Statistical_Check_RandParm_For_Radar_Type_5_6_trail	1
7	Statistical_Check_RandParm_For_Radar_Type_5_7_trail	1
8	Statistical_Check_RandParm_For_Radar_Type_5_8_trail	1
9	Statistical_Check_RandParm_For_Radar_Type_5_9_trail	1
10	Statistical_Check_RandParm_For_Radar_Type_5_10_trail	1
11	Statistical_Check_RandParm_For_Radar_Type_5_11_trail	1
12	Statistical_Check_RandParm_For_Radar_Type_5_12_trail	1
13	Statistical_Check_RandParm_For_Radar_Type_5_13_trail	1
14	Statistical_Check_RandParm_For_Radar_Type_5_14_trail	1
15	Statistical_Check_RandParm_For_Radar_Type_5_15_trail	1
16	Statistical_Check_RandParm_For_Radar_Type_5_16_trail	1
17	Statistical_Check_RandParm_For_Radar_Type_5_17_trail	1
18	Statistical_Check_RandParm_For_Radar_Type_5_18_trail	1
19	Statistical_Check_RandParm_For_Radar_Type_5_19_trail	1
20	Statistical_Check_RandParm_For_Radar_Type_5_20_trail	1
21	Statistical_Check_RandParm_For_Radar_Type_5_21_trail	1
22	Statistical_Check_RandParm_For_Radar_Type_5_22_trail	1
23	Statistical_Check_RandParm_For_Radar_Type_5_23_trail	1
24	Statistical_Check_RandParm_For_Radar_Type_5_24_trail	1
25	Statistical_Check_RandParm_For_Radar_Type_5_25_trail	1
26	Statistical_Check_RandParm_For_Radar_Type_5_26_trail	1
27	Statistical_Check_RandParm_For_Radar_Type_5_27_trail	1
28	Statistical_Check_RandParm_For_Radar_Type_5_28_trail	1
29	Statistical_Check_RandParm_For_Radar_Type_5_29_trail	1
30	Statistical_Check_RandParm_For_Radar_Type_5_30_trail	1
	Detection Percentage	100% (>80 %)

Type 5 Radar Sta	tistical Performance
------------------	----------------------

See the type 5 Radar Characteristics at the end of this report.

Trial Number File name 1=Detection Blank=No Detection 1 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 2 Statistical_Check_RandParm_For_Radar_Type_6_2_trail 1 3 Statistical_Check_RandParm_For_Radar_Type_6_3_trail 1 4 Statistical_Check_RandParm_For_Radar_Type_6_5_trail 1 5 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 6 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 7 Statistical_Check_RandParm_For_Radar_Type_6_8_trail 1 8 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_13_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_14_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_16_trail <t< th=""><th></th><th>See the type 6 Radar Characteristics at the end of this rep</th><th>oort.</th></t<>		See the type 6 Radar Characteristics at the end of this rep	oort.
Image: Detection 1 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 2 Statistical_Check_RandParm_For_Radar_Type_6_2_trail 1 3 Statistical_Check_RandParm_For_Radar_Type_6_2_trail 1 4 Statistical_Check_RandParm_For_Radar_Type_6_3_trail 1 5 Statistical_Check_RandParm_For_Radar_Type_6_5_trail 1 6 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 7 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 8 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_13_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_19	Trial	File name	1=Detection
1 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 2 Statistical_Check_RandParm_For_Radar_Type_6_2_trail 1 3 Statistical_Check_RandParm_For_Radar_Type_6_2_trail 1 4 Statistical_Check_RandParm_For_Radar_Type_6_4_trail 1 5 Statistical_Check_RandParm_For_Radar_Type_6_5_trail 1 6 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 7 Statistical_Check_RandParm_For_Radar_Type_6_8_trail 1 8 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_1_trail 1 </td <td>Number</td> <td></td> <td>Blank=No</td>	Number		Blank=No
2 Statistical_Check_RandParm_For_Radar_Type_6_2_trail 1 3 Statistical_Check_RandParm_For_Radar_Type_6_3_trail 1 4 Statistical_Check_RandParm_For_Radar_Type_6_4_trail 1 5 Statistical_Check_RandParm_For_Radar_Type_6_5_trail 1 6 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 7 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 8 Statistical_Check_RandParm_For_Radar_Type_6_8_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_11_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_13_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_18_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_20_trail 1 18 Statistical_Check_RandParm_For_Radar_Type_6_21_trail			Detection
3 Statistical_Check_RandParm_For_Radar_Type_6_3_trail 1 4 Statistical_Check_RandParm_For_Radar_Type_6_3_trail 1 5 Statistical_Check_RandParm_For_Radar_Type_6_5_trail 1 6 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 7 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 8 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_11_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_13_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_14_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 18 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_22_trail	1	Statistical_Check_RandParm_For_Radar_Type_6_1_trail	1
4 Statistical_Check_RandParm_For_Radar_Type_6_4_trail 1 5 Statistical_Check_RandParm_For_Radar_Type_6_5_trail 1 6 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 7 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 8 Statistical_Check_RandParm_For_Radar_Type_6_8_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_18_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 18 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 18 Statistical_Check_RandParm_For_Radar_Type_6_20_trail 1 20 Statistical_Check_RandParm_For_Radar_Type_6_21_trail	2	Statistical_Check_RandParm_For_Radar_Type_6_2_trail	1
5 Statistical_Check_RandParm_For_Radar_Type_6_5_trail 1 6 Statistical_Check_RandParm_For_Radar_Type_6_6_trail 1 7 Statistical_Check_RandParm_For_Radar_Type_6_7_trail 1 8 Statistical_Check_RandParm_For_Radar_Type_6_8_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_11_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_13_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_18_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 18 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 19 Statistical_Check_RandParm_For_Radar_Type_6_20_trail 1 20 Statistical_Check_RandParm_For_Radar_Type_6_21_trail 1 21 Statistical_Check_RandParm_For_Radar_Type_6_21_trail <td>3</td> <td>Statistical_Check_RandParm_For_Radar_Type_6_3_trail</td> <td>1</td>	3	Statistical_Check_RandParm_For_Radar_Type_6_3_trail	1
6 Statistical_Check_RandParm_For_Radar_Type_6_1rail 1 7 Statistical_Check_RandParm_For_Radar_Type_6_7_trail 1 8 Statistical_Check_RandParm_For_Radar_Type_6_8_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_11_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_13_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_14_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_18_trail 1 18 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 19 Statistical_Check_RandParm_For_Radar_Type_6_20_trail 1 20 Statistical_Check_RandParm_For_Radar_Type_6_21_trail 1 21 Statistical_Check_RandParm_For_Radar_Type_6_21_trail 1 22 Statistical_Check_RandParm_For_Radar_Type_6_21_trail <td>4</td> <td>Statistical_Check_RandParm_For_Radar_Type_6_4_trail</td> <td>1</td>	4	Statistical_Check_RandParm_For_Radar_Type_6_4_trail	1
7Statistical_Check_RandParm_For_Radar_Type_6_7_trail18Statistical_Check_RandParm_For_Radar_Type_6_8_trail19Statistical_Check_RandParm_For_Radar_Type_6_9_trail110Statistical_Check_RandParm_For_Radar_Type_6_10_trail111Statistical_Check_RandParm_For_Radar_Type_6_11_trail112Statistical_Check_RandParm_For_Radar_Type_6_12_trail113Statistical_Check_RandParm_For_Radar_Type_6_13_trail114Statistical_Check_RandParm_For_Radar_Type_6_14_trail115Statistical_Check_RandParm_For_Radar_Type_6_15_trail116Statistical_Check_RandParm_For_Radar_Type_6_16_trail117Statistical_Check_RandParm_For_Radar_Type_6_18_trail118Statistical_Check_RandParm_For_Radar_Type_6_19_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_23_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_25_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_27_trail127Statistical_Check_RandParm_For_Radar_Type_6_28_trail128Statistical_Check_RandParm_For_Radar_Type_6_29_trail129Statistical_Check_RandP	5	Statistical_Check_RandParm_For_Radar_Type_6_5_trail	1
8 Statistical_Check_RandParm_For_Radar_Type_6_8_trail 1 9 Statistical_Check_RandParm_For_Radar_Type_6_9_trail 1 10 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_13_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_17_trail 1 18 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 19 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 20 Statistical_Check_RandParm_For_Radar_Type_6_20_trail 1 21 Statistical_Check_RandParm_For_Radar_Type_6_21_trail 1 22 Statistical_Check_RandParm_For_Radar_Type_6_23_trail 1 23 Statistical_Check_RandParm_For_Radar_Type_6_24_trail 1 24 Statistical_Check_RandParm_For_Radar_Type_6_25_tr	6	Statistical_Check_RandParm_For_Radar_Type_6_6_trail	1
9Statistical_Check_RandParm_For_Radar_Type_6_9_trail110Statistical_Check_RandParm_For_Radar_Type_6_10_trail111Statistical_Check_RandParm_For_Radar_Type_6_11_trail112Statistical_Check_RandParm_For_Radar_Type_6_12_trail113Statistical_Check_RandParm_For_Radar_Type_6_13_trail114Statistical_Check_RandParm_For_Radar_Type_6_14_trail115Statistical_Check_RandParm_For_Radar_Type_6_15_trail116Statistical_Check_RandParm_For_Radar_Type_6_16_trail117Statistical_Check_RandParm_For_Radar_Type_6_17_trail118Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_19_trail121Statistical_Check_RandParm_For_Radar_Type_6_20_trail122Statistical_Check_RandParm_For_Radar_Type_6_21_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_26_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_28_trail128Statistical_Check_RandParm_For_Radar_Type_6_29_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	7	Statistical_Check_RandParm_For_Radar_Type_6_7_trail	1
10 Statistical_Check_RandParm_For_Radar_Type_6_10_trail 1 11 Statistical_Check_RandParm_For_Radar_Type_6_11_trail 1 12 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 13 Statistical_Check_RandParm_For_Radar_Type_6_12_trail 1 14 Statistical_Check_RandParm_For_Radar_Type_6_14_trail 1 15 Statistical_Check_RandParm_For_Radar_Type_6_15_trail 1 16 Statistical_Check_RandParm_For_Radar_Type_6_16_trail 1 17 Statistical_Check_RandParm_For_Radar_Type_6_17_trail 1 18 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 19 Statistical_Check_RandParm_For_Radar_Type_6_19_trail 1 20 Statistical_Check_RandParm_For_Radar_Type_6_20_trail 1 21 Statistical_Check_RandParm_For_Radar_Type_6_21_trail 1 22 Statistical_Check_RandParm_For_Radar_Type_6_23_trail 1 23 Statistical_Check_RandParm_For_Radar_Type_6_24_trail 1 24 Statistical_Check_RandParm_For_Radar_Type_6_27_trail 1 25 Statistical_Check_RandParm_For_Radar_Type_6_27_trail 1 26 Statistical_Check_RandParm_For_Radar_Type_6_2	8	Statistical_Check_RandParm_For_Radar_Type_6_8_trail	1
11Statistical_Check_RandParm_For_Radar_Type_6_11_trail112Statistical_Check_RandParm_For_Radar_Type_6_12_trail113Statistical_Check_RandParm_For_Radar_Type_6_13_trail114Statistical_Check_RandParm_For_Radar_Type_6_14_trail115Statistical_Check_RandParm_For_Radar_Type_6_15_trail116Statistical_Check_RandParm_For_Radar_Type_6_16_trail117Statistical_Check_RandParm_For_Radar_Type_6_18_trail118Statistical_Check_RandParm_For_Radar_Type_6_19_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_21_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_26_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_28_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_30_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	9	Statistical_Check_RandParm_For_Radar_Type_6_9_trail	1
12Statistical_Check_RandParm_For_Radar_Type_6_12_trail113Statistical_Check_RandParm_For_Radar_Type_6_13_trail114Statistical_Check_RandParm_For_Radar_Type_6_14_trail115Statistical_Check_RandParm_For_Radar_Type_6_15_trail116Statistical_Check_RandParm_For_Radar_Type_6_16_trail117Statistical_Check_RandParm_For_Radar_Type_6_17_trail118Statistical_Check_RandParm_For_Radar_Type_6_18_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_25_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_28_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	10	Statistical_Check_RandParm_For_Radar_Type_6_10_trail	1
13Statistical_Check_RandParm_For_Radar_Type_6_13_trail114Statistical_Check_RandParm_For_Radar_Type_6_14_trail115Statistical_Check_RandParm_For_Radar_Type_6_15_trail116Statistical_Check_RandParm_For_Radar_Type_6_16_trail117Statistical_Check_RandParm_For_Radar_Type_6_16_trail118Statistical_Check_RandParm_For_Radar_Type_6_18_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_25_trail125Statistical_Check_RandParm_For_Radar_Type_6_26_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_28_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	11	Statistical_Check_RandParm_For_Radar_Type_6_11_trail	1
14Statistical_Check_RandParm_For_Radar_Type_6_14_trail115Statistical_Check_RandParm_For_Radar_Type_6_15_trail116Statistical_Check_RandParm_For_Radar_Type_6_16_trail117Statistical_Check_RandParm_For_Radar_Type_6_17_trail118Statistical_Check_RandParm_For_Radar_Type_6_18_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_28_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	12	Statistical_Check_RandParm_For_Radar_Type_6_12_trail	1
15Statistical_Check_RandParm_For_Radar_Type_6_15_trail116Statistical_Check_RandParm_For_Radar_Type_6_16_trail117Statistical_Check_RandParm_For_Radar_Type_6_17_trail118Statistical_Check_RandParm_For_Radar_Type_6_18_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_30_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	13	Statistical_Check_RandParm_For_Radar_Type_6_13_trail	1
16Statistical_Check_RandParm_For_Radar_Type_6_16_trail117Statistical_Check_RandParm_For_Radar_Type_6_17_trail118Statistical_Check_RandParm_For_Radar_Type_6_18_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_26_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	14	Statistical_Check_RandParm_For_Radar_Type_6_14_trail	1
17Statistical_Check_RandParm_For_Radar_Type_6_17_trail118Statistical_Check_RandParm_For_Radar_Type_6_18_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_26_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	15	Statistical_Check_RandParm_For_Radar_Type_6_15_trail	1
18Statistical_Check_RandParm_For_Radar_Type_6_18_trail119Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	16	Statistical_Check_RandParm_For_Radar_Type_6_16_trail	1
19Statistical_Check_RandParm_For_Radar_Type_6_19_trail120Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	17	Statistical_Check_RandParm_For_Radar_Type_6_17_trail	1
20Statistical_Check_RandParm_For_Radar_Type_6_20_trail121Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	18	Statistical_Check_RandParm_For_Radar_Type_6_18_trail	1
21Statistical_Check_RandParm_For_Radar_Type_6_21_trail122Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	19	Statistical_Check_RandParm_For_Radar_Type_6_19_trail	1
22Statistical_Check_RandParm_For_Radar_Type_6_22_trail123Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	20	Statistical_Check_RandParm_For_Radar_Type_6_20_trail	1
23Statistical_Check_RandParm_For_Radar_Type_6_23_trail124Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	21	Statistical_Check_RandParm_For_Radar_Type_6_21_trail	1
24Statistical_Check_RandParm_For_Radar_Type_6_24_trail125Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	22	Statistical_Check_RandParm_For_Radar_Type_6_22_trail	1
25Statistical_Check_RandParm_For_Radar_Type_6_25_trail126Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	23	Statistical_Check_RandParm_For_Radar_Type_6_23_trail	1
26Statistical_Check_RandParm_For_Radar_Type_6_26_trail127Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	24	Statistical_Check_RandParm_For_Radar_Type_6_24_trail	1
27Statistical_Check_RandParm_For_Radar_Type_6_27_trail128Statistical_Check_RandParm_For_Radar_Type_6_28_trail129Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	25	Statistical_Check_RandParm_For_Radar_Type_6_25_trail	1
28 Statistical_Check_RandParm_For_Radar_Type_6_28_trail 1 29 Statistical_Check_RandParm_For_Radar_Type_6_29_trail 1 30 Statistical_Check_RandParm_For_Radar_Type_6_30_trail 1	26	Statistical_Check_RandParm_For_Radar_Type_6_26_trail	1
29Statistical_Check_RandParm_For_Radar_Type_6_29_trail130Statistical_Check_RandParm_For_Radar_Type_6_30_trail1	27	Statistical_Check_RandParm_For_Radar_Type_6_27_trail	1
30 Statistical_Check_RandParm_For_Radar_Type_6_30_trail 1	28	Statistical_Check_RandParm_For_Radar_Type_6_28_trail	1
	29	Statistical_Check_RandParm_For_Radar_Type_6_29_trail	1
Detection Percentage 100 % (>70 %)	30	Statistical_Check_RandParm_For_Radar_Type_6_30_trail	1
		Detection Percentage	100 % (>70 %)

Type 6 Radar Statistical Performance

Appendix for Type 5~6 radar waveform test characteristic

Type 5 Radar Waveform_1.txt

Waveform I Num of Bu Burst Into		00								
Burst #	Off Time (us) 394750	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(u
1	505869	2	10	50	1082	1763	0	394750	0	799999
2	1201577	3	20	85	1895	1930	1064	903464	80000	1599999
3	434555	3	6	85	1863	1905	1068	2109930	1600000	2399999
4	1121130	3	13	100	1689	1765	1280	2549321	2400000	3199999
5	1065785	1	19	65	1528	0	0	3675185	3200000	3999999
6	203676	3	11	85	1581	1740	1151	4742498	4000000	4799999
7	1192552	2	10	80	1095	1139	0	4950646	4800000	5599999
8	658673	3	16	60	1375	1546	1599	6145432	5600000	6399999
9	686747	3	10	65	1947	1742	1094	6808625	6400000	7199999
10	760999	3	15	70	1637	1748	1910	7500155	7200000	7999999
11	866148	3	20	60	1528	1290	1948	8266449	800000	8799999
12	605692	2	13	80	1422	1631	0	9137363	8800000	9599999
13	1119773	3	20	55	1527	1784	1930	9746108	9600000	10399999
14	680883	1	14	95	1741	0	0	10871122	10400000	11199999
15		2	15	95	1515	1842	0	11553746	11200000	11999999
Total num	oer of pulses in	waveform = 3	17							

Type 5 Radar Waveform_2.txt

Num of Bur Burst Inte	erval (us)= 8571	43								
Burst	Off Time	#	Chirp	PW	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burst
ŧ	(us) 525275	Pulses	(MHz)	(us)	Pri(us)	Pri(us)	Pri(us)	(us)	Interval(us)	Interval(us)
1	00/004	3	7	70	1108	1474	1625	525275	0	857142
2	906921	3	16	75	1048	1339	1535	1436403	857143	1714285
3	953265	1	20	55	1590	0	0	2393590	1714286	2571428
3	634780	1	20	35	1220	U	U	2393590	17 14200	257 1420
4	736168	3	19	65	1630	1607	1449	3029960	2571429	3428571
5		2	18	80	1128	1336	0	3770814	3428572	4285714
6	1317378	3	14	60	1824	1315	1141	5090656	4285715	5142857
-	172436		40		471.4			50/2020	5410050	1000000
7	1164681	1	12	80	1746	0	0	5267372	5142858	600000
8	596814	2	7	80	1005	1272	0	6433799	6000001	6857143
9		3	19	100	1253	1265	1193	7032890	6857144	7714286
10	941970	3	16	75	1531	1439	1718	7978571	7714287	8571429
	1057807									
11	1231675	3	18	55	1852	1466	1982	9041066	8571430	9428572
12	105010	3	8	100	1087	1273	1582	10278041	9428573	10285715
13	485249	3	6	75	1322	1539	1681	10767232	10285716	11142858
14	556289		2	85	1431	1737	1579	44000.840	44460000	1000004
	or of pulcos in	3	5	62	1431	1/3/	127.8	11328063	11142859	12000001

Total number of pulses in waveform = 36

Type 5 Radar Waveform_3.txt

urst	Off Time	#	Chirp	₽₩	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burst
ŧ	(us) 760170	Pulses	(MHz)	(us)	Pri(us)	Pri(us)	Pri(us)	(us)	Interval(us)	Interval(
1	368851	2	16	95	1532	1305	0	760170	0	999999
2	1661925	2	15	95	1084	1477	0	1131858	1000000	1999999
3	1052753	2	5	80	1101	1069	0	2796344	2000000	2999999
4	150698	1	7	100	1397	0	0	3851267	3000000	3999999
5	1285948	3	18	55	1681	1687	1450	4003362	400000	4999999
6	1652503	1	12	95	1772	0	0	5294128	5000000	5999999
7	313490	2	9	90	1434	1597	0	6948403	600000	6999999
8	1212592	2	8	80	1205	1033	0	7264924	7000000	7999999
9	1290830	1	19	90	1027	0	0	8479754	800000	8999999
10	547739	1	15	65	1820	0	0	9771611	900000	9999999
11	1479495	2	11	90	1285	1905	0	10321170	1000000	10999999
12	1417475	3	12	50	1356	1939	1354	11803855	11000000	1199999

Type 5 Radar Waveform_4.txt

Waveform Num = 4 Num of Bursts = 12 Burst Interval (us)= 1000000

Burst #	Off Time (us) 564915	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1		2	6	85	1739	1913	0	564915	0	999999
2	679115	1	15	95	1222	0	0	1247682	1000000	1999999
3	1434587	1	14	50	1730	0	0	2683491	2000000	2999999
4	688866	3	10	60	1668	1540	1441	3374087	3000000	3999999
5	1006251	1	6	80	1581	0	0	4384987	4000000	4999999
6	761594	3	12	65	1129	1266	1681	5148162	5000000	5999999
7	1135298	1	7	75	1762	0	0	6287536	600000	6999999
8	754507	2	18	65	1930	1463	0	7043805	7000000	7999999
9	1489726	3	17	75	1781	1630	1257	8536924	8000000	8999999
10	503688	1					0			
10	1465735		8	100	1772	0	U	9045280	900000	9999999
11	1163945	3	16	90	1902	1638	1875	10512787	10000000	10999999
12 Total numbe	er of pulses in	2 waveform = 2	7 23	100	1889	1032	0	11682147	11000000	11999999

Burst	Off Time	#	Chirp	P₩	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burs
#	(us) 346899	Pulses	(MHZ)	(us)	Pri(us)	Pri(us)	Pri(us)	(us)	Interval(us)	Interval
1	2068123	2	19	100	1709	1597	0	346899	0	1499999
2		2	5	90	1471	1702	0	2418328	1500000	2999999
3	1093352	3	15	60	1175	1942	1718	3514853	3000000	4499999
J	2350984	ð	61	00	1175	1742	1710	0214020	200000	447777
4	Baaraarka	1	19	60	1430	0	0	5870672	4500000	5999999
5	1321214	1	10	70	1926	0	0	7193316	6000000	7499999
,	1559894		10	10	1720	0	U	7 1700 10	000000	(477777
6	5161670	2	8	95	1079	1763	0	8755136	7500000	8999999
7	1535980	3	15	60	1260	1311	1296	10293958	900000	1049999
(1323759	J	CI CI	00	1200	1011	1270	10273730	700000	1047773
8		3	15	100	1319	1608	1797	11621584	10500000	1199999

Type 5 Radar Waveform_5.txt

Type 5 Radar Waveform_6.txt

	erval (us)= 6315			2						
Burst #	Off Time (us)	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us
	559532	Turses								-
1	275728	1	8	90	1617	0	0	559532	0	631578
2		3	18	90	1264	1700	1177	836877	631579	1263157
3	781428	1	12	70	1519	0	0	1622446	1263158	1894736
	517804									
4	385954	2	9	65	1176	1087	0	2141769	1894737	2526315
5	656564	1	9	85	1036	0	0	2529986	2526316	3157894
6	050504	2	7	70	1069	1983	0	3187586	3157895	3789473
7	1136762	1	5	55	1691	0	0	4327400	3789474	4421052
	380427									
8	692871	1	10	50	1325	0	0	4709518	4421053	5052631
9		1	19	75	1503	0	0	5403714	5052632	5684210
10	735844	3	5	80	1504	1820	1056	6141061	5684211	6315789
11	536254	3	5	95	1093	1165	1489	6681695	6315790	6947368
	860519									
12	594055	1	15	70	1067	0	0	7545961	6947369	7578947
13	E hold /	1	17	50	1045	0	0	8141083	7578948	8210526
14	548416	1	19	80	1401	0	0	8690544	8210527	8842105
15	177495	3	7	90	1493	1378	1488	8869440	8842106	9473684
	1088447									
16	507612	1	7	55	1495	0	0	9962246	9473685	10105263
17		2	17	60	1943	1646	0	10471353	10105264	10736842
18	807044	3	11	75	1705	1786	1760	11281986	10736843	11368421
19	111105	2	13	80	1792	1951	0	11398342	11368422	12000000

Type 5 Radar Waveform_7.txt

Waveform I Num of Bur Burst Inte		882								
Burst #	Off Time (us) 26808	# Pulses	Chirp (MHz)	P₩ (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	1058404	2	16	95	1280	1939	0	26808	0	705881
2	971617	3	8	90	1733	1208	1223	1088431	705882	1411763
3	428502	2	12	85	1595	1308	0	2064212	1411764	2117645
4		1	13	95	1254	0	0	2495617	2117646	2823527
5	531558	3	15	95	1295	1430	1453	3028429	2823528	3529409
6	706254	2	12	98	1287	1896	0	3738861	3529410	4235291
7	939027	2	15	95	1383	1091	0	4681071	4235292	4941173
8	613201	2	11	60	1603	1345	0	5296746	4941174	5647055
9	429357	3	17	90	1669	1017	1257	5729051	5647056	6352937
10	1322187	2	12	80	1785	1105	0	7055181	6352938	7058819
11	281637	3	16	70	1374	1419	1680	7339708	7058820	7764701
12	917865	3	17	60	1122	1289	1792	8262046	7764702	8470583
13	7 026 01	2	6	50	1228	1030	0	8968850	8470584	9176465
14	674740	2	13	75	1337	1019	0	9645848	9176466	9882347
15	465073	1	12	95	1842	0	8	10113277	9882348	10588229
16	668131	1	5	95	1619	0	0	10783250	10588230	11294111
17	793277	3	15	55	1302	1203	1879	11578146	11294112	11999993
Total num	ber of pulses in	n waveform = 3								

Type 5 Radar Waveform_8.txt

Waveform Num = 8 Num of Bursts = 9 Burst Interval (us)= 1333333

Burst #	Off Time (us) 1160855	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1		3	10	50	1525	1237	1166	1160855	0	1333332
2	1271312	1	5	75	1004	0	0	2436095	1333333	2666665
3	588587	2	6	75	1573	1774	0	3025686	2666666	3999998
4	2122306	1	8	95	1897	0	0	5151339	3999999	5333331
5	1323090	3	8	50	1853	1381	1421	6476326	5333332	6666664
6	706484	2	10	70	1257	1498	8	7187465	666665	7999997
7	2050680	-	13	75	1263	0	0		7999998	9333330
-	866633							9240900		
8	1633997	2	8	75	1502	1067	0	10108796	9333331	10666663
9 Total number	of pulses in	2 waveform = 17	10 7	95	1155	1611	0	11745362	10666664	11999996

Type 5 Radar Waveform_9.txt

Waveform Nu Num of Burs Burst Inter		82								
Burst #	Off Time (us) 48936	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	990559	3	20	90	1453	1977	1254	48936	0	705881
2	1030372	1	8	55	1665	0	0	1044179	705882	1411763
3	38305	3	5	90	1657	1296	1253	2076216	1411764	2117645
4	1186517	2	ó	60	1319	1939	0	2118727	2117646	2823527
5	614844	3	16	95	1838	1497	1359	3308502	2823528	3529409
6	573805	2	20	85	1903	1083	0	3928040	3529410	4235291
7		1	10	65	1189	0	0	4504831	4235292	4941173
8	832746	1	19	85	1541	0	0	5338766	4941174	5647055
9	789079	3	11	55	1341	1965	1335	6129386	5647056	6352937
10	468162	3	9	85	1112	1598	1159	6602189	6352938	7058819
11	470418	1	8	95	1916	0	0	7076476	7058820	7764701
12	1007256	1	20	90	1847	0	0	8085648	7764702	8470583
13	391043	1	12	80	1369	0	0	8478538	8470584	9176465
14	920312	1	20	95	1343	0	0	9400219	9176466	9882347
15	549838	1	19	80	1522	0	0	9951400	9882348	10588229
16	676635	2	12	100	1847	1512	0	10629557	10588230	11294111
17 Total numbe	877680 r of pulses in	3 waveform = 3	20	95	1917	1556	1542	11510596	11294112	11999993

Type 5 Radar Waveform_10.txt

urst inte urst	erval (us)= 6315 Off Time	#	Chirp	PW	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burst
	(us) 336792	Pulses	(MHz)	(us)	Pri(us)	Pri(us)	Pri(us)	(us)	Interval(us)	Interval(u
1	584338	1	8	70	1849	0	0	336792	0	631578
2	483938	3	11	80	1749	1404	1150	922179	631579	1263157
3	849501	3	6	90	1087	1109	1934	1410420	1263158	1894736
4	294059	3	7	75	1795	1480	1662	2264051	1894737	2526315
5	867749	3	16	50	1059	1562	1346	2563047	2526316	3157894
5	714221	3	17	75	1485	1627	1946	3434763	3157895	3789473
7	846012	2	16	60	1114	1086	0	4154042	3789474	4421052
s 9	239623	1 3	7 19	70 65	1567	0 1052	9 1518	5002254 5243444	4421053 5052632	5052631 5684210
10	998426	3	9	95	1785	1735	1282	6238425	5684211	6315789
11	255361	2	15	90	1024	1760	0	6498532	6315790	6947368
12	527630	- 1	5	55	1294	0	0	7 028946	6947369	7578947
13	994743	2	18	95	1687	1581	0	8024983	7578948	8210526
14	492579	1	7	85	1431	0	0	8520830	8210527	8842105
15	632279	3	16	60	1566	1869	1635	9154540	8842106	9473684
16	900370	3	14	90	1240	1501	1332	10059980	9473685	10105263
7	534676	1	12	85	1531	0	0	10598729	10105264	10736842
8	743615	3	19	95	1532	1317	1562	11343875	10736843	11368421
19	239682	2	20	95	1178	1519	0	11587968	11368422	1200000

Waveform I Num of Bur Burst Inte		1000								
Burst #	Off Time (us) 844236	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	666944	3	11	80	1384	1927	1110	844236	0	1499999
2		3	18	65	1999	1375	1207	1515601	1500000	2999999
3	2091627 954597	1	18	70	1889	0	0	3611809	300000	4499999
4		2	19	75	1994	1534	0	4568295	4500000	5999999
5	2545239 751854	1	14	60	1578	0	0	7117062	600000	7499999
6		2	15	55	1120	1446	0	7870494	7500000	8999999
7	2 <i>0</i> 68122 1851395	2	9	50	1608	1047	0	9941182	900000	10499999
8 Total numb	ber of pulses in	2 1 waveform = 1	6 16	55	1676	1635	0	11795232	10500000	11999999

Type 5 Radar Waveform_11.txt

Type 5 Radar Waveform_12.txt

Waveform Num = 12 Num of Bursts = 13 Burst Interval (us)= 923077

Burst #	Off Time (us) 917097	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1		2	15	90	1588	1880	0	917097	0	923076
2	702912	2	6	80	1206	1638	0	1623477	923077	1846153
3	1076769	1	9	55	1286	0	0	2703090	1846154	2769230
4	258224	1	15	85	1600	0	0	2962600	2769231	3692307
5	881229	2	16	90	1976	1916	0	3845429	3692308	4615384
ó	1015282	2	8	90	1649	1702	0	4864603	4615385	5538461
7	1109876	1	6	95	1316	0	0	5977830	5538462	6461538
8	730179	2	7	70	1548	1571	0	6709325	6461539	7384615
	1504883									
9	293893	1	12	55	1818	0	0	8217327	7384616	8307692
10	1062684	1	12	65	1571	0	0	8513038	8307693	9230769
11		3	5	50	1837	1071	1674	9577293	9230770	10153846
12	985516	2	17	80	1258	1529	0	10567391	10153847	11076923
13 Total numi	809672 ber of pulses in	3 waveform = 3	12	65	1947	1764	1716	11379850	11076924	12000000
nam	Furses In									

Type 5 Radar Waveform_13.txt

Waveform N Num of Bur Burst Inte		00								
Burst #	Off Time (us) 543109	# Pulses	Chirp (MHz)	P₩ (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	673466	3	11	55	1346	1737	1783	543109	0	799999
2	421673	3	7	70	1541	1510	1450	1221441	80000	1599999
3	916386	1	5	100	1020	0	0	1647615	1600000	2399999
4	1128570	1	11	70	1889	0	0	2565021	2400000	3199999
5	680538	3	11	50	1773	1679	1796	3695480	3200000	3999999
6	1000139	2	17	70	1861	1443	0	4381266	4000000	4799999
7	381843	2	20	50	1022	1720	0	5384709	4800000	5599999
8	883991	1	18	90	1270	0	0	5769294	5600000	6399999
9	1087006	3	14	95	1128	1159	1209	6654555	6400000	7199999
10	684979	1	11	100	1207	0	0	7745057	7200000	7999999
11	430596	2	7	98	1409	1307	0	8431243	800000	8799999
12	1308671	3	10	100	1077	1646	1373	8864555	8800000	9599999
13	805618	3	7	85	1971	1143	1904	10177322	960000	10399999
14	413929	1	16	65	1572	0	0	10987958	10400000	11199999
15 Total numb	er of pulses in	3 waveform = 3	18 12	100	1419	1146	1603	11403459	11200000	11999999

Type 5 Radar Waveform_14.txt

Waveform H Num of Bur Burst Inte		67								
Burst #	Off Time (us) 262208	# Pulses	Chirp (MHz)	P₩ (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	567329	3	19	75	1983	1500	1632	262208	0	666666
2	861855	3	19	70	1681	1962	1391	834572	666667	1333333
3	531458	1	7	65	1809	0	0	1701381	1333334	2000000
4	748238	1	19	55	1878	0	0	2234648	2000001	2666667
5		1	5	55	1119	0	0	2984764	2666668	3333334
6	867653	1	5	75	1688	0	0	3853536	3333335	4000001
7	225749	2	8	80	1938	1554	0	4080973	4000002	4666668
8	1122112	2	9	90	1923	1189	0	5206577	4666669	5333335
9	603965	2	11	95	1607	1074	0	5813654	5333336	600002
10	498530	1	19	95	1888	0	0	6314865	600003	6666669
11	842897	1	15	85	1529	0	0	7159650	6666670	7333336
12	737970	3	17	55	1333	1948	1947	7899149	7333337	800003
13	641574	1	11	85	1860	0	0	8545951	8000004	8666670
14	403801	1	5	90	1335	0	0	8951612	8666671	9333337
15	1006562	3	7	68	1277	1615	1879	9959589	9333338	10000004
16	296395	1	16	100	1667	0	0	10260675	10000005	10666671
17	1027768	3	10	50	1471	1813	1709	11290110	10666672	11333338
18	443808	2	15	60	1032	1163	0	11738911	11333339	12000005
	oer of pulses in				1002		Ū		1100007	

Type 5 Radar Waveform_15.txt

Waveform Num = 15 Num of Bursts = 15 Burst Interval (us									
Burst Off 1 # (us) 1317	Puls	Chirp Ses (MHz)		Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1 742	3	12	50	1002	1660	1212	131797	0	799999
2 868	3	13	100	1929	1807	1555	878465	800000	1599999
3 992!	1	16	60	1322	0	0	1744157	1600000	2399999
4	2 2451	6	65	1619	1252	0	2738010	2400000	3199999
5	2	5	60	1130	1817	0	3843332	3200000	3999999
6	1	5	95	1184	9	0	4058990	4000000	4799999
7	5076 1	15	60	1561	0	0	5365250	4800000	5599999
8 8	1	11	70	1787	9	0	5880314	5600000	6399999
766 ⁻ 9	3	5	85	1684	1909	1961	6648278	6400000	7199999
898) 10	3	13	85	1948	1851	1995	7552537	7200000	7999999
11	6966 1	18	75	1830	9	0	8744397	800000	8799999
533 [.] 12	3	11	50	1320	1250	1994	9279388	8800000	9599999
13	1125 3	10	50	1737	1050	1759	10295077	9600000	10399999
2629 14	1	15	85	1096	0	0	10562598	10400000	11199999
1234 15 Total number of pul	4612 1 lses in wavefo	11 11 m = 29	80	1718	0	0	11798306	11200000	11999999

Type 5 Radar Waveform_16.txt

urst	Off Time	#	Chirp	PW	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burst
	(us) 708325	Pulses	(MHz)	(us)	Pri(us)	Pri(us)	Pri(us)	(us)	Interval(us)	Interval(us
1	1409295	3	10	100	1913	1820	1181	708325	0	1333332
2	1239077	1	16	75	1225	0	0	2122534	1333333	2666665
3	1503930	3	16	55	1420	1055	1955	3362836	2666666	3999998
4	1263226	3	11	55	1190	1281	1731	4871196	3999999	5333331
5	1606293	3	18	90	1864	1407	1226	6138624	5333332	6666664
5	1235261	2	19	80	1173	1271	0	7749414	666665	7999997
7	390061	2	6	70	1754	1643	0	8987119	7999998	9333330
8		2	10	55	1609	1040	0	9380577	9333331	10666663
9	1743973	4	18	55	1328	0	0	11127199	10666664	11999996

Type 5 Radar Waveform_17.txt

Waveform Num of Bu Burst Int		00								
Burst #	Off Time (us) 243231	# Pulses	Chirp (MHz)	P₩ (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	7 05 029	2	14	90	1321	1214	0	243231	0	749999
2		2	10	100	1798	1071	0	950795	750000	1499999
3	1015789	1	8	50	1982	0	0	1969453	1500000	2249999
4	744416	2	15	90	1696	1592	0	2715851	2250000	2999999
5	901584	2	6	50	1259	1693	0	3620723	3000000	3749999
6	721679	3	16	80	1428	1572	1906	4345354	3750000	4499999
7	208445	3	6	50	1534	1522	1820	4558705	4500000	5249999
8	1051317	1	11	68	1984	0	0	5614898	5250000	5999999
9	681541	3	6	70	1117	1801	1639	6298423	600000	6749999
10	837746	2	14	95	1942	1053	0	7140726	6750000	7499999
11	390769	2	19	50	1720	1278	0	7534490	7500000	8249999
12	1415952	2	17	60	1558	1850	0	89534490	8250000	8999999
	98179									
13	909417	2	13	90	1075	1531	0	9055027	900000	9749999
14	886804	3	12	65	1226	1388	1454	9967050	9750000	10499999
15	792172	2	10	75	1810	1686	0	10857922	10500000	11249999
16 Total num	ber of pulses in	1 waveform = 3	6 13	55	1819	0	0	11653590	11250000	11999999

Type 5 Radar Waveform_18.txt

Waveform Num = 18 Num of Bursts = 9 Burst Interval (us)= 1333333

Burst #	Off Time (us) 407012	# Pulses	Chirp (MHz)	₽₩ (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	1137945	3	6	90	1964	1927	1404	407012	0	1333332
2	1835966	1	8	95	1809	0	0	1550252	1333333	266665
3		3	13	55	1395	1209	1565	3388027	2666666	3999998
4	636714	1	13	90	1240	0	0	4028910	3999999	5333331
5	2540326	2	9	55	1054	1786	0	6570476	5333332	6666664
6	1406050	3	10	85	1879	1302	1790	7979366	6666665	7999997
7	306366	2	14	90	1532	1551	0	8290703	7999998	9333330
8	1308340	3	14	50	1119	1278	1446	9602126	9333331	10666663
9 Total number	2335928 of pulses in	2 waveform = 20	7	65	1466	1267	0	11941897	10666664	11999996

Type 5 Radar Waveform_19.txt

Waveform I Num of Bur Burst Inte		39 89								
Burst	Off Time	#	Chirp	PW	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burst
#	(us) 953394	Pulses	(MHz)	(us)	Pri(us)	Pri(us)	Pri(us)	(us)	Interval(us)	Interval(us)
1		3	5	50	1237	1044	1162	953394	0	1090908
2	213674	2	15	75	1335	1924	0	1170511	1090909	2181817
3	1069541	1	8	85	2000	0	0	2243311	2181818	3272726
J	1998510				2000			2240011	2101010	5272720
4	489375	3	11	85	1845	1966	1799	4243821	3272727	4363635
5		1	19	85	1199	0	0	4738806	4363636	5454544
6	1159963	3	8	80	1875	1211	1804	5899968	5454545	6545453
	1569428									
7	1076128	3	10	70	1173	1373	1705	7474286	6545454	7636362
8		1	12	85	1426	0	0	8554665	7636363	8727271
9	385268	2	18	100	1783	1502	0	8941359	8727272	9818180
10	1583092	2	15	70	1058	1408	0	10527736	9818181	10909089
10	439210	2	15	70	1050	1400	U	10527730	7010101	10707007
11 Total num	ber of pulses in	2 N NOVOĐORM = 2	5	65	1950	1902	0	10969412	10909090	11999998
locat Hull	act of horses th									

Type 5 Radar Waveform_20.txt

Waveform Num = 20 Num of Bursts = 17 Burst Interval (us)= 705882

urst	Off Time (us) 384472	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us
1		3	7	90	1954	1938	1482	384472	0	705881
2	359485	3	19	55	1834	1200	1555	749331	705882	1411763
3	868340	1	8	60	1161	0	0	1622260	1411764	2117645
4	547628	3	6	80	1332	1009	1964	2171049	2117646	2823527
5	737188	3	19	100	1565	1519	1618	2912542	2823528	3529409
6	653888	1	17	70	1519	0	0	3571132	3529410	4235291
7	1336808	3	15	60	1345	1945	1800	4909459	4235292	4941173
8	117582	1	10	80	1662	0	0	5032131	4941174	5647055
9	733613	3	13	75	1797	1372	1915	5767406	5647056	6352937
10	1234442	3	12	70	1106	1581	1944	7006932	6352938	7058819
11	724834	2	13	85	1364	1742		7736397	7058820	7764701
	424521						0			
12	443425	2	7	70	1056	1749	0	8164024	7764702	8470583
13	586974	1	11	95	1702	0	0	8610254	8470584	9176465
14	768211	3	8	65	1032	1971	1758	9198930	9176466	9882347
15	1249330	3	16	50	1181	1967	1760	9971902	9882348	10588229
16	114849	1	5	55	1090	0	0	11226140	10588230	11294111
17		2	12	70	1555	1980	0	11342079	11294112	11999993

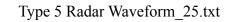
Type 5 Radar Waveform_21.txt

Burst	Off Time	#	Chirp	PW	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burst
#	(us) 946393	# Pulses	(MHZ)	(us)	Pri(us)	Pri(us)	Pri(us)	(US)	Interval(us)	Interval(us
1	1121507	3	10	65	1842	1386	1547	946393	0	1 09 09 08
2	243675	3	11	50	1071	1523	1221	2072675	1 09 09 09	2181817
3	1264188	3	7	100	1141	1849	1457	2320165	2181818	3272726
4	1382740	2	6	70	1563	1921	0	3588800	3272727	4363635
5	778278	1	15	65	1221	0	0	4975024	4363636	5454544
6	1861249	3	17	90	1350	1348	1204	5754523	5454545	6545453
7	494522	2	18	80	1980	1201	0	7619674	6545454	7636362
8	713495	1	20	90	1827	0	0	8117377	7636363	8727271
9	1603417	1	6	65	1566	0	0	8832699	8727272	9818180
10	1304518	2	13	100	1406	1463	0	10437682	9818181	10909089
11	ber of pulses in	2	18	60	1236	1747	0	11745069	10909090	11999998

Type 5 Radar Waveform_22.txt

Waveform Num = 22 Num of Bursts = 10 Burst Interval (us)= 1200000

Burst #	Off Time (us) 712313	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	1419556	3	18	100	1166	1898	1179	712313	0	1199999
2	557213	2	13	85	1059	1135	0	2136112	1200000	2399999
3		2	9	85	1908	1181	0	2695519	2400000	3599999
4	1992176	1	12	70	1169	0	0	4690784	3600000	4799999
5	593441	3	16	75	1383	1476	1260	5285394	4800000	5999999
ó	1228660	2	8	80	1613	1280	0	6518173	600000	7199999
7	1658154	3	8	50	1984	1214	1866	8179220	7200000	8399999
8	1027484	2	15	70	1640	1897	0	9211768	8400000	9599999
9	1280014	2	7	75	1635	1039	0	10495319	9600000	10799999
10	830270	1	10	80	1166	0	0	11328263	10800000	11999999
Total numb	per of pulses in	waveform = 2	21							

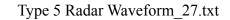

Type 5 Radar Waveform_23.txt

Waveform Num of Bu Burst Int		3333								
Burst	Off Time	#	Chirp	PW	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burst
#	(us) 220416	Pulses	(MHz)	(us)	Pri(us)	Pri(us)	Pri(us)	(us)	Interval(us)	Interval(us)
1	1648145	3	18	65	1951	1496	1417	220416	0	1333332
2	2114534	3	18	85	1716	1754	1542	1873425	1333333	266665
3	279796	1	13	95	1058	0	0	3992971	2666666	3999998
4	1086212	3	7	90	1283	1898	1317	4273825	3999999	5333331
5	1584878	1	8	75	1369	0	0	5364535	5333332	6666664
6	1093051	2	19	90	1993	1310	0	6950782	666665	7999997
7	2040383	3	5	85	1854	1570	1276	8047136	7999998	9333330
8		3	9	85	1286	1533	1920	10092219	9333331	10666663
9 Total num	1856161 ber of pulses in	2 2 = 2 = 2	7	70	1171	1792	0	11953119	10666664	11999996
10/01 100	nei oi harzez ti	i waverorm - Z	. 1							

Type 5 Radar Waveform_24.txt

Waveform Num = 24 Num of Bursts = 14 Burst Interval (us)= 857143

Burst #	Off Time (us)	# Pulses	Chirp (MHz)	P₩ (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)	
	33033									057410	
1	1570962	1	14	60	1115	0	0	33033	0	857142	
2		2	20	80	1617	1950	0	1605110	857143	1714285	
3	569862	3	17	75	1923	1382	1910	2178539	1714286	2571428	
5	649517	5	17	0	1725	1302	1710	21/0557	17 14200	2571420	
4		1	6	80	1417	0	0	2833271	2571429	3428571	
	1345273										
5		3	18	55	1412	1777	1886	4179961	3428572	4285714	
6	852573	1	8	65	1822	0	0	5037609	4285715	5142857	
U	477657		0	05	1022	9	0	2037009	4203713	5142057	
7		2	12	65	1593	1539	0	5517088	5142858	600000	
	1121062										
8	750101	2	11	50	1620	1342	0	6641282	600001	6857143	
9	758494	1	10	65	1788	0	0	7402738	6857144	7714286	
7	655233		10	05	1700	U	0	7402730	0057144	7714200	
10		3	19	95	1955	1495	1378	8059759	7714287	8571429	
	574153										
11		3	8	60	1976	1074	1283	8638740	8571430	9428572	
12	931079	2	16	50	1979	1390	0	9574152	9428573	10285715	
12	726560	2	10	20	1979	1946	0	9574152	9420573	10203713	
13		2	14	65	1421	1230	0	10304081	10285716	11142858	
	1094710										
14		1	13	85	1505	0	0	11401442	11142859	12000001	
Total numb	oer of pulses in	waveform = 2	27								


	rsts = 20									
Burst Int Burst #	erval (us)= 6000 Off Time (us) 438539	00 # Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1		3	18	100	1860	1500	1837	438539	0	599999
2	268270	1	10	90	1072	0	0	712006	60000	1199999
3	751028	3	9	75	1455	1917	1719	1464196	1200000	1799999
4	641315	3	9	85	1956	1681	1695	2110512	1800000	2399999
5	366853	1	5	65	1809	0	0	2482697	2400000	2999999
6	528854	2	7	60	1541	1039	0	3013360	3000000	3599999
7	837637	1	14	95	1545	0	0	3853577	3600000	4199999
8	388036	1	9	75	1699	0	0	4243158	4200000	4799999
9	788134	3	11	55	1409	1019	1333	5032991	4800000	5399999
10	444248	3	8	50	1028	1208	1938	5481000	5400000	5999999
11	796452	3	15	75	1939	1849	1473	6281626	600000	6599999
12	610982	1	6	70	1075	0	0	6897869	660000	7199999
13	474850	1	6	70	1175	0	0	7373794	7200000	7799999
14	647818	2	12	65	1680	1409	0	8022787	7800000	8399999
15	756992	1	19	90	1346	0	0	8782868	8400000	8999999
16	268097	3	13	65	1823	1500	1351	9052311	900000	9599999
17	659941	1	10	55	1942	0	0	9716926	960000	10199999
18	730881	3	20	50	1335	1478	1620	10449749	10200000	10799999
19	822774	2	6	75	1142	1707	0	11276956	10800000	11399999
20 Total num	554237 ber of pulses in	3 waveform = 4	15 +1	80	1302	1340	1432	11834042	11400000	11999999

Type 5 Radar Waveform_26.txt

Waveform Num = 26
Num of Bursts = 16
Burst Interval (us)= 750000

QuieTek

Burst #	Off Time (us) 327472	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)	
1		1	9	70	1843	0	0	327472	0	749999	
2	982826	2	19	80	1180	1897	0	1312141	750000	1499999	
3	513052	1	12	85	1120	0	0	1828270	1500000	2249999	
4	614182	2	7	85	1800	1393	0	2443572	2250000	2999999	
5	1034597	2	14	55	1455	1493	0	3481362	3000000	3749999	
	792750										
6	337101	2	5	75	1321	1328	0	4277060	3750000	4499999	
7	1087364	1	12	50	1270	0	0	4616810	4500000	5249999	
8	994449	1	17	85	1444	0	0	5705444	5250000	5999999	
9	436481	1	11	65	1244	0	0	6701337	600000	6749999	
10		3	9	80	1146	1712	1920	7139062	6750000	7499999	
11	494079	1	5	75	1412	0	0	7637919	7500000	8249999	
12	905599	2	10	70	1570	1289	0	8544930	8250000	8999999	
13	1060248	1	12	95	1757	0	0	9608037	900000	9749999	
14	738754	3	6	85	1716	1446	1197	10348548	9750000	10499999	
15	324901	2	17	80	1572	1666	0	10677808	10500000	11249999	
	901879										
16 Total numbe	er of pulses in	2 10105080 - 3	20	50	1658	1732	0	11582925	11250000	11999999	
LOCAT HUMPN	er or harses th	waveronn - z									

	Num = 27 irsts = 19 :erval (us)= 6315	79								
Burst #	Off Time (us) 565971	# Pulses	Chirp (MHz)	₽₩ (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	478016	3	14	80	1343	1018	1364	565971	0	631578
2	508642	2	8	100	1787	1981	0	1047712	631579	1263157
3		1	8	55	1241	0	0	1560122	1263158	1894736
4	669835	1	15	60	1677	0	0	2231198	1894737	2526315
5	710575	3	8	80	1134	1115	1727	2943450	2526316	3157894
6	497848	1	10	85	1132	0	0	3445274	3157895	3789473
7	529073	1	20	90	1184	0	0	3975479	3789474	4421052
8	750058	3	12	55	1277	1525	1423	4726721	4421053	5052631
9	698276	3	16	60	1825	1677	1645	5429222	5052632	5684210
10	572211	3	16	70	1849	1916	1312	6006580	5684211	6315789
11	799905	1	6	80	1555	0	0	6811562	6315790	6947368
12	601313	1	6	95	1471	0	0	7414430	6947369	7578947
13	415585	2	15	65	1702	1319	0	7831486	7578948	8210526
14	393236	3	11	55	1361	1913	1284	8227743	8210527	8842105
15	1056298	2	18	70	1147	1131	0	9288599	8842106	9473684
16	211590	- 1	15	55	1402	0	0	9502467	9473685	10105263
17	942276	3	15	50	1476	1409	1391	10446145	10105264	10736842
18	844195	2	11	75	1072	1818	0	11294616	10736843	11368421
	568557		11	75 95	1072	1268	ย 1967		10730843	12000000
19 Total num	ber of pulses in	3 waveform = 3		42	1972	1208	1907	11866063	11308422	12000000

Type 5 Radar Waveform_28.txt

Waveform Num = 28 Num of Bursts = 9 Burst Interval (us)= 1333333

QuieTek

Burst #	Off Time (us) 340776	# Pulses	Chirp (MHz)	₽₩ (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)
1	1598583	1	15	90	1160	0	0	340776	0	1333332
2	1240595	3	16	80	1262	1882	1290	1940519	1333333	2666665
3	1799852	1	18	55	1860	0	0	3185548	2666666	3999998
4	1585683	2	11	75	1467	1124	0	4987260	3999999	5333331
5	755940	1	17	75	1006	0	0	6575534	5333332	6666664
6	1989345	3	11	80	1187	1295	1048	7332480	666665	7999997
7	1120169	1	11	80	1383	0	0	9325355	7999998	9333330
8	724320	3	15	50	1386	1234	1374	10446907	9333331	10666663
9 Total number	of pulses in	3 waveform = 1	10 8	80	1984	1589	1679	11175221	19666664	11999996

Type 5 Radar Waveform_29.txt

Burst	Off Time	#	Chirp	PW	Pulse 1	Pulse 2	Pulse 3	Start Loc	Start Burst	End Burst
Ħ	(us) 1189875	Pulses	(MHz)	(us)	Pri(us)	Pri(us)	Pri(us)	(us)	Interval(us)	Interval(us)
1		2	9	95	1649	1847	0	1189875	0	1333332
2	336230	2	9	60	1986	1613	0	1529601	1333333	2666665
-	2249482	-					•			
3	4000407	2	7	100	1104	1966	0	3782682	266666	3999998
4	1229137	2	12	100	1339	1272	0	5014889	3999999	5333331
_	875551				4007					
5	1775735	2	13	100	1087	1018	0	5893051	5333332	6666664
6		1	9	80	1330	0	0	7670891	6666665	7999997
7	702635	3	11	100	1788	1017	1439	8374856	7999998	9333330
'	2027073	J		100	1700	1017	1437	0074020	7999990	700000
8		1	12	50	1775	0	0	10406173	9333331	10666663
9	1160032	4	5	50	1751	0	0	11567980	10666664	11999996

Type 5 Radar Waveform_30.txt

Waveform Num = 30 Num of Bursts = 14 Burst Interval (us)= 857143

Burst #	Off Time (us)	# Pulses	Chirp (MHz)	PW (us)	Pulse 1 Pri(us)	Pulse 2 Pri(us)	Pulse 3 Pri(us)	Start Loc (us)	Start Burst Interval(us)	End Burst Interval(us)	
1	77083	2	18	100	1839	1144	0	77083	0	857142	
1	1041078	2	10	100	1039	1144	U	11000	9	07/142	
2		2	8	65	1785	1084	0	1121144	857143	1714285	
	1073410										
3	536445	3	5	75	1874	1731	1007	2197423	1714286	2571428	
4	530445	3	9	90	1433	1944	1511	2738480	2571429	3428571	
	736878							2100100		0.00000	
5		3	14	70	1059	1854	1471	3480246	3428572	4285714	
,	1304985	0			1496	1398		1200/45	100574F	5142857	
6	361993	2	16	55	1490	1398	0	4789615	4285715	5142857	
7	001770	2	16	95	1169	1463	0	5154502	5142858	600000	
	1165678										
8	4055014	3	9	80	1331	1789	1484	6322812	600001	6857143	
9	1055946	1	20	100	1365	0	0	7383362	6857144	7714286	
,	1071596	•	20	100	1005	0	0	1000002	0057144	7714200	
10		3	12	95	1439	1284	1283	8456323	7714287	8571429	
	548868					1005			0574100	0100570	
11	569375	3	15	55	1814	1895	1813	9009197	8571430	9428572	
12	509375	1	5	70	1816	0	0	9584094	9428573	10285715	
	835225										
13		3	ó	80	1085	1960	1734	10421135	10285716	11142858	
14	1035276	3	11	76	4707	1066	1130	11141100	4441-0050	12000001	
	er of pulses in			75	1727	1000	1130	11461190	11142859	12000001	
Tocar Huma	ici oi parses III	waveronn - u									

Hop number	Frequency (MHz)	Pulse Start (ms)				
7	5507	21				
13	5524	39				
27	5489	81				
46	5518	138				
62	5497	186				
66	5517	198				
68	5525	204				
79	5530	237				
81	5484	243				
84	5515	252				
94	5501	282				
Ту	Type 6 Radar Waveform_2.txt					
Hop number	Frequency (GHz)	Pulse Start (ms)				
4	5475	12				
14	5490	42				
16	5521	48				
19	5499	57				
22	5486	66				
28	5520	84				
32	5471	96				
50	5508	150				
51	5473	153				
58	5498	174				
66	5527	198				
66 72	5527 5509	198 216				
72	5509	216				

Type 6 Radar Waveform 1.txt

Hop number	Frequency (GHz)	Pulse Start (ms)				
24	5517	72				
39	5481	117				
51	5471	153				
52	5498	156				
63	5490	189				
70	5511	210				
75	5483	225				
82	5473	246				
84	5477	252				
Type 6 Radar Waveform_4.txt						
Hop number	Frequency (GHz)	Pulse Start (ms)				
3	5481	9				
9	5499	27				
12	5471	36				
15	5529	45				
24	5504	72				
33	5523	99				
38	5517	114				
49	5514	147				
52	5518	156				
53	5489	159				
55	5476	165				
66	5480	198				
70	5509	210				
74	5520	222				
83	5521	249				
86	5500	258				

Type 6 Radar Waveform 3.txt

Hop number	Frequency (GHz)	Pulse Start (ms)			
4	5511	12			
8	5516	24			
17	5505	51			
19	5520	57			
41	5500	123			
48	5507	144			
62	5522	186			
69	5512	207			
80	5493	240			
81	5496	243			
89	5518	267			
Type 6 Radar Waveform_6.txt					
Hop number	Frequency (GHz)	Pulse Start (ms)			
13	5477	39			
22	5482	66			
23	5515	69			
24	5475	72			
44	5507	132			
45	5472	135			
53	5500	159			
55	5480	165			
58	5525	174			
1	5525	1/4			
63	5485	189			
63 71					
	5485	189			
71	5485 5499	189 213			
71 81	5485 5499 5471	189 213 243			

Type 6 Radar Waveform 5.txt

Type 6 Radar Waveform_7.txt					
Hop number	Frequency (GHz)	Pulse Start (ms)			
0	5518	0			
4	5472	12			
9	5508	27			
11	5500	33			
12	5490	36			
20	5524	60			
31	5514	93			
32	5526	96			
44	5478	132			
57	5479	171			
63	5505	189			
71	5497	213			
75	5484	225			
80	5480	240			
84	5504	252			
96	5515	288			
Ту	pe 6 Radar Waveform_8	3.txt			
Hop number	Frequency (GHz)	Pulse Start (ms)			
4	5495	12			
5	5516	15			
9	5509	27			
16	5501	48			
19	5504	57			
22	5475	66			
27	5497	81			
31	5519	93			
34	5480	102			
43	5514	129			
57	5499	171			
61	5487	183			
67	5474	201			
79	5492	237			
85	5525	255			
92	5484	276			

5498

291

97

Hop number	Frequency (GHz)	Pulse Start (ms)
2	5491	6
8	5482	24
16	5476	48
20	5528	60
64	5520	192
68	5470	204
76	5519	228
83	5497	249
86	5478	258
88	5500	264
89	5527	267
91	5523	273
Туре	e 6 Radar Waveform_1	0.txt
Hop number	Frequency (GHz)	Pulse Start (ms)
19	5478	57
21	5474	63
28		
28	5473	84
41	5473 5475	84 123
41	5475	123
41 52	5475 5480	123 156
41 52 53	5475 5480 5512	123 156 159
41 52 53 54	5475 5480 5512 5518	123 156 159 162
41 52 53 54 55	5475 5480 5512 5518 5502	123 156 159 162 165
41 52 53 54 55 70	5475 5480 5512 5518 5502 5515	123 156 159 162 165 210

Type 6 Radar Waveform 9.txt

Hop number	Frequency (GHz)	Pulse Start (ms)
4	5499	12
14	5474	42
29	5523	87
33	5479	99
34	5495	102
35	5529	105
37	5528	111
43	5514	129
79	5524	237
83	5511	249
84	5494	252
87	5504	261
88	5488	264
90	5512	270
99	5487	297

Type 6 Radar Waveform 11.txt

Type 6 Radar Waveform_12.txt

Hop number	Frequency (GHz)	Pulse Start (ms)
1	5502	3
7	5509	21
13	5490	39
18	5504	54
19	5528	57
31	5491	93
34	5508	102
48	5518	144
56	5515	168
66	5530	198
77	5520	231
89	5486	267

Hop number	Frequency (GHz)	Pulse Start (ms)
10	5472	30
17	5529	51
19	5476	57
25	5507	75
38	5509	114
42	5489	126
43	5493	129
47	5471	141
55	5496	165
72	5518	216
74	5499	222
95	5512	285
98	5480	294
99	5508	297

Type 6 Radar Waveform 13.txt

Type 6 Radar Waveform_14.txt

Hop number	Frequency (GHz)	Pulse Start (ms)
1	5508	3
10	5476	30
15	5496	45
23	5527	69
32	5519	96
36	5511	108
37	5493	111
39	5509	117
40	5504	120
51	5524	153
56	5528	168
62	5490	186
69	5503	207
72	5484	216
73	5523	219
74	5505	222
76	5520	228
95	5482	285
99	5477	297

Type 6 Radar Waveform_15.txt		
Hop number	Frequency (GHz)	Pulse Start (ms)
0	5509	0
3	5511	9
14	5523	42
32	5480	96
37	5526	111
49	5528	147
52	5507	156
53	5499	159
56	5482	168
57	5495	171
61	5498	183
62	5503	186
63	5530	189
81	5489	243
91	5476	273
99	5520	297
Ту	pe 6 Radar Waveform_1	6.txt
Hop number	Frequency (GHz)	Pulse Start (ms)

Т 6 P h r Wa ofo n 15 tvt

Hop number	Frequency (GHz)	Pulse Start (ms)
2	5491	6
4	5481	12
10	5490	30
14	5501	42
23	5489	69
34	5517	102
37	5475	111
64	5495	192
74	5472	222
77	5527	231
90	5529	270

Type 6 Radar Waveform_17.txt			
Hop number	Frequency (GHz)	Pulse Start (ms)	
1	5510	3	
7	5493	21	
11	5503	33	
12	5517	36	
20	5522	60	
22	5477	66	
30	5486	90	
32	5527	96	
33	5483	99	
38	5484	114	
41	5488	123	
42	5506	126	
49	5509	147	
55	5481	165	
77	5476	231	
79	5523	237	
91	5520	273	
Тур	Type 6 Radar Waveform_18.txt		
Hop number	Frequency (GHz)	Pulse Start (ms)	
29	5509	87	
30	5487	90	

. 117-17 T ()) 1 c

Hop number	Frequency (GHz)	Pulse Start (ms)
29	5509	87
30	5487	90
32	5492	96
34	5512	102
36	5481	108
40	5523	120
41	5507	123
48	5476	144
55	5525	165
66	5503	198
73	5475	219
80	5508	240
85	5522	255
87	5477	261
97	5524	291

Hop number	Frequency (GHz)	Pulse Start (ms)
13	5491	39
28	5524	84
35	5498	105
44	5489	132
46	5528	138
49	5479	147
70	5512	210
81	5497	243
83	5474	249
92	5487	276
Туј	pe 6 Radar Waveform_2	0.txt
Hop number	Frequency (GHz)	Pulse Start (ms)
11	5522	33
12	5507	36
31	5470	93
45	5527	135
46	5477	138
48	5528	144
53	5493	159
59	5480	177
69	5521	207
73	5488	219
77	5486	231
78	5496	234
86	5523	258
91	5487	273
94	5489	282
21		

Type 6 Radar Waveform_19.txt

Hop number	Frequency (GHz)	Pulse Start (ms)
4	5528	12
5	5471	15
6	5485	18
25	5508	75
26	5473	78
30	5521	90
33	5490	99
42	5504	126
61	5483	183
68	5513	204
74	5484	222
79	5475	237
94	5502	282
Type 6 Radar Waveform_22.txt		

Type 6 Radar Waveform 21 txt

Hop number	Frequency (GHz)	Pulse Start (ms)
16	5524	48
23	5496	69
36	5473	108
63	5474	189
68	5486	204
85	5506	255
95	5481	285
99	5497	297

Hop number	Frequency (GHz)	Pulse Start (ms)
1	5520	3
2	5527	6
3	5490	9
8	5514	24
9	5509	27
12	5505	36
30	5481	90
46	5497	138
52	5476	156
58	5510	174
62	5508	186
65	5485	195
76	5512	228
84	5503	252
93	5521	279

Type 6 Radar Waveform_23.txt

Type 6 Radar Waveform_24.txt

Hop number	Frequency (GHz)	Pulse Start (ms)
23	5470	69
24	5503	72
51	5522	153
56	5508	168
67	5484	201
72	5505	216
80	5518	240
88	5481	264
99	5502	297

Hop number	Frequency (GHz)	Pulse Start (ms)
8	5486	24
19	5471	57
21	5483	63
25	5506	75
40	5530	120
48	5499	144
49	5527	147
56	5517	168
63	5493	189
82	5487	246
91	5496	273
Type 6 Radar Waveform_26.txt		
Hop number	Frequency (GHz)	Pulse Start (ms)
2	5474	24
5	5475	6
9	5514	15
25	5528	27
32	5489	75
35	5491	96
44	5492	105
48	5500	132
49	5526	144
50	5521	147
56	5510	150
64	5487	168
68	5517	192
81	5490	204

Type 6 Radar Waveform 25.txt

Hop number	Frequency (GHz)	Pulse Start (ms)
8	5500	24
21	5517	63
27	5511	81
40	5498	120
55	5470	165
67	5471	201
75	5519	225
80	5527	240
88	5486	264
92	5524	276
95	5505	285
Туре	e 6 Radar Waveform_2	8.txt
Hop number	Frequency (GHz)	Pulse Start (ms)
2	5479	6
11		
11	5474	33
22	5474 5490	33 66
22	5490	66
22 26	5490 5505	66 78
22 26 31	5490 5505 5484	66 78 93
22 26 31 32	5490 5505 5484 5493	66 78 93 96
22 26 31 32 34	5490 5505 5484 5493 5503	66 78 93 96 102
22 26 31 32 34 39	5490 5505 5484 5493 5503 5475	66 78 93 96 102 117
22 26 31 32 34 39 62	5490 5505 5484 5493 5503 5475 5520	66 78 93 96 102 117 186
22 26 31 32 34 39 62 67	5490 5505 5484 5493 5503 5475 5520 5499	66 78 93 96 102 117 186 201

Type 6 Radar Waveform_27.txt

Hop number	Frequency (GHz)	Pulse Start (ms)
32	5473	96
41	5507	123
42	5485	126
49	5471	147
53	5490	159
61	5506	183
63	5476	189
73	5521	219
75	5474	225
88	5503	264
95	5499	285
97	5516	291

Type 6 Radar Waveform 29.txt

Type 6 Radar Waveform_30.txt

Hop number	Frequency (GHz)	Pulse Start (ms)
1	5521	3
4	5506	12
23	5495	69
27	5486	81
33	5528	99
45	5516	135
60	5522	180
64	5490	192