

| Turbo Mode  |             |             |           |               |            |
|-------------|-------------|-------------|-----------|---------------|------------|
| Test Mode   | Mode 3 CH04 | Temperature | 26 deg. C | To a faid Dur | Otava Ohan |
| Freq. Range | 1GHz~40GHz  | Humidity    | 64%       | Tested By     | Steve Chen |

#### (A) Polarization: Horizontal

|   | Freq     | Level  | Over<br>Limit | Limit<br>Line | Read<br>Level | Probe<br>Factor | Cable<br>Loss | Preamp<br>Factor | Remark  | Ant<br>Pos     | Table<br>Pos |
|---|----------|--------|---------------|---------------|---------------|-----------------|---------------|------------------|---------|----------------|--------------|
|   | MHz      | dBuV/m | dB            | dBuV/m        | dBuV          | dB              | dB            | dB               | 334_    | Cm             | deg          |
| 1 | 1078.000 | 33.42  | -20.58        | 54.00         | 50.61         | 24.04           | 1.21          | 42.44            | Average |                |              |
| 2 | 1438.000 | 33.56  | -20.44        | 54.00         | 49.61         | 25.07           | 1.46          | 42.58            | Average |                |              |
| 3 | 2252.000 | 36.86  | -17.14        | 54.00         | 50.01         | 27.78           | 1.72          | 42.65            | Average | ( <u>1444)</u> |              |

#### (B) Polarization: Vertical

|   | Freq     | Level  | Over<br>Limit | Limit<br>Line | Read<br>Level | Probe<br>Factor | Cable<br>Loss | Preamp<br>Factor | Remark  | Ant<br>Pos | Table<br>Pos |
|---|----------|--------|---------------|---------------|---------------|-----------------|---------------|------------------|---------|------------|--------------|
|   | MHz      | dBuV/m | dB            | dBuV/m        | dBuV          | dB              | dB            | dB               |         | cm         | deg          |
| 1 | 1078.000 | 33.64  | -20.36        | 54.00         | 50.83         | 24.04           | 1.21          | 42.44            | Average |            |              |
| 2 | 1260.000 | 34.17  | -19.83        | 54.00         | 50.74         | 24.56           | 1.38          | 42.51            | Average |            |              |
| 3 | 1438.000 | 35.29  | -18.71        | 54.00         | 51.34         | 25.07           | 1.46          | 42.58            | Average | 102        | 216          |

Remark: Spurious on higher frequency band, the emission emitted by the EUT is too low to be measured.



| Turbo Mode  |             |             |           |              |            |
|-------------|-------------|-------------|-----------|--------------|------------|
| Test Mode   | Mode 3 CH05 | Temperature | 26 deg. C | Te et e d Du | Otava Ohan |
| Freq. Range | 1GHz~40GHz  | Humidity    | 64%       | lested By    | Steve Chen |

#### (A) Polarization: Horizontal

|   | Freq     | Level  | Over<br>Limit | Limit<br>Line | Read<br>Level | Probe<br>Factor | Cable<br>Loss | Preamp<br>Factor | Remark  | Ant<br>Pos | Table<br>Pos |
|---|----------|--------|---------------|---------------|---------------|-----------------|---------------|------------------|---------|------------|--------------|
|   | MHz      | dBuV/m | dB            | dBuV/m        | dBuV          | dB              | dB            | dB               | ·       | cm         | deg          |
| 1 | 1260.000 | 33.27  | -20.73        | 54.00         | 49.84         | 24.56           | 1.38          | 42.51            | Average |            |              |
| 2 | 1886.000 | 36.20  | -17.80        | 54.00         | 50.61         | 26.69           | 1.58          | 42.68            | Average | 102        | 212          |

#### (B) Polarization: Vertical

|   | Freq     | Level  | Over<br>Limit | Limit<br>Line | Read<br>Level | Probe<br>Factor | Cable<br>Loss | Preamp<br>Factor | Remark  | Ant<br>Pos | Table<br>Pos |
|---|----------|--------|---------------|---------------|---------------|-----------------|---------------|------------------|---------|------------|--------------|
|   | MHz      | dBuV/m | dB            | dBuV/m        | dBuV          | dB              | dB            | dB               | ·;      | CM         | deg          |
| 1 | 1078.000 | 33.37  | -20.63        | 54.00         | 50.56         | 24.04           | 1.21          | 42.44            | Average |            |              |
| 2 | 1260.000 | 34.14  | -19.86        | 54.00         | 50.71         | 24.56           | 1.38          | 42.51            | Average |            |              |
| 3 | 1438.000 | 35.41  | -18.59        | 54.00         | 51.46         | 25.07           | 1.46          | 42.58            | Average |            | 1000         |

Remark: Spurious on higher frequency band, the emission emitted by the EUT is too low to be measured.



- 5.6.6. Photographs of Radiated Emission Test Configuration
- The photographs show the configuration that generates the maximum emission. •

Mode 1





FCC ID: O9C-WL560 Issued on Aug. 05, 2004

Report No.: F453118

Mode 2





FCC ID: O9C-WL560 Issued on Aug. 05, 2004

Report No.: F453118

Mode 3





# 5.7. Test of Frequency Stability

5.7.1. Measuring Instruments

Item 9 of the table on section 6.

#### 5.7.2. Test Procedures

- 1. The transmitter output is connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 10kHz and VBW to 10kHz.
- 3. Use peak detector mode, Max-hold and search the peak of trace 1.
- 4. The test extreme voltage is, according to 2.1055(d)(1), is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 5. Extreme temperature rule is, according to 2.1055(a)(1),  $-30^{\circ}C \sim 50^{\circ}C$ .

#### 5.7.3. Test Setup Layout



Oven



# 5.7.4. Test Result : See spectrum analyzer plots below

- Modulation Type: Un-Modulated Carrier (CW)
- Temperature: 25°C
- Relative Humidity: 62 %
- Duty cycle of the equipment during the test: 100%

## Temperature vs. Frequency Stability

| Temperature          | Measurement Frequency (MHz) |           |           |  |  |  |  |
|----------------------|-----------------------------|-----------|-----------|--|--|--|--|
| (°C)                 | 5240.00                     | 5320.00   | 5805      |  |  |  |  |
| -30                  | 5240.0160                   | 5320.0056 | 5805.0015 |  |  |  |  |
| -20                  | 5240.0220                   | 5320.0021 | 5805.0045 |  |  |  |  |
| -10                  | 5240.0010                   | 5320.0044 | 5805.0044 |  |  |  |  |
| 0                    | 5239.9960                   | 5320.0024 | 5805.0023 |  |  |  |  |
| 10                   | 5239.9520                   | 5320.0027 | 5805.0047 |  |  |  |  |
| 20                   | 5239.9260                   | 5320.0014 | 5805.0064 |  |  |  |  |
| 30                   | 5239.9450                   | 5320.0012 | 5805.0021 |  |  |  |  |
| 40                   | 5239.9400                   | 5320.0022 | 5805.0014 |  |  |  |  |
| 50                   | 5239.9460                   | 5320.0047 | 5805.0002 |  |  |  |  |
| Max. Deviation (MHz) | 5240.0160                   | 5320.0056 | 5805.0015 |  |  |  |  |
| Max. Deviation (ppm) | 3.05                        | 1.05      | 0.26      |  |  |  |  |



# Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |  |  |  |
|----------------------|-----------------------------|-----------|-----------|--|--|--|
| (V)                  | 5240.00                     | 5320.00   | 5805      |  |  |  |
| 126.50               | 5240.0130                   | 5320.0100 | 5805.0070 |  |  |  |
| 110.00               | 5240.0130                   | 5320.0080 | 5805.0080 |  |  |  |
| 93.50                | 5240.0150                   | 5320.0078 | 5805.0065 |  |  |  |
| Max. Deviation (MHz) | 5240.0150                   | 5320.0100 | 5805.0070 |  |  |  |
| Max. Deviation (ppm) | 2.86                        | 1.88      | 1.21      |  |  |  |



# 5.8. Test of AC Power Line Conducted Emission

5.8.1. Measuring Instruments

Please reference item 1~7 in chapter 6 for the instruments used for testing.

#### 5.8.2. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connected to the other LISNs. The LISN should provides 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
- 7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.



#### 5.8.3. Test Result of Conducted Emission

| Test Mode              | Mode 1          | Tostod By | lacon Chang |
|------------------------|-----------------|-----------|-------------|
| Temperature / Humidity | 25 deg. C / 60% | lested by | Jason Chang |

#### Line to Ground

|    | Freq      | Level | Over<br>Limit | Limit<br>Line | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Remark  |
|----|-----------|-------|---------------|---------------|---------------|----------------|---------------|---------|
|    | MHz       | dBuV  | dB            | dBuV          | dBuV          | dB             | dB            |         |
| 1  | 0.1886650 | 50.15 | -13.95        | 64.10         | 50.04         | 0.10           | 0.01          | QP      |
| 2  | 0.1886650 | 38.16 | -15.94        | 54.10         | 38.05         | 0.10           | 0.01          | Average |
| 3  | 0.2847840 | 35.11 | -25.57        | 60.68         | 34.99         | 0.10           | 0.02          | QP      |
| 4  | 0.2847840 | 19.94 | -30.74        | 50.68         | 19.82         | 0.10           | 0.02          | Average |
| 5  | 0.3791160 | 33.14 | -25.16        | 58.30         | 33.02         | 0.10           | 0.02          | QP      |
| 6  | 0.3791160 | 26.91 | -21.39        | 48.30         | 26.79         | 0.10           | 0.02          | Average |
| 7  | 2.360     | 27.86 | -28.14        | 56.00         | 27.71         | 0.12           | 0.03          | QP      |
| 8  | 2.360     | 12.62 | -33.38        | 46.00         | 12.47         | 0.12           | 0.03          | Average |
| 9  | 17.756    | 27.45 | -32.55        | 60.00         | 27.01         | 0.26           | 0.18          | QP      |
| 10 | 17.756    | 24.10 | -25.90        | 50.00         | 23.66         | 0.26           | 0.18          | Average |
| 11 | 19.710    | 37.84 | -22.16        | 60.00         | 37.35         | 0.29           | 0.20          | QP      |
| 12 | 19.710    | 35.89 | -14.11        | 50.00         | 35.40         | 0.29           | 0.20          | Average |

#### Neutral to Ground

|    | Freq      | Level | Over<br>Limit | Limit<br>Line | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Remark  |
|----|-----------|-------|---------------|---------------|---------------|----------------|---------------|---------|
|    | MHz       | dBuV  | dB            | dBuV          | dBuV          | dB             | dB            | 1       |
| 1  | 0.1913990 | 48.46 | -15.52        | 63.98         | 48.35         | 0.10           | 0.01          | QP      |
| 2  | 0.1913990 | 37.77 | -16.21        | 53.98         | 37.66         | 0.10           | 0.01          | Average |
| 3  | 0.2893170 | 35.47 | -25.07        | 60.54         | 35.35         | 0.10           | 0.02          | QP      |
| 4  | 0.2893170 | 21.65 | -28.89        | 50.54         | 21.53         | 0.10           | 0.02          | Average |
| 5  | 0.4737650 | 24.60 | -21.85        | 46.45         | 24.48         | 0.10           | 0.02          | Average |
| 6  | 0.4737650 | 30.47 | -25.98        | 56.45         | 30.35         | 0.10           | 0.02          | QP      |
| 7  | 2.070     | 11.60 | -34.40        | 46.00         | 11.48         | 0.10           | 0.02          | Average |
| 8  | 2.070     | 28.17 | -27.83        | 56.00         | 28.05         | 0.10           | 0.02          | QP      |
| 9  | 17.756    | 27.23 | -32.77        | 60.00         | 26.79         | 0.26           | 0.18          | QP      |
| 10 | 17.756    | 24.03 | -25.97        | 50.00         | 23.59         | 0.26           | 0.18          | Average |
| 11 | 19.711    | 37.07 | -22.93        | 60.00         | 36.58         | 0.29           | 0.20          | QP      |
| 12 | 19.711    | 35.11 | -14.89        | 50.00         | 34.62         | 0.29           | 0.20          | Average |



| Test Mode              | Mode 2          | Tostod By | lacon Chang |
|------------------------|-----------------|-----------|-------------|
| Temperature / Humidity | 25 deg. C / 60% | lested by | Jason Chang |

#### Line to Ground

|    | Freq      | Level | Over<br>Limit | Limit<br>Line | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Remark  |
|----|-----------|-------|---------------|---------------|---------------|----------------|---------------|---------|
|    | MHz       | dBuV  | dB            | dBuV          | dBuV          | dB             | dB            |         |
| 1  | 0.1913690 | 50.07 | -13.91        | 63.98         | 49.96         | 0.10           | 0.01          | QP      |
| 2  | 0.1913690 | 37.23 | -16.75        | 53.98         | 37.12         | 0.10           | 0.01          | Average |
| 3  | 0.2878180 | 35.25 | -25.34        | 60.59         | 35.13         | 0.10           | 0.02          | QP      |
| 4  | 0.2878180 | 19.07 | -31.52        | 50.59         | 18.95         | 0.10           | 0.02          | Average |
| 5  | 0.3811300 | 29.46 | -18.79        | 48.25         | 29.34         | 0.10           | 0.02          | Average |
| 6  | 0.3811300 | 33.00 | -25.25        | 58.25         | 32.88         | 0.10           | 0.02          | QP      |
| 7  | 2.300     | 8.30  | -37.70        | 46.00         | 8.15          | 0.12           | 0.03          | Average |
| 8  | 2.300     | 22.61 | -33.39        | 56.00         | 22.46         | 0.12           | 0.03          | QP      |
| 9  | 17.755    | 28.10 | -31.90        | 60.00         | 27.66         | 0.26           | 0.18          | QP      |
| 10 | 17.755    | 24.87 | -25.13        | 50.00         | 24.43         | 0.26           | 0.18          | Average |
| 11 | 19.710    | 38.56 | -21.44        | 60.00         | 38.07         | 0.29           | 0.20          | QP      |
| 12 | 19.710    | 36.74 | -13.26        | 50.00         | 36.25         | 0.29           | 0.20          | Average |

#### Neutral to Ground

|    | Freq      | Level | Over<br>Limit | Limit<br>Line | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Remark  |
|----|-----------|-------|---------------|---------------|---------------|----------------|---------------|---------|
|    | MHz       | dBuV  | dB            | dBuV          | dBuV          | dB             | dB            |         |
| 1  | 0.1913990 | 48.70 | -15.28        | 63.98         | 48.59         | 0.10           | 0.01          | QP      |
| 2  | 0.1913990 | 36.98 | -17.00        | 53.98         | 36.87         | 0.10           | 0.01          | Average |
| 3  | 0.2868490 | 24.31 | -26.31        | 50.62         | 24.19         | 0.10           | 0.02          | Average |
| 4  | 0.2868490 | 35.99 | -24.63        | 60.62         | 35.87         | 0.10           | 0.02          | QP      |
| 5  | 0.4729550 | 30.61 | -25.85        | 56.46         | 30.49         | 0.10           | 0.02          | QP      |
| 6  | 0.4729550 | 24.73 | -21.73        | 46.46         | 24.61         | 0.10           | 0.02          | Average |
| 7  | 2.350     | 33.95 | -22.05        | 56.00         | 33.82         | 0.10           | 0.03          | QP      |
| 8  | 2.350     | 12.65 | -33.35        | 46.00         | 12.52         | 0.10           | 0.03          | Average |
| 9  | 17.755    | 27.86 | -32.14        | 60.00         | 27.42         | 0.26           | 0.18          | QP      |
| 10 | 17.755    | 24.87 | -25.13        | 50.00         | 24.43         | 0.26           | 0.18          | Average |
| 11 | 19.710    | 38.50 | -21.50        | 60.00         | 38.01         | 0.29           | 0.20          | QP      |
| 12 | 19.710    | 36.61 | -13.39        | 50.00         | 36.12         | 0.29           | 0.20          | Average |



| Test Mode              | Mode 3          | Tostod By | Jacon Chang |
|------------------------|-----------------|-----------|-------------|
| Temperature / Humidity | 25 deg. C / 60% | Tested by | Jason Chang |

#### Line to Ground

|    | Freq      | Level | Over<br>Limit | Limit<br>Line | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Remark  |
|----|-----------|-------|---------------|---------------|---------------|----------------|---------------|---------|
|    | MHz       | dBuV  | dB            | dBuV          | dBuV          | dB             | dB            | 1       |
| 1  | 0.1917550 | 49.77 | -14.19        | 63.96         | 49.66         | 0.10           | 0.01          | QP      |
| 2  | 0.1917550 | 37.04 | -16.92        | 53.96         | 36.93         | 0.10           | 0.01          | Average |
| 3  | 0.2862970 | 34.97 | -25.66        | 60.63         | 34.85         | 0.10           | 0.02          | QP      |
| 4  | 0.2862970 | 19.61 | -31.02        | 50.63         | 19.49         | 0.10           | 0.02          | Average |
| 5  | 0.3779920 | 33.58 | -24.74        | 58.32         | 33.46         | 0.10           | 0.02          | QP      |
| 6  | 0.3779920 | 28.68 | -19.64        | 48.32         | 28.56         | 0.10           | 0.02          | Average |
| 7  | 2.460     | 27.59 | -28.41        | 56.00         | 27.42         | 0.13           | 0.04          | QP      |
| 8  | 2.460     | 12.02 | -33.98        | 46.00         | 11.85         | 0.13           | 0.04          | Average |
| 9  | 17.755    | 27.39 | -32.61        | 60.00         | 26.95         | 0.26           | 0.18          | QP      |
| 10 | 17.755    | 24.25 | -25.75        | 50.00         | 23.81         | 0.26           | 0.18          | Average |
| 11 | 19.710    | 37.37 | -22.63        | 60.00         | 36.88         | 0.29           | 0.20          | QP      |
| 12 | 19.710    | 35.50 | -14.50        | 50.00         | 35.01         | 0.29           | 0.20          | Average |

#### Neutral to Ground

|    | Freq      | Level | Over<br>Limit | Limit<br>Line | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Remark  |
|----|-----------|-------|---------------|---------------|---------------|----------------|---------------|---------|
|    | MHz       | dBuV  | dB            | dBuV          | dBuV          | dB             | dB            |         |
| 1  | 0.1899060 | 48.68 | -15.36        | 64.04         | 48.57         | 0.10           | 0.01          | QP      |
| 2  | 0.1899060 | 37.41 | -16.63        | 54.04         | 37.30         | 0.10           | 0.01          | Average |
| 3  | 0.2879170 | 35.93 | -24.65        | 60.58         | 35.81         | 0.10           | 0.02          | QP      |
| 4  | 0.2879170 | 23.31 | -27.27        | 50.58         | 23.19         | 0.10           | 0.02          | Average |
| 5  | 0.4805980 | 29.70 | -26.63        | 56.33         | 29.58         | 0.10           | 0.02          | QP      |
| 6  | 0.4805980 | 20.65 | -25.68        | 46.33         | 20.53         | 0.10           | 0.02          | Average |
| 7  | 2.260     | 31.62 | -24.38        | 56.00         | 31.49         | 0.10           | 0.03          | QP      |
| 8  | 2.260     | 12.07 | -33.93        | 46.00         | 11.94         | 0.10           | 0.03          | Average |
| 9  | 17.756    | 26.95 | -33.05        | 60.00         | 26.51         | 0.26           | 0.18          | QP      |
| 10 | 17.756    | 23.88 | -26.12        | 50.00         | 23.44         | 0.26           | 0.18          | Average |
| 11 | 19.709    | 37.60 | -22.40        | 60.00         | 37.11         | 0.29           | 0.20          | QP      |
| 12 | 19.709    | 35.66 | -14.34        | 50.00         | 35.17         | 0.29           | 0.20          | Average |



FCC ID: 09C-WL560 Issued on Aug. 05, 2004

## 5.8.4. Photographs of Radiated Emission Test Configuration

The photographs show the configuration that generates the maximum emission. **Mode 1** 



FRONT VIEW

REAR VIEW

**SPORTON International Inc.** TEL : 886-2-2696-2468 FAX : 886-2-2696-2255



Report No.: F453118



SIDE VIEW



FCC ID: 09C-WL560 Issued on Aug. 05, 2004

#### Mode 2

FRONT VIEW



REAR VIEW

**SPORTON International Inc.** TEL : 886-2-2696-2468 FAX : 886-2-2696-2255



Report No.: F453118



SIDE VIEW



FCC ID: 09C-WL560 Issued on Aug. 05, 2004

Report No.: F453118

Mode 3



FRONT VIEW



Report No.: F453118



SIDE VIEW



# 5.9. Antenna Requirements

#### 5.9.1. Standard Applicable

47 CFR Part15 Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

47 CFR Part15 Section 15.407 (a):

For 5150MHz~5250MHz : If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Device shall use a transmitting antenna that is an integral part of the device.

For 5250MHz~5350MHz / 5470MHz~5725MHz : If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For 5725MHz~5825MHz : If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain up to 23 dBi without any corresponding reduction in the transmitter peak output power or peak power spectral density. For fixed, point-to-point U-NII transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in peak transmitter power and peak power spectral density for each 1 dB of antenna gain in excess of 23 dBi would be required. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing

high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.9.2. Antenna Connected Construction

There is no antenna connector for integral chip antenna. The connector for monopole antenna is revsersed SMA and standard SMA. But this product is classified as professional use, so there is no need to fulfill the unique antenna connector requirement.



# 5.10. RF Exposure

## 5.10.1. Limit For Maximum Permissible Exposure (MPE)

This product can be classified as mobile device, so the 20cm separation distance warning is required.

In this section, the power density at 20cm location is calculated to examine if it is lower than the limit.

## (A) Limits for Occupational / Controlled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E ², H ² or S<br>(minutes) |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|-----------------------------------------------|
| 0.3-3.0                  | 614                                  | 1.63                                 | (100)*                         | 6                                             |
| 3.0-30                   | 1842 / f                             | 4.89 / f                             | (900 / f)*                     | 6                                             |
| 30-300                   | 61.4                                 | 0.163                                | 1.0                            | 6                                             |
| 300-1500                 |                                      |                                      | F/300                          | 6                                             |
| 1500-100,000             |                                      |                                      | 5                              | 6                                             |

# (B) Limits for General Population / Uncontrolled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/cm²) | Averaging Time<br> E ², H ² or S<br>( minutes ) |
|--------------------------|--------------------------------------|--------------------------------------|-------------------------------|-------------------------------------------------|
| 0.3-1.34                 | 614                                  | 1.63                                 | (100)*                        | 30                                              |
| 1.34-30                  | 824/f                                | 2.19/f                               | (180/f)*                      | 30                                              |
| 30-300                   | 27.5                                 | 0.073                                | 0.2                           | 30                                              |
| 300-1500                 |                                      |                                      | F/1500                        | 30                                              |
| 1500-100,000             |                                      |                                      | 1.0                           | 30                                              |

F = frequency in MHz

\*Plane-wave equivalent power density



## 5.10.2. MPE Calculation Method

$$\mathsf{E}(\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density:  $Pd(\mathsf{mW/cm}^2) = \frac{E^2}{377}$ 

- $\mathbf{E}$  = Electric field (V/m)
- $\mathbf{P}$  = Peak RF output power (mW)
- **G** = EUT Antenna numeric gain (numeric)
- $\mathbf{d}$  = Separation distance between radiator and human body (m)

The formula can be changed to

$$\mathbf{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=2.5cm, as well as the gain of the used antenna, the RF power density can be obtained.



# 5.10.3. Calculated Result and Limit

Only the mode with maximum Gain was calculated (Mode 1).

#### Normal Mode

| Channel No. | Antenna<br>Gain<br>(dBi) | Antenna<br>Gain<br>(numeric) | Peak Output<br>Power<br>(dBm) | Peak Output<br>Power ( mW ) | Power Density<br>(S)<br>(mW/cm²) | Limit of Power<br>Density (S)<br>(mW/cm²) |
|-------------|--------------------------|------------------------------|-------------------------------|-----------------------------|----------------------------------|-------------------------------------------|
| Channel 22  | 5                        | 3.16                         | 23.65                         | 231.7395                    | 0.1459                           | 1                                         |

#### Turbo Mode

| Channel No. | Antenna<br>Gain<br>(dBi) | Antenna<br>Gain<br>(numeric) | Peak Output<br>Power<br>(dBm) | Peak Output<br>Power ( mW ) | Power Density<br>(S)<br>(mW/cm²) | Limit of Power<br>Density (S)<br>(mW/cm²) |
|-------------|--------------------------|------------------------------|-------------------------------|-----------------------------|----------------------------------|-------------------------------------------|
| Channel 03  | 5                        | 3.16                         | 18.5000                       | 70.7946                     | 0.0446                           | 1                                         |



# 6. List of Measuring Equipments Used

| Items | Instrument                  | Manufacturer   | Model No.    | Serial No. | Characteristics  | Calibration<br>Date | Remark                   |
|-------|-----------------------------|----------------|--------------|------------|------------------|---------------------|--------------------------|
| 1     | EMC Receiver                | R&S            | ESCS 30      | 100174     | 9 KHz – 2.75 GHz | Feb. 16, 2004       | Conduction<br>(CO04-HY)  |
| 2     | LISN                        | MessTec        | NNB-2/16Z    | 2001/004   | 9 KHz – 30 MHz   | Jun. 09, 2004       | Conduction<br>(CO04-HY)  |
| 3     | LISN<br>(Support Unit)      | MessTec        | NNB-2/16Z    | 99041      | 9 KHz – 30 MHz   | Apr. 27, 2004       | Conduction<br>(CO04-HY)  |
| 4     | EMI Filter                  | LINDGREN       | LRE-2030     | 2651       | < 450 Hz         | N/A                 | Conduction<br>(CO04-HY)  |
| 5     | RF Cable-CON                | UTIFLEX        | 3102-26886-4 | CB044      | 9KHz~30MHz       | Apr. 21, 2004       | Conduction<br>(CO04-HY)  |
| 6     | 3m Semi Anechoic<br>Chamber | SIDT FRANKONIA | SAC-3M       | 03CH03-HY  | 30MHz~1GHz<br>3m | Jun. 21, 2004       | Radiation<br>(03CH03-HY) |
| 7     | Spectrum analyzer           | R&S            | FSP40        | 100004     | 9KHZ~40GHz       | Aug. 23, 2003       | Radiation<br>(03CH03-HY) |
| 8     | Amplifier                   | HP             | 8447D        | 2944A09072 | 100KHz – 1.3GHz  | Nov. 05, 2003       | Radiation<br>(03CH03-HY) |
| 9     | Biconical Antenna           | SCHWARZBECK    | VHBB 9124    | 301        | 30MHz –200MHz    | Jul. 28, 2004       | Radiation<br>(03CH03-HY) |
| 10    | Log Antenna                 | SCHWARZBECK    | VUSLP 9111   | 221        | 200MHz -1GHz     | Jul. 28, 2004       | Radiation<br>(03CH03-HY) |
| 11    | RF Cable-R03m               | Jye Bao        | RG142        | CB021      | 30MHz~1GHz       | Dec. 03, 2003       | Radiation<br>(03CH03-HY) |
| 12    | Amplifier                   | MITEQ          | AFS44        | 849984     | 100MHz~26.5GHz   | Mar. 26, 2004       | Radiation<br>(03CH03-HY) |
| 13    | Horn Antenna                | EMCO           | 3115         | 6821       | 1GHz – 18GHz     | Sep. 12, 2003       | Radiation<br>(03CH03-HY) |
| 14    | Turn Table                  | HD             | DS 420       | 420/650/00 | 0 ~ 360 degree   | N/A                 | Radiation<br>(03CH03-HY) |
| 15    | Antenna Mast                | HD             | MA 240       | 240/560/00 | 1 m - 4 m        | N/A                 | Radiation<br>(03CH03-HY) |
| 16    | Horn Antenna                | Schwarzbeck    | BBHA9170     | 154        | 15GHz~40GHz      | Jun. 09, 2004       | Radiation<br>(03CH03-HY) |
| 17    | RF Cable-HIGH               | Jye Bao        | RG142        | CB030-HIGH | 1GHz~29.5GHz     | Dec. 05, 2003       | Radiation<br>(03CH03-HY) |

% Calibration Interval of instruments listed above is one year.



| Items | Instrument                    | Manufacturer | Model No. | Serial No.  | Characteristics | Calibration<br>Date | Remark                 |
|-------|-------------------------------|--------------|-----------|-------------|-----------------|---------------------|------------------------|
| 18    | Spectrum analyzer             | R&S          | FSP7      | 838858/014  | 9KHZ~7GHZ       | Sep. 03, 2003       | Conducted<br>(TH01-HY) |
| 19    | Power meter                   | R&S          | NRVS      | 100444      | DC~40GHz        | Jun. 15, 2004       | Conducted<br>(TH01-HY) |
| 20    | Power sensor                  | R&S          | NRV-Z55   | 100049      | DC~40GHz        | Jun. 15, 2004       | Conducted<br>(TH01-HY) |
| 21    | Power Sensor                  | R&S          | NRV-Z32   | 100057      | 30MHz-6GHz      | Jun. 15, 2004       | Conducted<br>(TH01-HY) |
| 22    | AC power source               | HPC          | HPA-500W  | HPA-9100024 | AC 0~300V       | Jun. 16, 2004       | Conducted<br>(TH01-HY) |
| 23    | AC power source               | G.W.         | GPC-6030D | C671845     | DC 1V~60V       | Nov. 06, 2003       | Conducted<br>(TH01-HY) |
| 24    | Temp. and<br>Humidity Chamber | KSON         | THS-C3L   | 612         | N/A             | Oct. 01, 2003       | Conducted<br>(TH01-HY) |
| 25    | RF CABLE-1m                   | Jye Bao      | RG142     | CB034-1m    | 20MHz~7GHz      | Jan. 01, 2004       | Conducted<br>(TH01-HY) |
| 26    | RF CABLE-2m                   | Jye Bao      | RG142     | CB035-2m    | 20MHz~1GHz      | Jan. 01, 2004       | Conducted<br>(TH01-HY) |

 $\,\%\,$  Calibration Interval of instruments listed above is one year.