

SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	3Com Corporation
Applicant Address	350 Campus Drive, Marlborough , MA 01752-3064.U.S.A.
FCC ID	O9C-AP3950
Manufacturer's company	Wistron NeWeb Corporation
Manufacturer Address	No.10-1,Li-hsin Road I,Hsinchu Science Park,Hsinchu 300,Taiwan, R.O.C.

Product Name	3Com WLAN Managed AP 3950
Brand Name	3Com
Model Name	AP3950
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250MHz
Received Date	Feb. 01, 2008
Final Test Date	Sep. 19, 2008
Submission Type	Class II Change
Operating Mode	Master
Multiple Listing	Please refer to section 3.7

Statement

Test result included is only for the 802.11a (5150 \sim 5250MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart E. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CERTI	FICATE OF COMPLIANCE	1
2.	SUMM	1ARY OF THE TEST RESULT	2
3.	GENE	RAL INFORMATION	3
	3.1.	Product Details	.3
	3.2.	Accessories	.3
	3.3.	Table for Filed Antenna	.4
	3.4.	Table for Carrier Frequencies	.4
	3.5.	Table for Test Modes	5
	3.6.	Table for Testing Locations	.5
	3.7.	Table for Multiple Listing & Existing Change	.6
	3.8.	Table for Supporting Units	.6
	3.9.	Table for Parameters of Test Software Setting	.6
	3.10.	Test Configurations	.7
4	TEST R	ESULT	1
	4.1.	AC Power Line Conducted Emissions Measurement	
	4.2.	99% Occupied Bandwidth Measurement	
	4.3.	Maximum Conducted Output Power Measurement	
	4.4.	Power Spectral Density Measurement	
	4.5.	Peak Excursion Measurement	
	4.6.	Radiated Emissions Measurement	
	4.7.	Radiated Band Edge Emissions Measurement	
	4.8.	Frequency Stability Measurement	
	4.9.	Antenna Requirements	
5.	LIST O	F MEASURING EQUIPMENTS	54
6.	TEST L	OCATION	6
7.	TAF C	ERTIFICATE OF ACCREDITATION	57
		IX A. PHOTOGRAPHS OF EUT	
		IX B. TEST PHOTOS	
AF	PEND	IX C. MPE REPORTC1 ~ C	;3
AF	PEND	IX D. CO-LOCATION REPORTD1 ~ D	3

History of This Test Report

Original Issue Date: Sep. 25, 2008

Report No.: FR820103-05AA

- No additional attachment.
- Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

Certificate No.: CB9709072

1. CERTIFICATE OF COMPLIANCE

Product Name	:	3Com WLAN Managed AP 3950
Brand Name	:	3Com
Model Name	:	AP3950
Applicant	:	3Com Corporation
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Feb. 01, 2008 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Leo Huarg 2008.9.26

Leo Huang / Manager SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	1.97 dB		
4.2	15.407(a)	26dB Spectrum Bandwidth	Complies	-		
4.3	15.407(a)	Maximum Conducted Output Power	Complies	0.49 dB		
4.4	15.407(a)	Power Spectral Density	Complies	4.52 dB		
4.5	15.407(a)	Peak Excursion	Complies	3.71 dB		
4.6	15.407(b)	Radiated Emissions	Complies	3.18 dB		
4.7	15.407(b)	Radiated Band Edge Emissions	Complies	0.28 dB		
4.8	15.407(g)	Frequency Stability	Complies	-		
4.9	15.203	Antenna Requirements	Complies	-		

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	±0.5dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
Peak Excursion	±0.5dB	Confidence levels of 95%
26dB Spectrum Bandwidth / Frequency Stability	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (1GHz~40GHz)	±1.9dB	Confidence levels of 95%
Radiated Band Edge Emissions (Carrier +/- 100MHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

3. GENERAL INFORMATION

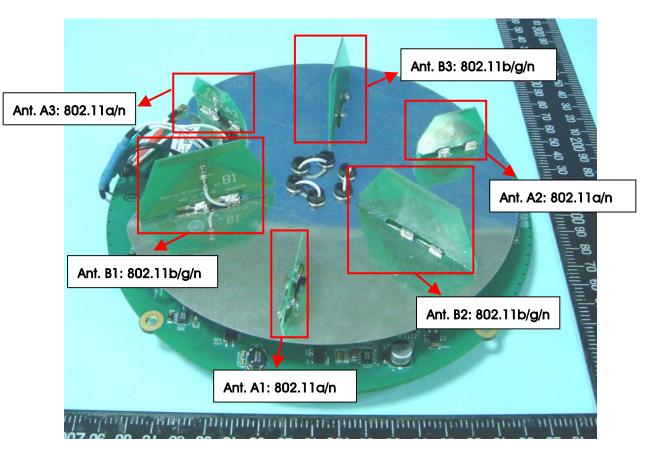
3.1. Product Details

Items	Description
Product Type	WLAN
Radio Type	Intentional Transceiver
Power Type	From Adapter
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5250MHz
Channel Number	11a: 4
Channel Band Width (99%)	11a: 16.79 MHz
Conducted Output Power	Band 1: 16.51 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Antenna & Band width

Antenna	Three (TX)				
Band width Mode	20 MHz	40 MHz			
802.11a	V	Х			

3.2. Accessories


N/A

3.3. Table for Filed Antenna

For 5GHz Band

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
A1	WNC	MP-432	PCB Antenna	UFL	3.75	TX / RX Ant.
A2	WNC	MP-432	PCB Antenna	UFL	3.75	TX / RX Ant.
A3	WNC	MP-432	PCB Antenna	UFL	3.75	TX / RX Ant.

3.4. Table for Carrier Frequencies

Frequency Allocation for 802.11a

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150~5250 MHz	36	5180 MHz	44	5220 MHz
Band 1	40	5200 MHz	48	5240 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Conducted Emission	Mode 1, Mode 2	Auto	-	-
Max. Conducted Output Power	Band 1/BPSK	6Mbps	36/40/48	A1, A2, A3,
				A1+A2+A3
26dB Spectrum Bandwidth	Band 1/BPSK	6Mbps	36/40/48	A1+A2+A3
99% Occupied Bandwidth Measurement				
Power Spectral Density				
Peak Excursion				
Radiated Emission Below 1GHz	Normal Link	Auto	-	-
Radiated Emission Above 1GHz	Band 1/BPSK	6Mbps	36/40/48	A1+A2+A3
Radiated Band Edge Emission	Band 1/BPSK	6Mbps	36/48	A1+A2+A3
Frequency Stability	Un-modulation	-	40	A1+A2+A3

Test Mode:

Mode 1: EUT with POE 1 (Brand / Model: POWER DSINE / 7001G)

Mode 2: EUT with POE 2 (Brand / Model: POWER DSINE / 7012G)

Due to Mode 2 generated the worst test result, so it was recorded in this report.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
CO04-HY	Conduction	Hwa Ya	101377	IC 4088	-
TH01-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.7. Table for Multiple Listing & Existing Change

This product is an extension of original one reported under Sporton project number: 820103-03

This modification is only concerned with layout and change two kinds of POE power supply.; neither circuit design nor main function has been changed.

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	D520	E2KWM3945ABG
Notebook	DELL	D400	E2K24GBRL
SMARTBIT	TRAPEZE	MX200R	DOC
PoF Load Fixture	TRAPEZE	IEEE 802.3af standard 150	DOC
FOE LOGG FIXIULE	IKAFEZE	Ohm PoE Loader	DOC
HIPOE	POWER DSINE	7001G	DOC
HIPOE	POWER DSINE	7012G	DOC

3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11a

Test Software Version	ART					
Frequency	5180 MHz	5200 MHz	5240 MHz			
IEEE 802.11a	12	12	12			

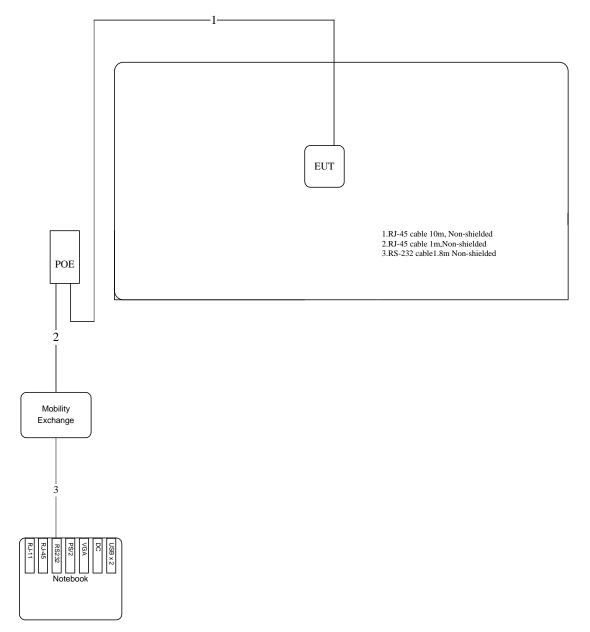
During the test, the following programs under WIN XP were executed:

Executed "ART" to control the EUT continuously transmit RF signal. In sections 4.2, 4.3, 4.4 and 4.5, 4.7 and 4.8 while 4.1 and 4.6 using Trapeze MX controller to control the EUT continuous transmit RF signal.

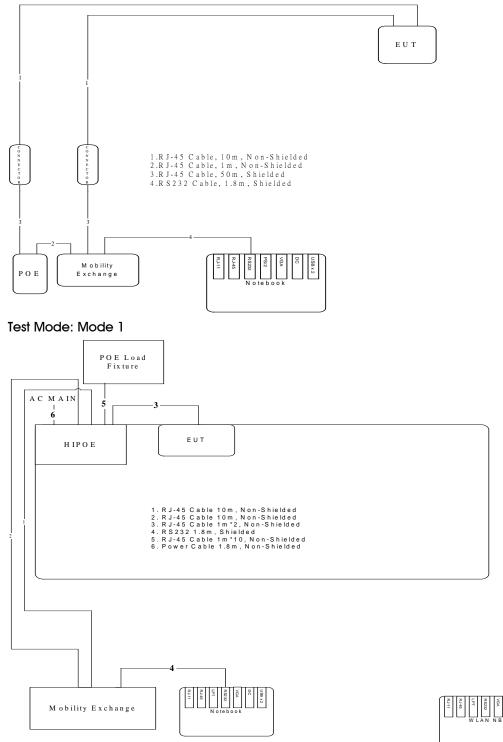


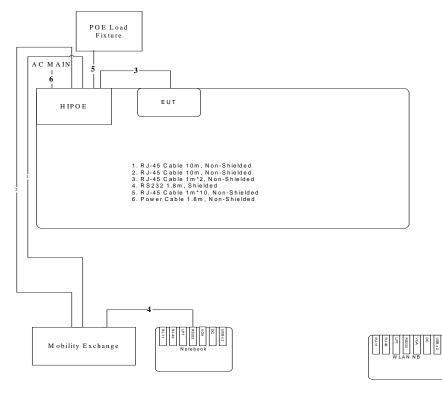
3.10. Test Configurations

3.10.1. Radiation Emissions Test Configuration


Test Configuration: 9KHz~1GHz

Test Mode: Mode 2


Test Configuration: above 1GHz


3.10.2. AC Power Line Conduction Emissions Test Configuration

Test Configuration: ART setup for conducted RF tests

Test Mode: Mode 2

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

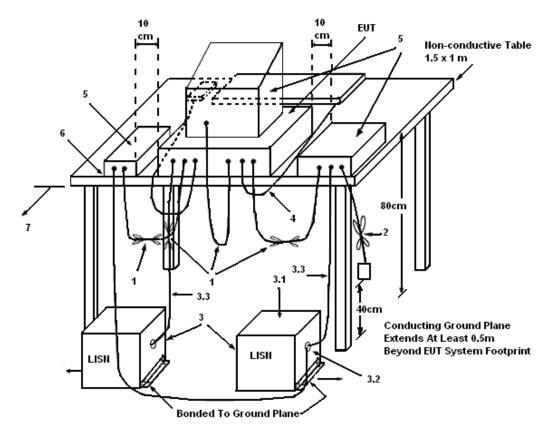
4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

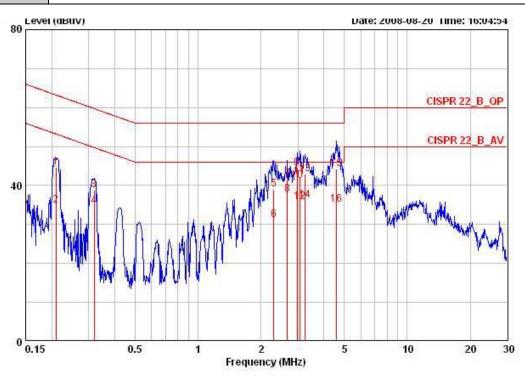
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

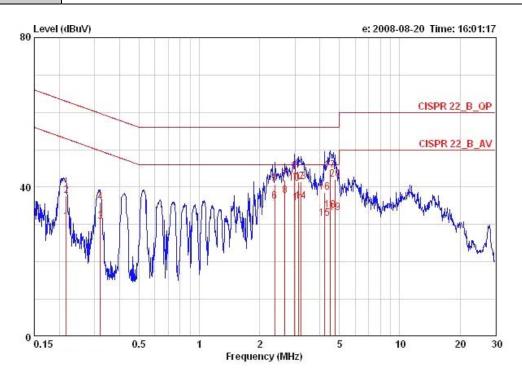
There is no deviation with the original standard.



4.1.6. EUT Operation during Test

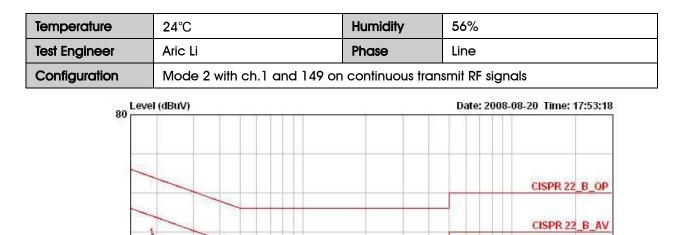
The EUT was placed on the test table and programmed in normal function.

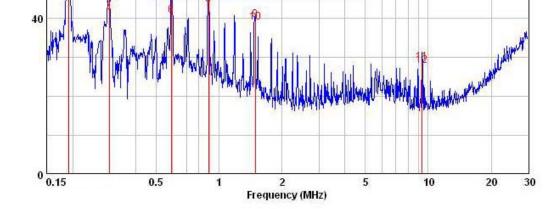
4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	24 °C	Humidity	56%
Test Engineer	Aric Li	Phase	Line
Configuration	Mode 1 with ch.1 and 149 on	continuous tran	smit RF signals

Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	dB	-
0.20944	44.73	-18.50	63.23	44.48	0.05	0.20	QP
0.20944	34.81	-18.42	53.23	34.56	0.05	0.20	AVERAGE
0.31830	38.82	-20.93	59.75	38.58	0.04	0.20	QP
0.31830	34.69	-15.06	49.75	34.45	0.04	0.20	AVERAGE
2.297	39.00	-17.00	56.00	38.74	0.06	0.20	QP
2.297	31.23	-14.77	46.00	30.97	0.06	0.20	AVERAGE
2.678	41.61	-14.39	56.00	41.34	0.07	0.20	QP
2.678	37.77	-8.23	46.00	37.50	0.07	0.20	AVERAGE
2.978	44.41	-11.59	56.00	44.13	0.08	0.20	QP
2.978	41.23	-4.77	46.00	40.95	0.08	0.20	AVERAGE
3.074	42.28	-13.72	56.00	41.98	0.08	0.22	QP
3.074	35.72	-10.28	46.00	35.42	0.08	0.22	AVERAGE
3.241	42.86	-13.14	56.00	42.53	0.08	0.25	QP
3.241	36.23	-9.77	46.00	35.90	0.08	0.25	AVERAGE
4.598	44.28	-11.72	56.00	43.84	0.14	0.30	QP
4.598	35.06	-10.94	46.00	34.62	0.14	0.30	AVERAGE

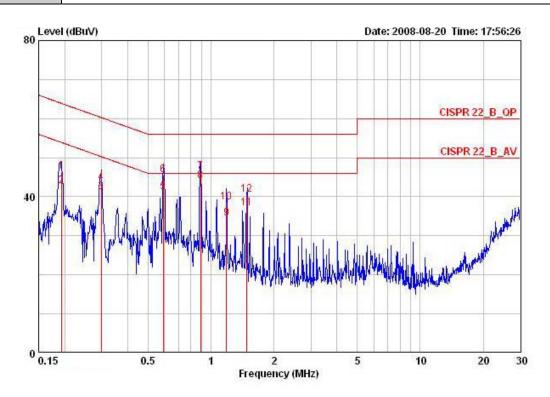
Temperature	24 °C	Humidity	56%
Test Engineer	Aric Li	Phase	Neutral
Configuration	Mode 1 with ch.1 and 149 on	continuous tran	smit RF signals




	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	3
1	0.21620	30.66	-22.30	52.96	30.38	0.08	0.20	AVERAGE
2	0.21620	37.73	-25.23	62.96	37.45	0.08	0.20	QP
3	0.31999	30.66	-19.04	49.71	30.39	0.07	0.20	AVERAGE
4	0.31999	35.97	-23.73	59.71	35.70	0.07	0.20	QP
5	2.384	40.74	-15.26	56.00	40.44	0.10	0.20	QP
6	2.384	36.28	-9.72	46.00	35.98	0.10	0.20	AVERAGE
6 7	2.678	41.85	-14.15	56.00	41.54	0.11	0.20	QP
8	2.678	37.81	-8.19	46.00	37.50	0.11	0.20	AVERAGE
9	2.978	44.06	-11.94	56.00	43.74	0.12	0.20	QP
10	2.978	41.01	-4.99	46.00	40.69	0.12	0.20	AVERAGE
11	3.140	35.80	-10.20	46.00	35.45	0.12	0.23	AVERAGE
12	3.140	41.45	-14.55	56.00	41.10	0.12	0.23	QP
13	3.224	41.45	-14.55	56.00	41.08	0.12	0.25	QP
14	3.224	36.15	-9.85	46.00	35.78	0.12	0.25	AVERAGE
15	4.202	31.54	-14.46	46.00	31.09	0.15	0.30	AVERAGE
16	4.202	38.60	-17.40	56.00	38.15	0.15	0.30	QP
17	4.501	44.39	-11.61	56.00	43.92	0.17	0.30	QP
18	4.501	33.70	-12.30	46.00	33.23	0.17	0.30	AVERAGE
19	4.772	33.11	-12.89	46.00	32.62	0.19	0.30	AVERAGE
20	4.772	42.18	-13.82	56.00	41.69	0.19	0.30	QP

Note:

Level = Read Level + LISN Factor + Cable Loss.



	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1 2 3 4 5 6 7	0.19039	48.11	-15.91	64.02	47.86	0.05	0.20	QP
2	0.19039	44.41	-9.61	54.02	44.16	0.05	0.20	AVERAGE
3	0.29869	43.43	-16.85	60.28	43.19	0.04	0.20	QP
4	0.29869	41.12	-9.16	50.28	40.88	0.04	0.20	AVERAGE
5	0.59164	45.18	-10.82	56.00	44.95	0.03	0.20	QP
6	0.59164	40.82	-5.18	46.00	40.59	0.03	0.20	AVERAGE
7	0.88969	45.73	-10.27	56.00	45.50	0.03	0.20	QP
8 @	0.88969	43.50	-2.50	46.00	43.27	0.03	0.20	AVERAGE
9	1.487	39.76	-16.24	56.00	39.62	0.04	0.10	QP
10	1.487	39.01	-6.99	46.00	38.87	0.04	0.10	AVERAGE
11	9.345	28.83	-31.17	60.00	28.20	0.33	0.30	QP
12	9.345	27.98	-22.02	50.00	27.35	0.33	0.30	AVERAGE

Temperature	24°C	Humidity	56%
Test Engineer	Aric Li	Phase	Neutral
Configuration	Mode 2 with ch.1 and 149 on	continuous tran	smit RF signals

	Freq	Freq Level Limit Line Leve		Factor		Remark		
	MHz	dBuV	dB	dBuV	dBu∛	dB	dB	
1	0.19242	46.51	-17.42	63.93	46.23	0.08	0.20	QP
2	0.19242	42.73	-11.20	53.93	42.45	0.08	0.20	AVERAGE
3	0.29869	41.15	-9.12	50.28	40.88	0.07	0.20	AVERAGE
4	0.29869	43.50	-16.77	60.28	43.23	0.07	0.20	QP
5	0.59164	41.18	-4.82	46.00	40.91	0.07	0.20	AVERAGE
6	0.59164	45.51	-10.49	56.00	45.24	0.07	0.20	QP
7	0.89049	46.46	-9.54	56.00	46.19	0.07	0.20	QP
8 @	0.89049	44.03	-1.97	46.00	43.76	0.07	0.20	AVERAGE
9	1.184	34.52	-11.48	46.00	34.29	0.07	0.16	AVERAGE
10	1.184	38.61	-17.39	56.00	38.38	0.07	0.16	QP
11	1.483	37.13	-8.87	46.00	36.94	0.08	0.10	AVERAGE
12	1.483	40.58	-15.42	56.00	40.39	0.08	0.10	QP

Note:

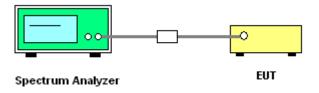
Level = Read Level + LISN Factor + Cable Loss.

4.2. 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 26dB Bandwidth
RB	300 kHz
VB	1000 kHz
Detector	RMS
Trace	peak Hold
Sweep Time	Auto

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 300 kHz and the video bandwidth of 1000 kHz were used.
- 3. Measured the spectrum width with power higher than 26dB below carrier.
- 4. Measuring multiple antennas, the connector is required to link with Spectrum Analyzer through a combiner.

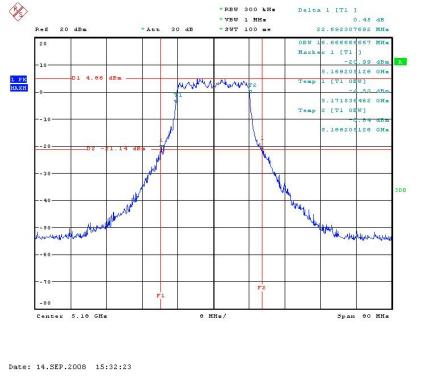
4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

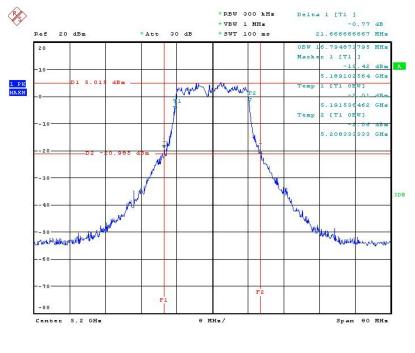
4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


4.2.7. Test Result of 99% Occupied Bandwidth

Temperature	26 °C	Humidity	60%
Test Engineer	Sam Chen	Configurations	802.11a

Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3


Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	22.69	16.66
40	5200 MHz	21.66	16.79
48	5240 MHz	21.66	16.79

26 dB Bandwidth Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5180 MHz

26 dB Bandwidth Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5200 MHz

Date: 14.SEP.2008 15:33:01

26 dB Bandwidth Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5240 MHz

Date: 14.SEP.2008 15:33:34

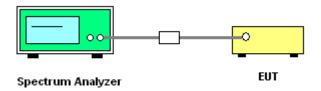
4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

For the band $5.15 \sim 5.25$ GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power and power density from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain up to 23 dBi without any corresponding reduction in the transmitter peak output power and peak power spectral density. For fixed, point-to-point U-NII transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in peak transmitter power and peak power spectral density for each 1 dB of antenna gain in excess of 23 dBi would be required.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	RMS
Trace	MAX HOLD
Sweep Time	Auto

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Test was performed in accordance with FCC Public Notice DA 02-2138, August 30, 2002.
- 3. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Maximum Conducted Output Power

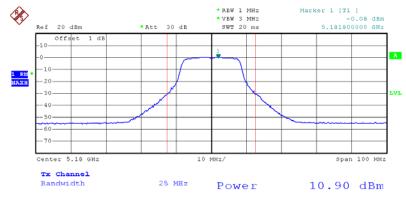
Temperature	26℃	Humidity	60%
Test Engineer	Sam Lee	Configurations	802.11a

Configuration IEEE 802.11a Ant. A1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
36	5180 MHz	10.90	17.00	Complies
40	5200 MHz	11.18	17.00	Complies
48	5240 MHz	11.89	17.00	Complies

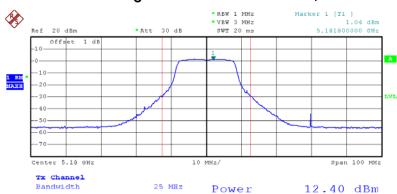
Configuration IEEE 802.11a Ant. A2

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
36	5180 MHz	12.40	17.00	Complies
40	5200 MHz	12.21	17.00	Complies
48	52 40 MHz	12.70	17.00	Complies


Configuration IEEE 802.11a Ant. A3

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
36	5180 MHz	11.13	17.00	Complies
40	5200 MHz	10.25	17.00	Complies
48	52 40 MHz	10.31	17.00	Complies

Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3


Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
36	5180 MHz	16.30	17.00	Complies
40	5200 MHz	16.06	17.00	Complies
48	52 40 MHz	16.51	17.00	Complies

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A1 / 5180 MHz

Date: 3.SEP.2008 18:46:31

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A2 / 5180 MHz

Date: 3.SEP.2008 18:48:07

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A3 / 5180 MHz


Date: 3.SEP.2008 18:48:32

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A1 / 5200 MHz

Date: 3.SEP.2008 18:51:03

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A2 / 5200 MHz

Date: 3.SEP.2008 19:03:00

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A3 / 5200 MHz


Date: 3.SEP.2008 19:05:45

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A1 / 5240 MHz

Date: 3.SEP.2008 19:11:19

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A2 / 5240 MHz

Date: 3.SEP.2008 19:10:30

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A3 / 5240 MHz

Date: 3.SEP.2008 19:08:15

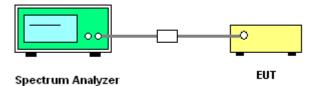
4.4. Power Spectral Density Measurement

4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)	
5.15~5.25 GHz	4	

4.4.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	Peak
Trace	SAMPLE
Sweep Time	Auto

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 3000kHz. Set Detector to Peak, Trace to Max Hold. Mark the frequency with maximum peak power as the center of the display of the spectrum.
- 3. Measuring multiple antennas, the connector is required to link with Spectrum Analyzer through a combiner.

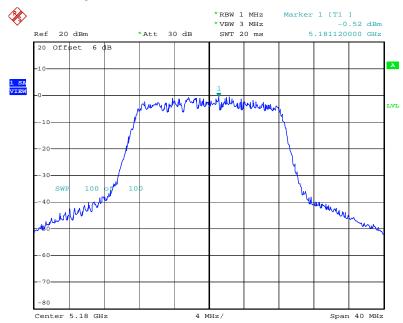
4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

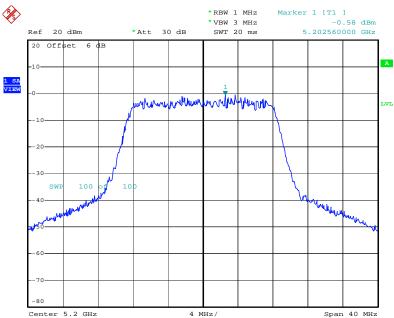
The EUT was programmed to be in continuously transmitting mode.


4.4.7. Test Result of Power Spectral Density

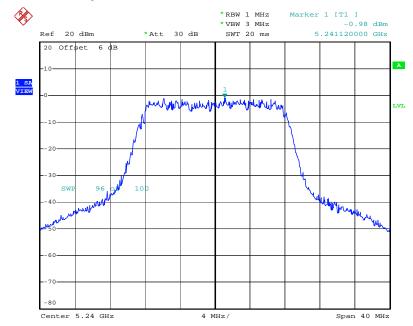
Temperature	26℃	Humidity	60%
Test Engineer	Sam Chen	Configurations	802.11a

Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3

Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
36	5180 MHz	-0.52	4.00	Complies
40	5200 MHz	-0.58	4.00	Complies
48	5240 MHz	-0.98	4.00	Complies



Power Density Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5180 MHz


Date: 13.FEB.2008 10:10:55

Power Density Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5200 MHz

Date: 13.FEB.2008 10:11:54

Power Density Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5240 MHz

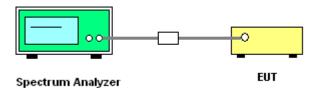
Date: 13.FEB.2008 10:12:41

4.5. Peak Excursion Measurement

4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.5.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz (Peak Trace) / 1000 kHz (Average Trace)
VB	3000 kHz (Peak Trace) / 300 kHz (Average Trace)
Detector	Peak (Peak Trace) / Sample (Average Trace)
Trace	Max Hold
Sweep Time	60s

4.5.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set the spectrum analyzer span to view the entire emissions bandwidth. The largest difference between the following two traces (Peak Trace and Average Trace) must be \leq 13 dB for all frequencies across the emissions bandwidth. Submit a plot.
- 3. Peak Trace: Set RBW = 1 MHz, VBW \geq 3 MHz with peak detector and max-hold settings.
- 4. Average Trace: Method #3—video averaging with max hold--and sum power across the band. Set span to encompass the entire emissions bandwidth (EBW) of the signal. Set sweep trigger to "free run". Set RBW = 1 MHz. Set VBW ≥ 1/T (IEEE 802.11a VBW = 3000kHz ≥ 1/4µs). Use sample detector mode if bin width (i.e., span/number of points in spectrum) < 0.5 RBW. Otherwise use peak detector mode. Set max hold. Allow max hold to run for 60 seconds.</p>
- 5. Measuring multiple antennas, the connector is required to link with Spectrum Analyzer through a combiner.

4.5.4. Test Setup Layout

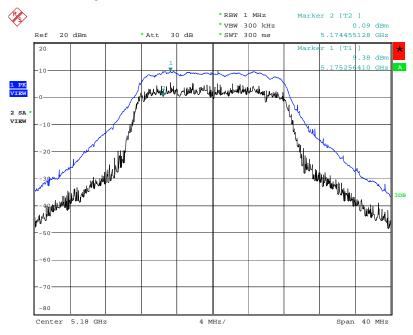
Report Format Version: 01 FCC ID: O9C-AP3950

4.5.5. Test Deviation

There is no deviation with the original standard.

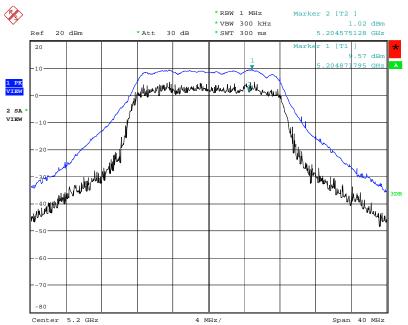
4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

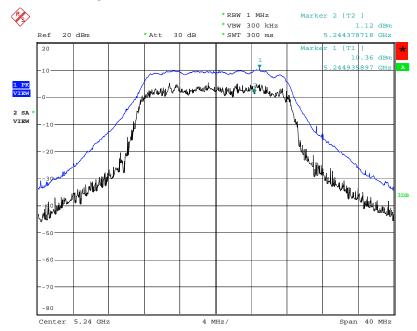

4.5.7. Test Result of Peak Excursion

Temperature	26 ℃	Humidity	60%
Test Engineer	Sam Chen	Configurations	802.11a

Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3


Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
36	5180 MHz	9.29	13	Complies
40	5200 MHz	8.55	13	Complies
48	5240 MHz	9.24	13	Complies

Peak Excursion Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5180 MHz


Peak Excursion Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5200 MHz

Date: 19.SEP.2008 13:39:13

Date: 19.SEP.2008 13:41:18

Peak Excursion Plot on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5240 MHz

Date: 19.SEP.2008 13:44:50

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

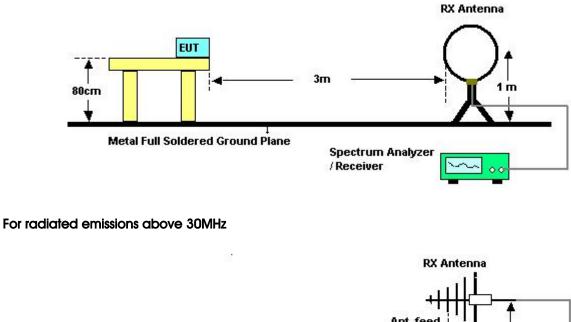
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

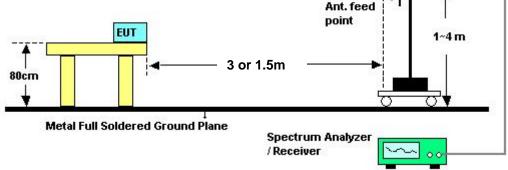
4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


4.6.3. Test Procedures


- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

4.6.4. Test Setup Layout

For radiated emissions below 30MHz

Above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24 °C	Humidity	56%
Test Engineer	Roy Huang	Configurations	Normal Link

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

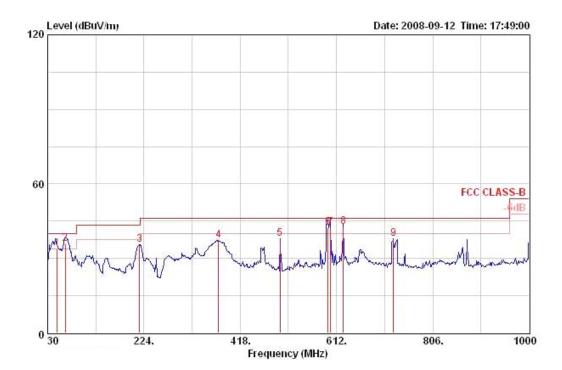
Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor.

4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24°C	Humidity	56%
Test Engineer	Roy Huang	Configurations	Mode 2

Horizontal



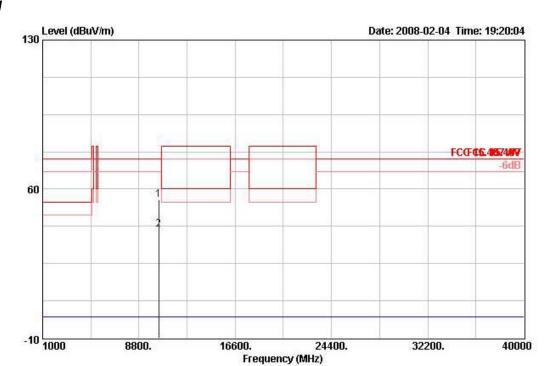
			Over	Limit	Readi	Antenna	Preamp	Cable			Table	Ant
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pol/Phase	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg	cm
1	30.000	30.46	-9.54	40.00	39.00	18.76	27.80	0.50	QP	HORI ZONTAL	0	100
2	215.270	33.37	-10.13	43.50	48.49	10.19	27.07	1.76	Peak	HORI ZONTAL	0	100
3	498.510	35.06	-10.94	46.00	42.86	17.60	28.09	2.70	Peak	HORI ZONTAL	0	100
4 !	593.360	42.18	-3.82	46.00	48.70	18.69	28.10	2.89	QP	HORI ZONTAL	0	157
5 !	599.880	40.67	-5.33	46.00	47.10	18.77	28.10	2.90	QP	HORI ZONTAL	12	165
6 @	624.990	42.82	-3.18	46.00	49.00	18.85	28.07	3.05	QP	HORIZONTAL	163	141
7	734.220	38.12	-7.88	46.00	43.23	19.32	27.86	3.44	Peak	HORI ZONTAL	0	100
8 !	874.870	40.48	-5.52	46.00	44.09	20.34	27.45	3.50	Peak	HORIZONTAL	0	100

Vertical

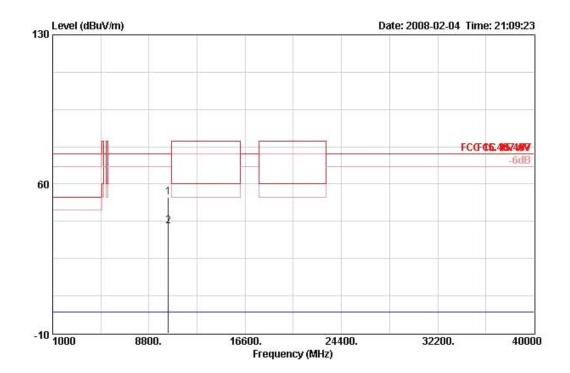
			Over	Limit	Read	Antenna	Preamp	Cable			Table	Ant
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pol/Phase	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBu∛	dB/m	dB	dB			deg	cm
1	49.100	33.93	-6.07	40.00	52.20	8.83	27.80	0.70	QP	VERTICAL	346	100
2 !	65.740	35.93	-4.07	40.00	56.10	6.69	27.74	0.88	QP	VERTICAL	11	186
3	215.270	35.70	-7.80	43.50	50.81	10.19	27.07	1.76	Peak	VERTICAL	0	400
4	374.350	37.21	-8.79	46.00	47.00	15.38	27.42	2.25	Peak	VERTICAL	0	400
5	498.510	38.00	-8.00	46.00	45.79	17.60	28.09	2.70	Peak	VERTICAL	0	400
6 !	595.000	42.39	-3.61	46.00	48.90	18.70	28.10	2.89	QP	VERTICAL	56	100
7 !	600.200	42.47	-3.53	46.00	48.90	18.77	28.10	2.90	QP	VERTICAL	0	100
8 !	625.580	42.79	-3.21	46.00	48.96	18.85	28.07	3.05	QP	VERTICAL	0	400
9	726.460	37.92	-8.08	46.00	43.14	19.27	27.89	3.41	Peak	VERTICAL	0	400

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

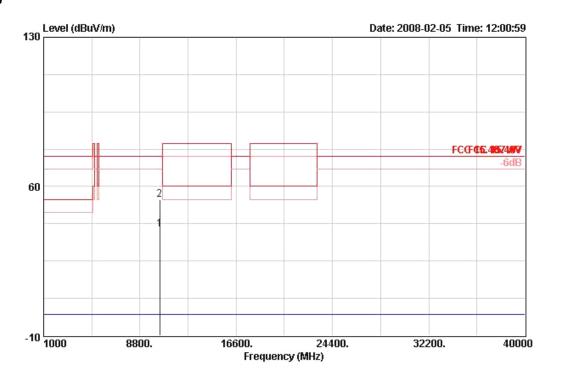

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~40GHz)


Temperature	26 ℃	Humidity	60%
Test Engineer	Jax Chen	Configurations	802.11a Ch 36 Ant. A1 + Ant. A2 +Ant. A3
Horizontal			

			Over	Limit	Readi	Antenna	Cable	Preamp		Ant	Table	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	5	cm	deg	
1	10398.480	55.10	-19.20	74.30	42.41	38.38	9.36	35.05	PEAK	114	224	HORIZONTAL

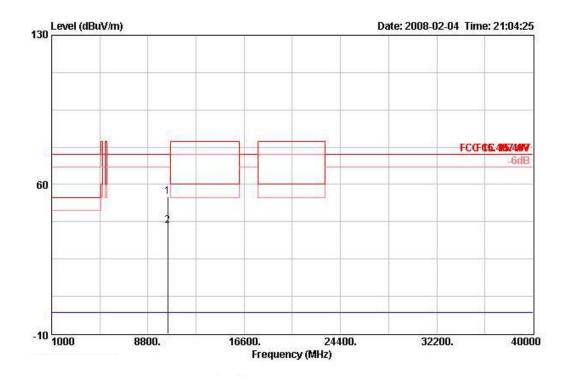
Vertical



	Freq	Level	Over Limit			Antenna Factor				Ant Pos	Table Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2	cm.	deg	·
1	10358.250	53.88	-20.42	74.30	41.31	38.37	9.32	35.12	PEAK	100	0	VERTICAL

Temperature	26 °C	Humidity	60%
Test Engineer	Jax Chen	Configurations	802.11a Ch 40 Ant. A1 + Ant. A2 +Ant. A3

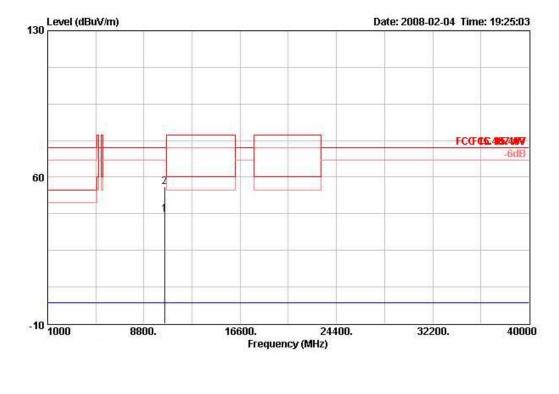
Horizontal



	Freq	Level				Antenna Factor		_		Ant Pos	Table Pos 1	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg	<u> </u>
<u>.</u>	10401.790	53.66	-20.64	74.30	40.97	38.38	9.36	35.05	PEAK	103	331	HORIZONTAL

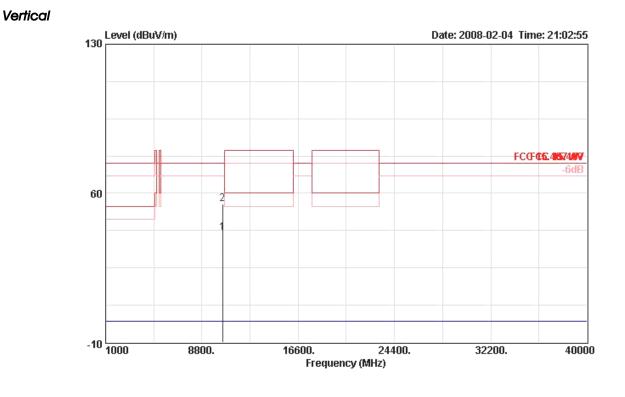
2

Vertical



	Freq	Level	Over Limit	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Antenna Factor		이라님 그 안날 이 못할		Ant Pos	Table Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg	
1	10398.100	54.26	-20.04	74.30	41.58	38.38	9.36	35.05	PEAK	100	360	VERTICAL

Temperature	26°C	Humidity	60%
Test Engineer	Jax Chen	Configurations	802.11a Ch 48 Ant. A1 + Ant. A2 +Ant. A3


Horizontal

Freq	Level		Antenna Factor				Ant Pos		Pol/Phase
MHz	dBuV/m	dBuV/m	100	dB	dB	÷	cm	deg	
10480.460			38.40				115	223	HORIZONTAL

2

	Freq	Level		Limit Line		Antenna Factor		-		Ant Pos	Table Pos Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg
2	10481.780	54.83	-19.47	74.30	41.98	38.40	9.41	34.96	PEAK	100	0 VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

4.7. Radiated Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.470-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz (78.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1 MHz /1 MHz for Peak

4.7.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Radiated Band Edge and Fundamental Emissions

Temperature	23 ℃	Humidity	54%
Test Engineer	Sam Chen	Configurations	802.11a Ch 36, 40, 48
Test Engineer	sam chen	Configurations	Ant. A1 + Ant. A2 +Ant. A3

Channel 36

	Freq	Level	Over Limit	Limit Line		intenna Factor		-		Ant Pos	Table Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBu¥	dB/m	dB	dB		cm	deg	
10	5148.120	79.72	-0.28	80.00	39.51	33.67	6.54	0.00	PEAK	143	331	HORIZONTAL
2 @	5150.000	59.66	-0.34	60.00	19.44	33.67	6.54	0.00	AVERAGE	143	331	HORIZONTAL
3 @	5176.800	122.68			82.40	33.73	6.55	0.00	PEAK	143	331	HORIZONTAL
4 0	5184.400	108.20			67.92	33.73	6.55	0.00	AVERAGE	143	331	HORI ZONTAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 48

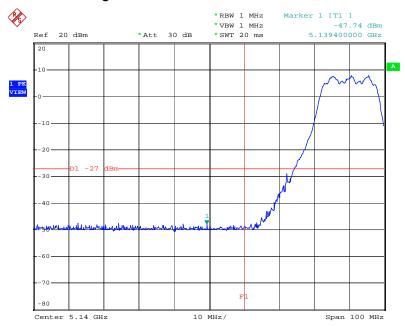
				Over	Limit	Readi	Antenna	Cable	Preamp		Ant	Table	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	Pol/Phase
	-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	1 <u> </u>		deg	<u> </u>
1		5146.000	69.74	-10.26	80.00	29.52	33.67	6.54	0.00	PEAK	135	334	HORI ZONTAL
2 1		5147.600	57.64	-2.36	60.00	17.42	33.67	6.54	0.00	AVERAGE	135	334	HORIZONTAL
3		5234.800	109.76			69.36	33.82	6.58	0.00	AVERAGE	135	334	HORIZONTAL
4 0		5240.400	123.68			83.28	33.82	6.58	0.00	PEAK	135	334	HORI ZONTAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

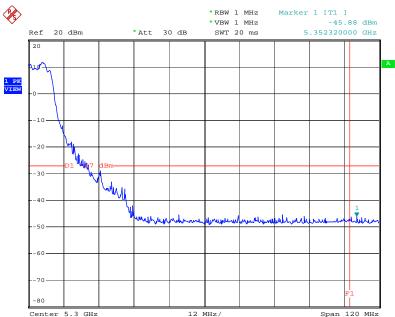
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level


The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = $20 \log (\text{specific distance } [3m] / \text{test distance } [1.5m]) (dB);$

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

The Radiated Band-edge tests were performed at Vertical and Horizontal and the worst-case was found at Horizontal. All the results have been recorded in this report.



EIRP Emission in Band on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5180 MHz

Date: 13.FEB.2008 10:26:54

EIRP Emission in Band on Configuration IEEE 802.11a Ant. A1 + Ant. A2 + Ant. A3 / 5240 MHz

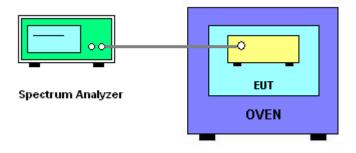
Date: 27.FEB.2008 11:01:35

4.8. Frequency Stability Measurement

4.8.1. Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or ± 20 ppm (IEEE 802.11a specification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	10 kHz
VB	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±20ppm (IEEE 802.11a specification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is $-30^{\circ}C \sim 50^{\circ}C$.
- 8. Measuring multiple antennas, the connector is required to link with Spectrum Analyzer through a combiner.

4.8.4. Test Setup Layout

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200
126.50	5200.0623
110.00	5200.0551
93.50	5200.0656
Max. Deviation (MHz)	0.065600
Max. Deviation (ppm)	12.62

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	5200
-30	5200.0649
-20	5200.0565
-10	5200.0214
0	5200.0088
10	5200.0001
20	5199.9889
30	5199.9783
40	5199.9776
50	5199.9512
Max. Deviation (MHz)	0.064900
Max. Deviation (ppm)	12.48

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100132	9kHz – 2.75GHz	Jul. 14, 2007	Conduction (CO04-HY)
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Mar. 03, 2008	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Mar. 31, 2007	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Mar. 31, 2008	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz – 30MHz	Mar. 22, 2007	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz – 30MHz	Mar. 22, 2008	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2007	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2008	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN T400	21653	9kHz –30MHz	May 09, 2007	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN T400	21653	9kHz –30MHz	Mar. 27, 2008	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
Isolation Transformer	Erika Fiedler OHG	D-65396 Walluf	58	45MHz-2.15GHz	N/A	Conduction (CO04-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 14, 2007	Radiation (03CH03-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 14, 2008	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	COA9231A	18667	9 kHz - 2 GHz	Jan. 14, 2008	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3449B 3008A02120 1 GHz - 26.5 GHz		Jun. 07, 2007	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	Jul. 21, 2008	Radiation (03CH03-HY)
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz	Jan. 22, 2007*	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100305	9 kHz - 40 GHz	Sep. 27, 2007	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 23, 2006*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 23, 2008*	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D 22237 30 MHz – 1 GHz J		Jul. 21, 2007	Radiation (03CH03-HY)	
Bilog Antenna	SCHAFFNER	CBL 6112D 22237 30 MHz – 1 GHz		Jul. 12, 2008	Radiation (03CH03-HY)	
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz May 04, 2007		Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	Apr. 04, 2008	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	NCR	Radiation (03CH03-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec. 03, 2007	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec. 03, 2007	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 – 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Dec. 17, 2007	Conducted (TH01-HY)
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Jan. 10, 2008	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100444	DC ~ 40GHz	Jun. 27, 2007	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 11, 2008	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z51	100458	DC ~ 30GHz	Jun. 27, 2007	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z51	100458	DC ~ 30GHz	Jul. 11, 2008	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jun. 27, 2007	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jul. 11, 2008	Conducted (TH01-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	May 04, 2007*	Conducted (TH01-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	May 30, 2008*	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Mar. 03, 2007	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Mar. 13, 2008	Conducted (TH01-HY)
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2007	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 01, 2007	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 01, 2007	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Mar. 07, 2007	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Mar. 10, 2008	Conducted (TH01-HY)
oscilloscope	Tektonix	TDS380	B016197	400MHz/ 2GS/s	Jun. 27, 2008	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

* Calibration Interval of instruments listed above is two year.

NCR means Non-Calibration required.

6. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

7. TAF CERTIFICATE OF ACCREDITATION

