

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab

CELLTECH LABS INC.
 Testing and Engineering Services
 1955 Moss Court
 Kelowna, B.C.
 Canada V1Y 9L3
 Phone: 250-448-7047
 Fax: 250-448-7046
 e-mail: info@celltechlabs.com
 web site: www.celltechlabs.com

Applicant Information

palmOne, Wireless Business Unit
 400 N. McCarthy Blvd.
 Milpitas, CA 95035
 United States

FCC IDENTIFIER:

08FCAGEMS

IC IDENTIFIER:

3959A-CAGEMS

Model(s):

Treo 650

FCC Rule Part(s):

47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional)

Test Procedure(s):

FCC OET Bulletin 65, Supplement C (01-01)

IEEE Standard 1528-2003

Device Type:

Portable Dual-Band PCS/Cellular GSM/GPRS Phone with Bluetooth

FCC Classification:

PCS Licensed Transmitter held to ear (PCE)

Mode(s) of Operation:

PCS/Cellular GSM (Voice) & GPRS (Data)

Tx Frequency Range(s):

1850.2 - 1909.8 MHz (PCS GSM/GPRS)

824.2 - 848.8 MHz (Cellular GSM/GPRS)

30.2 dBm - Peak Conducted (PCS Band)

32.2 dBm - Peak Conducted (Cellular Band)

-5.1 dBm - Peak Conducted (Bluetooth)

Antenna Type(s) Tested:

External Fixed Stubby (Dual-Band GSM/GPRS)

Internal (Broadcom BCM-2035 Bluetooth)

Battery Type(s) Tested:

Lithium-ion 3.7 V, 1900 mAh (P/N: 167-10165-00)

Body-Worn Accessories Tested:

Leather Side Case with Belt-Clip (SKU#3180WW)

Leather Pouch and Swivel Belt-Clip (SKU#3179WW)

Aluminum Case and Swivel Belt-Clip (SKU#3202WW)

Generic Ear-Microphone

Max. SAR Levels Evaluated:

PCS Band: 0.943 W/kg (Head) / 0.688 W/kg (Body)

Cellular Band: 1.51 W/kg (Head) / 1.46 W/kg (Body)

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 1 (Provisional) and IEEE Standard 1528-2003 for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Russell W. Pipe
 Senior Compliance Technologist
 Celltech Labs Inc.

TABLE OF CONTENTS		
1.0	INTRODUCTION.....	3
2.0	DESCRIPTION OF DUT.....	3
3.0	SAR MEASUREMENT SYSTEM.....	4
4.0	MEASUREMENT SUMMARY.....	5-8
5.0	DETAILS OF SAR EVALUATION.....	9-10
6.0	EVALUATION PROCEDURES.....	11
7.0	SYSTEM PERFORMANCE CHECK.....	12
8.0	SIMULATED EQUIVALENT TISSUES.....	13
9.0	SAR SAFETY LIMITS.....	13
10.0	ROBOT SYSTEM SPECIFICATIONS.....	14
11.0	PROBE SPECIFICATION (ET3DV6).....	15
12.0	SAM PHANTOM V4.0C.....	15
13.0	DEVICE HOLDER.....	15
14.0	TEST EQUIPMENT LIST.....	16
15.0	MEASUREMENT UNCERTAINTIES.....	17-18
16.0	REFERENCES.....	19
	APPENDIX A - SAR MEASUREMENT DATA.....	20
	APPENDIX B - SYSTEM PERFORMANCE CHECK DATA.....	21
	APPENDIX C - SYSTEM VALIDATION.....	22
	APPENDIX D - PROBE CALIBRATION.....	23
	APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS.....	24
	APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY.....	25
	APPENDIX G - SAR TEST SETUP & DUT PHOTOGRAPHS.....	26

1.0 INTRODUCTION

This measurement report demonstrates that the palmOne Model: Treo 650 Dual-Band PCS/Cellular GSM/GPRS Phone (with internal co-located Broadcom BCM-2035 Bluetooth Transmitter) FCC ID: O8FCAGEMS complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), IC RSS-102 Issue 1 (Provisional) (see reference [4]), and IEEE Standard 1528-2003 (see reference [5]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of Device Under Test (DUT)

FCC Rule Part(s)	47 CFR §2.1093		
IC Rule Part(s)	RSS-102 Issue 1 (Provisional)		
Device Classification	PCS Licensed Transmitter held to ear (PCE)		
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (01-01)		
	IC RSS-102 Issue 1 (Provisional)		
	IEEE Standard 1528-2003		
Device Type	Dual-Band PCS/Cellular GSM/GPRS Phone (with internal co-located Bluetooth Transmitter)		
FCC IDENTIFIER	O8FCAGEMS		
IC IDENTIFIER	3959A-CAGEMS		
Model(s)	Treo 650		
Serial No.	SGXW07D4H00P	Identical Prototype	
Tx Frequency Range(s)	1850.2 - 1909.8 MHz	PCS Band	
	824.2 - 848.8 MHz	Cellular Band	
Mode(s) of Operation	PCS GSM (Voice)	1 Time Slot	PCS GPRS (Data)
	Cellular GSM (Voice)	1 Time Slot	Cellular GPRS (Data)
Max. RF Output Power Tested	30.2 dBm	Peak Conducted	1850.2 MHz
	30.1 dBm	Peak Conducted	1880.0 MHz
	29.7 dBm	Peak Conducted	1909.8 MHz
	31.9 dBm	Peak Conducted	824.2 MHz
	32.1 dBm	Peak Conducted	836.6 MHz
	32.2 dBm	Peak Conducted	848.8 MHz
	-5.1 dBm	Peak Conducted	2441 MHz
Battery Type(s) Tested	Lithium-ion	3.7 V, 1900 mAh	P/N: 167-10165-00
Antenna Type(s) Tested	External Fixed Stubby		Dual-Band GSM/GPRS
	Internal		Broadcom BCM-2035 Bluetooth
Body-Worn Accessories Tested	Leather Side Case with Belt-Clip (No metal)		
	Leather Pouch and Swivel Belt-Clip (Plastic with Metal Spring)		
	Aluminum Case and Swivel Belt-Clip (Plastic with Metal Spring)		
	Generic Ear-Microphone		
Additional Accessories Testing Not Required	Leather Latch Case (No metal with > 1.5 cm separation distance)		SKU#3196WW

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 Measurement System with SAM Phantom

DASY4 Measurement System with SAM Phantom

4.0 MEASUREMENT SUMMARY

HEAD SAR EVALUATION RESULTS (Cellular GSM Voice Mode)

Test Date	Test Mode		Freq. (MHz)	Chan.	Antenna Type	Accessory Type	Phantom Section	Test Position	Cond. Power Before Test (dBm)	SAR Drift During Test (dB)	Measured SAR 1g (W/kg)	Scaled SAR 1g (W/kg) by drift
07/28/04	Cellular GSM	1 Slot	836.6	190	Stubby	--	Right Ear	Cheek/Touch	32.1	-0.0708	1.45	1.47
07/28/04	Cellular GSM	1 Slot	824.2	128	Stubby	--	Right Ear	Cheek/Touch	31.9	-0.0393	1.42	1.43
07/28/04	Cellular GSM	1 Slot	848.8	251	Stubby	--	Right Ear	Cheek/Touch	32.2	-0.0404	1.38	1.39
07/28/04	Cellular GSM	1 Slot	836.6	190	Stubby	--	Right Ear	Ear/Tilt (15°)	32.1	-0.0169	1.00	1.00
07/28/04	Cellular GSM	1 Slot	824.2	128	Stubby	--	Right Ear	Ear/Tilt (15°)	31.9	-0.0311	1.01	1.02
07/28/04	Cellular GSM	1 Slot	848.8	251	Stubby	--	Right Ear	Ear/Tilt (15°)	32.2	0.00886	0.945	0.945
07/28/04	Cellular GSM	1 Slot	836.6	190	Stubby	--	Left Ear	Cheek/Touch	32.1	-0.133	1.35	1.39
07/28/04	Cellular GSM	1 Slot	824.2	128	Stubby	--	Left Ear	Cheek/Touch	31.9	-0.143	1.31	1.35
07/28/04	Cellular GSM	1 Slot	848.8	251	Stubby	--	Left Ear	Cheek/Touch	32.2	-0.0673	1.28	1.30
07/28/04	Cellular GSM	1 Slot	836.6	190	Stubby	Aluminum Case	Right Ear	Cheek/Touch	32.1	-0.0148	F 0.359	P 0.360
											S 0.361	S 0.362
											S 0.335	S 0.336
07/28/04	Cellular GSM	1 Slot	836.6	190	Stubby	--	Right Ear	Cheek/Touch	32.1	-0.0188	1.50	1.51
07/28/04	Bluetooth - Modulated Fixed Frequency	2441	Mid	Internal					-5.1			
07/29/04	Cellular GSM	1 Slot	836.6	190	Stubby	--	Left Ear	Ear/Tilt (15°)	32.1	-0.0844	0.805	0.821
07/29/04	Cellular GSM	1 Slot	824.2	128	Stubby	--	Left Ear	Ear/Tilt (15°)	31.9	-0.0469	0.785	0.794
07/29/04	Cellular GSM	1 Slot	848.8	251	Stubby	--	Left Ear	Ear/Tilt (15°)	32.2	-0.0311	0.786	0.792
07/29/04	Cellular GSM	1 Slot	836.6	190	Stubby	Aluminum Case	Right Ear	Ear/Tilt (15°)	32.1	0.00365	0.573	0.573

ANSI / IEEE C95.1 1999 - SAFETY LIMIT
BRAIN: 1.6 W/kg (averaged over 1 gram)
Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	July 28, 2004		July 29, 2004		Test Date(s)	July 28, 2004	July 29, 2004	Unit
Measured Fluid Type	835 MHz Brain		835 MHz Brain		Relative Humidity	43	38	%
Dielectric Constant ϵ_r	IEEE Target		Measured	IEEE Target	Measured	Atmospheric Pressure	102.1	102.1
	41.5	± 5%	40.5	41.5	± 5%	Ambient Temperature	23.8	23.8
Conductivity σ (mho/m)	835 MHz Brain		835 MHz Brain		Fluid Temperature	23.6	22.5	°C
	IEEE Target	Measured	IEEE Target	Measured	Fluid Depth	≥ 15	≥ 15	cm
	0.90	± 5%	0.90	0.90	± 5%	ρ (Kg/m³)	1000	

Note(s):

- The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
- The power drifts measured by the DASY4 system were within 5% of the start power and were subsequently added to the measured SAR levels to report scaled SAR results as shown in the above table.
- Secondary peak SAR levels within 2 dB of the primary were reported (P = Primary, S = Secondary).
- A co-located transmit test was performed with the GSM and Bluetooth transmitting simultaneously in the worst-case single-transmit Cellular GSM configuration as shown in the above table. The Bluetooth transmitter was tested at maximum power setting with a modulated signal on a fixed frequency and the frequency hopping disabled.
- The DUT was evaluated inside the Aluminum Case accessory for the worst-case Touch and Tilt positions evaluated without the accessory.
- The DUT was tested with a fully charged Lithium-ion battery.
- The SAR measurements were performed within 24 hours of the system performance check.

MEASUREMENT SUMMARY (Cont.)

HEAD SAR EVALUATION RESULTS (PCS GSM Voice Mode)

Test Date	Test Mode	Freq. (MHz)	Chan.	Antenna Type	Accessory Type	Phantom Section	Test Position	Cond. Power Before Test (dBm)	SAR Drift During Test (dB)	Measured SAR 1g (W/kg)	Scaled SAR 1g (W/kg) by drift
7/29/04	PCS GSM	1 Slot	1880.0	661	Stubby	--	Right Ear	Cheek/Touch	30.1	-0.0438	P 0.708
										S 0.649	S 0.656
7/29/04	PCS GSM	1 Slot	1880.0	661	Stubby	--	Right Ear	Ear/Tilt (15°)	30.1	0.0435	0.859
7/29/04	PCS GSM	1 Slot	1850.2	512	Stubby	--	Right Ear	Ear/Tilt (15°)	30.2	0.0463	0.784
7/29/04	PCS GSM	1 Slot	1909.8	810	Stubby	--	Right Ear	Ear/Tilt (15°)	29.7	0.0395	0.904
7/29/04	PCS GSM	1 Slot	1880.0	661	Stubby	--	Left Ear	Cheek/Touch	30.1	-0.0657	P 0.753
										S 0.565	S 0.574
7/29/04	PCS GSM	1 Slot	1880.0	661	Stubby	--	Left Ear	Ear/Tilt (15°)	30.1	-0.0351	0.843
7/29/04	PCS GSM	1 Slot	1850.2	512	Stubby	--	Left Ear	Ear/Tilt (15°)	30.2	0.0183	0.780
7/29/04	PCS GSM	1 Slot	1909.8	810	Stubby	--	Left Ear	Ear/Tilt (15°)	29.7	-0.0874	0.922
7/29/04	PCS GSM	1 Slot	1909.8	810	Stubby	--	Left Ear	Ear/Tilt (15°)	29.7	-0.100	0.922
7/29/04	Bluetooth - Modulated Fixed Frequency		2441	Mid	Internal				-5.1		
7/30/04	PCS GSM	1 Slot	1880.0	661	Stubby	Aluminum Case	Left Ear	Cheek/Touch	30.1	-0.154	P 0.180
7/30/04	PCS GSM	1 Slot	1909.8	810	Stubby	Aluminum Case	Left Ear	Ear/Tilt (15°)	29.7	-0.0360	0.256
ANSI / IEEE C95.1 1999 - SAFETY LIMIT BRAIN: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population											

Test Date(s)	July 29, 2004			July 30, 2004			Test Date(s)	July 29, 2004	July 30, 2004	Unit
Measured Fluid Type	1880 MHz Brain			1880 MHz Brain			Relative Humidity	41	39	%
Dielectric Constant ϵ_r	IEEE Target	Measured		IEEE Target	Measured		Atmospheric Pressure	101.7	101.9	kPa
	40.0	± 5%	38.1	40.0	± 5%	38.1	Ambient Temperature	24.5	24.8	°C
Conductivity σ (mho/m)	1880 MHz Brain			1880 MHz Brain			Fluid Temperature	23.5	23.0	°C
	IEEE Target	Measured		IEEE Target	Measured		Fluid Depth	≥ 15	≥ 15	cm
	1.40	± 5%	1.39	1.40	± 5%	1.40	ρ (Kg/m³)	1000		

Note(s):

- The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
- The power drifts measured by the DASY4 system were within 5% of the start power and were subsequently added to the measured SAR levels to report scaled SAR results as shown in the above table.
- Secondary peak SAR levels within 2 dB of the primary were reported (P = Primary, S = Secondary).
- A co-located transmit test was performed with the GSM and Bluetooth transmitting simultaneously in the worst-case single-transmit PCS GSM configuration as shown in the above table. The Bluetooth transmitter was tested at maximum power setting with a modulated signal on a fixed frequency and the frequency hopping disabled.
- The DUT was evaluated inside the Aluminum Case accessory for the worst-case Touch and Tilt positions evaluated without the accessory.
- The DUT was tested with a fully charged Lithium-ion battery.
- The SAR measurements were performed within 24 hours of the system performance check.

MEASUREMENT SUMMARY (Cont.)

BODY-WORN SAR EVALUATION RESULTS (Cellular GPRS Data Mode)

Test Mode		Freq. (MHz)	Chan.	Antenna Type	Body-worn Accessories	DUT Position to Planar Phantom	Separation Distance to Planar Phantom (cm)	Cond. Power Before Test (dBm)	SAR Drift During Test (dB)	Measured SAR 1g (W/kg)	Scaled SAR 1g (W/kg) by drift
Cellular GPRS	2 Slots	836.6	190	Stubby	Side Case with Belt-Clip and Ear-Mic	Front Side	1.4	32.1	-0.102	1.43	1.46
Cellular GPRS	2 Slots	824.2	128	Stubby	Side Case with Belt-Clip and Ear-Mic	Front Side	1.4	31.9	-0.155	1.26	1.31
Cellular GPRS	2 Slots	848.8	251	Stubby	Side Case with Belt-Clip and Ear-Mic	Front Side	1.4	32.2	-0.0230	1.36	1.37
Cellular GPRS	2 Slots	836.6	190	Stubby	Air Gap Spacing with Ear-Mic	Front Side	1.5	32.1	-0.161	1.12	1.16
Cellular GPRS	2 Slots	824.2	128	Stubby	Air Gap Spacing with Ear-Mic	Front Side	1.5	31.9	-0.0144	0.607	0.609
Cellular GPRS	2 Slots	848.8	251	Stubby	Air Gap Spacing with Ear-Mic	Front Side	1.5	32.2	-0.115	0.747	0.767
Cellular GPRS	2 Slots	836.6	190	Stubby	Air Gap Spacing with Ear-Mic	Back Side	1.5	32.1	-0.101	0.882	0.903
Cellular GPRS	2 Slots	824.2	128	Stubby	Air Gap Spacing with Ear-Mic	Back Side	1.5	31.9	-0.129	0.853	0.879
Cellular GPRS	2 Slots	848.8	251	Stubby	Air Gap Spacing with Ear-Mic	Back Side	1.5	32.2	-0.0346	0.952	0.960
Cellular GPRS	2 Slots	836.6	190	Stubby	Fitted Pouch with Belt-Clip and Ear-Mic	Back Side	2.5	32.1	-0.116	0.592	0.608
Cellular GPRS	2 Slots	836.6	190	Stubby	Aluminum Case with Belt-Clip and Ear-Mic	Back Side	2.5	32.1	-0.120	0.383	0.394
Cellular GPRS	2 Slots	836.6	190	Stubby	Side Case with Belt-Clip and Ear-Mic	Front Side	1.4	32.1	-0.101	1.41	1.44
Bluetooth - Modulated Fixed Frequency		2441	Mid	Internal				-5.1			

ANSI / IEEE C95.1 1999 - SAFETY LIMIT
BODY: 1.6 W/kg (averaged over 1 gram)
Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	July 31, 2004			Relative Humidity	37	%
Measured Fluid Type	835 MHz Body			Atmospheric Pressure	101.5	kPa
Dielectric Constant ϵ_r	IEEE Target		Measured	Ambient Temperature	24.3	°C
	55.2	± 5%	54.1	Fluid Temperature	23.3	°C
Conductivity σ (mho/m)	IEEE Target		Measured	Fluid Depth	≥ 15	cm
	0.97	± 5%	1.00	ρ (Kg/m ³)	1000	

Note(s):

- The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
- The power drifts measured by the DASY4 system were within 5% of the start power and were subsequently added to the measured SAR levels to report scaled SAR results as shown in the above table.
- A co-located transmit test was performed with the GPRS and Bluetooth transmitting simultaneously in the worst-case single-transmit Cellular GPRS configuration as shown in the above table. The Bluetooth transmitter was tested at maximum power setting with a modulated signal on a fixed frequency and the frequency hopping disabled.
- The DUT was tested with a fully charged Lithium-ion battery.
- The SAR measurements were performed within 24 hours of the system performance check.

MEASUREMENT SUMMARY (Cont.)

BODY-WORN SAR EVALUATION RESULTS (PCS GPRS Data Mode)

Test Mode		Freq. (MHz)	Chan.	Antenna Type	Body-worn Accessories	DUT Position to Planar Phantom	Separation Distance to Planar Phantom (cm)	Cond. Power Before Test (dBm)	SAR Drift During Test (dB)	Measured SAR 1g (W/kg)		Scaled SAR 1g (W/kg) by drift	
PCS GPRS	2 Slots	1880.0	661	Stubby	Side Case with Belt-Clip and Ear-Mic	Front Side	1.4	30.1	0.161	P	0.450	P	0.450
					Air Gap Spacing with Ear-Mic					S	0.389	S	0.389
PCS GPRS	2 Slots	1880.0	661	Stubby	Air Gap Spacing with Ear-Mic	Front Side	1.5	30.1	-0.0927	0.533	0.544		
PCS GPRS	2 Slots	1880.0	661	Stubby	Air Gap Spacing with Ear-Mic	Back Side	1.5	30.1	-0.129	0.628	0.647		
PCS GPRS	2 Slots	1880.0	661	Stubby	Fitted Pouch with Belt-Clip and Ear-Mic	Back Side	2.5	30.1	-0.124	0.312	0.321		
PCS GPRS	2 Slots	1880.0	661	Stubby	Aluminum Case with Belt-Clip and Ear-Mic	Back Side	2.5	30.1	0.115	0.0960	0.0960		
PCS GPRS	2 Slots	1880.0	661	Stubby	Air Gap Spacing with Ear-Mic	Back Side	1.5	30.1	-0.168	0.662	0.688		
Bluetooth - Modulated Fixed Frequency	2441	Mid	Internal					-5.1					

ANSI / IEEE C95.1 1999 - SAFETY LIMIT
BODY: 1.6 W/kg (averaged over 1 gram)
Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	August 03, 2004			Relative Humidity	40		%
Measured Fluid Type	1880 MHz Body			Atmospheric Pressure	102.1		kPa
Dielectric Constant ϵ_r	IEEE Target		Measured	Ambient Temperature		23.9	
	53.3	$\pm 5\%$	52.0	Fluid Temperature		23.1	
Conductivity σ (mho/m)	IEEE Target		Measured	Fluid Depth		≥ 15	
	1.52	$\pm 5\%$	1.55	ρ (Kg/m ³)		1000	

Note(s):

1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
3. The power drifts measured by the DASY4 system were within 5% of the start power and were subsequently added to the measured SAR levels to report scaled SAR results as shown in the above table.
4. Secondary peak SAR levels within 2 dB of the primary were reported (P = Primary, S = Secondary).
5. A co-located transmit test was performed with the GPRS and Bluetooth transmitting simultaneously in the worst-case single-transmit PCS GPRS configuration as shown in the above table. The Bluetooth transmitter was tested at maximum power setting with a modulated signal on a fixed frequency and the frequency hopping disabled.
6. The DUT was tested with a fully charged Lithium-ion battery.
7. The SAR measurements were performed within 24 hours of the system performance check.

5.0 DETAILS OF SAR EVALUATION

The palmOne Model: Treo 650 Dual-Band PCS/Cellular GSM/GPRS Phone (with internal co-located Broadcom BCM-2035 Bluetooth Transmitter) FCC ID: O8FCAGEMS was compliant for localized Specific Absorption Rate (SAR) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix G.

Ear-held Configuration

- 1) The DUT was tested in an ear-held configuration on both the left and right sections of the SAM phantom at the mid channel of the operating band. If the SAR level measured at the mid channel of the frequency band for each test configuration (left ear, right ear, cheek/touch, ear/tilt) was ≥ 3 dB below the SAR limit, measurements at the low and high channels were optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
- a) The handset was placed in the device holder in a normal operating position with the test device reference point located along the vertical centerline on the front of the device aligned to the ear reference point, with the center of the earpiece touching the center of the ear spacer of the SAM phantom.
- b) With the handset positioned parallel to the cheek, the test device reference point was aligned to the ear reference point on the head phantom, and the vertical centerline was aligned to the phantom reference plane (initial ear position).
- c) While maintaining the three alignments, the body of the handset was gradually adjusted to each of the following test positions:
- Cheek/Touch Position: the handset was brought toward the mouth of the head phantom by pivoting against the ear reference point until any point of the mouthpiece or keypad touched the phantom.

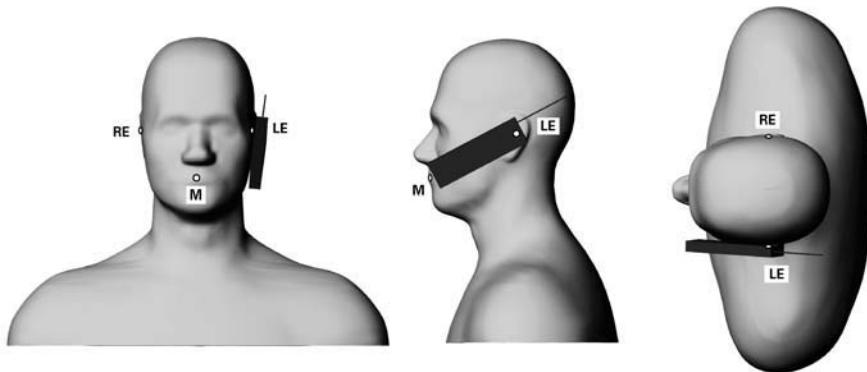


Figure 1. Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated (Shoulders are shown for illustration only).

- Ear/Tilt Position: With the phone aligned in the Cheek/Touch position, the handset was tilted away from the mouth with respect to the test device reference point by 15 degrees.

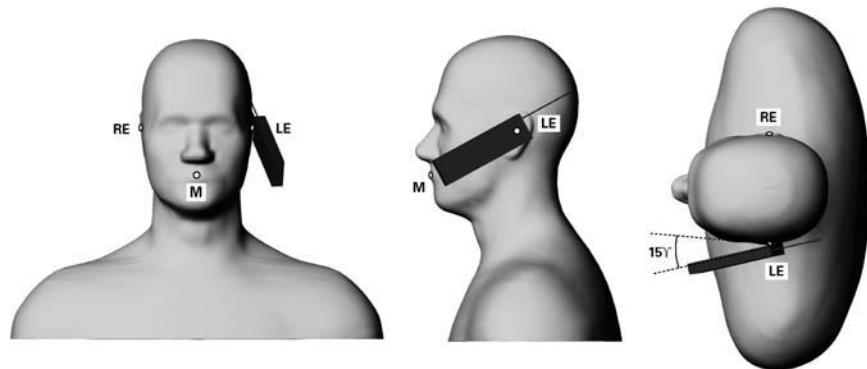


Figure 2. Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated (Shoulders are shown for illustration only).

DETAILS OF SAR EVALUATION (Cont.)

- 2) The DUT was tested in an ear-held configuration with the Aluminum Case accessory in the worst-case Cheek/Touch and Ear/Tilt positions for both the PCS and Cellular bands.
- 3) Co-located transmit tests were performed with the GSM and Bluetooth transmitting simultaneously in the worst-case single-transmit configuration for both the PCS and Cellular GSM bands.

Body-worn Configuration

- 4) The DUT was tested in a body-worn configuration placed inside the Leather Side Case with Belt-Clip accessory (SKU#3180WW). The front side of the DUT (keypad side) was placed facing parallel to the outer surface of the SAM phantom (planar section) with the attached belt-clip accessory touching the phantom surface (the leather side case accessory is designed so that the DUT is positioned with the keypad side facing the user's body). The leather side case with belt-clip accessory provided a 1.4 cm separation distance between the front side of the DUT (keypad side) and the outer surface of the SAM phantom (planar section). A generic ear-microphone accessory was connected to the DUT for the duration of the tests.
- 5) The DUT was tested in a body-worn configuration placed inside the Fitted Leather Pouch with Swivel Belt-Clip accessory (SKU#3179WW). The back side of the DUT was placed facing parallel to the outer surface of the SAM phantom (planar section) with the attached belt-clip accessory touching the phantom surface (the fitted leather pouch accessory is designed so that the DUT is positioned with the back side facing the user's body). The fitted leather pouch with swivel belt-clip accessory provided a 2.5 cm separation distance between the back side of the DUT and the outer surface of the SAM phantom (planar section). A generic ear-microphone accessory was connected to the DUT for the duration of the tests.
- 6) The DUT was tested in a body-worn configuration placed inside the Aluminum Case with Swivel Belt-Clip accessory (SKU#3202WW). The back side of the DUT was placed facing parallel to the outer surface of the SAM phantom (planar section) with the attached belt-clip accessory touching the phantom surface (the aluminum case accessory is designed so that the DUT is positioned with the back side facing the user's body). The aluminum case with swivel belt-clip accessory provided a 2.5 cm separation distance between the back side of the DUT and the outer surface of the SAM phantom (planar section). A generic ear-microphone accessory was connected to the DUT for the duration of the tests.
- 7) The DUT was tested in a body-worn configuration with an "air gap" spacing of 1.5 cm between the front side (keypad side) and the outer surface of the SAM phantom (planar section). The DUT was also tested with an "air gap" spacing of 1.5 cm between the back side and the outer surface of the SAM phantom (planar section). No body-worn accessories were used with the DUT in the "air gap" spacing configurations (except generic ear-microphone accessory connected) for the purpose that the option of generic body-worn holster/case accessories that do not contain any metallic components and provide a minimum separation distance of 1.5 cm between the phone and the user's body could be used.
- 8) Co-located transmit tests were performed with both GPRS and Bluetooth transmitting simultaneously in the worst-case single-transmit configuration for both the PCS and Cellular GPRS bands.
- 9) The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter checks and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- 10) The dielectric properties of the simulated tissue mixtures were measured prior to the SAR evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 11) The SAR measurements were performed within 24 hours of the system performance check.

DUT Test Modes & Power Settings

- 12) The DUT was placed in test mode using a base station simulator (Wavetek 4202S). SAR measurements were performed with the DUT transmitting at maximum power in 1 time slot for GSM voice mode (crest factor: 8.3), and in 2 time slots for GPRS data mode (Crest factor: 4.16). The Bluetooth transmitter was tested at maximum power setting with a modulated signal on a fixed frequency and the frequency hopping disabled.
- 13) The conducted power levels were measured prior to each test according to the procedures described in FCC 47 CFR §2.1046 using a Gigatronics 8652A Universal Power Meter.
- 14) The power drifts measured by the DASY4 system were within 5% of the start power and were subsequently added to the measured SAR levels to report scaled SAR results as shown in the test data tables.
- 15) The DUT was tested with a fully charged Lithium-ion battery.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5x5x7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies \geq 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7x7x7 points) to ensure complete capture of the peak spatial-average SAR.

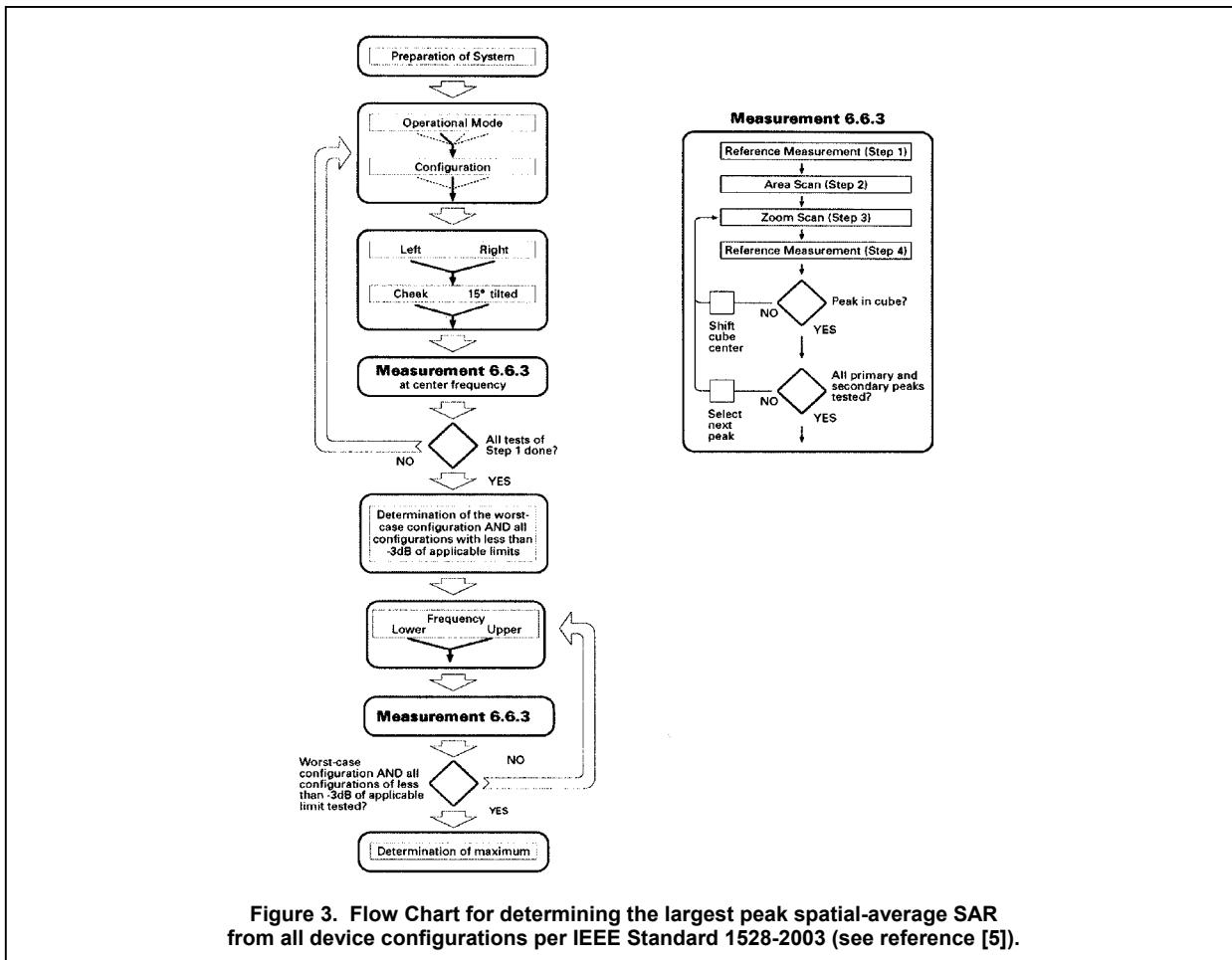


Figure 3. Flow Chart for determining the largest peak spatial-average SAR from all device configurations per IEEE Standard 1528-2003 (see reference [5]).

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed at the planar section of the SAM phantom with an 835MHz dipole and a 1900MHz dipole (see Appendix C for system validation procedures). The dielectric parameters of the simulated brain tissue mixture were measured prior to the system performance check using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plots).

SYSTEM PERFORMANCE CHECK													
Test Date	Brain Mixture	SAR 1g (W/kg)		Dielectric Constant ϵ_r		Conductivity σ (mho/m)		ρ (Kg/m ³)	Amb. Temp. (°C)	Fluid Temp. (°C)	Fluid Depth (cm)	Humid. (%)	Barom. Press. (kPa)
		Freq. (MHz)	IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured					
07/28/04	835	2.38 $\pm 10\%$	2.51 (+5.5%)	41.5 $\pm 5\%$	40.5	0.90 $\pm 5\%$	0.90	1000	23.8	23.6	≥ 15	43	102.2
07/29/04	1900	9.93 $\pm 10\%$	10.3 (+3.7%)	40.0 $\pm 5\%$	38.1	1.40 $\pm 5\%$	1.41	1000	24.6	23.5	≥ 15	42	101.8
07/31/04	835	2.38 $\pm 10\%$	2.50 (+5.0%)	41.5 $\pm 5\%$	41.0	0.90 $\pm 5\%$	0.92	1000	24.0	23.5	≥ 15	39	101.9
08/03/04	1900	9.93 $\pm 10\%$	10.3 (+3.7%)	40.0 $\pm 5\%$	38.2	1.40 $\pm 5\%$	1.41	1000	24.4	22.9	≥ 15	36	101.5

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

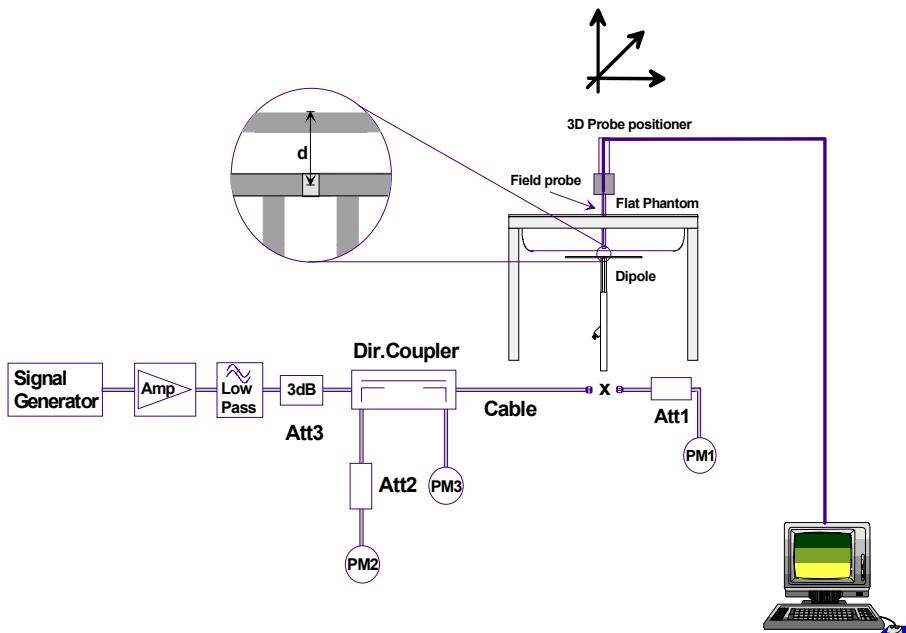


Figure 4. System Performance Check Setup Diagram

8.0 SIMULATED EQUIVALENT TISSUES

The 1880/1900MHz simulated equivalent tissue mixtures consist of Glycol-monobutyl, water, and salt. The 835MHz simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

1880/1900MHz TISSUE MIXTURES			
INGREDIENT	1900MHz Brain	1880MHz Brain	1880MHz Body
	System Check	DUT Evaluation	DUT Evaluation
Water	55.85 %	55.85 %	69.85 %
Glycol Monobutyl	44.00 %	44.00 %	29.89 %
Salt	0.15 %	0.15 %	0.26 %

835MHz TISSUE MIXTURES		
INGREDIENT	835MHz Brain	835MHz Body
	System Check & DUT Evaluation	DUT Evaluation
Water	40.71 %	53.79 %
Sugar	56.63 %	45.13 %
Salt	1.48 %	0.98 %
HEC	0.99 %	--
Bactericide	0.19 %	0.10 %

9.0 SAR SAFETY LIMITS

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L
Repeatability: 0.02 mm
No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+
Clock Speed: 2.0 GHz
Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic
Software: DASY4 software
Connecting Lines: Optical downlink for data and status info.
 Optical uplink for commands and clock

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection
Hardware: PC/104 166MHz Pentium CPU; 32 MB chiddisk; 64 MB RAM
Connections: COM1, COM2, DAE, Robot, Ethernet, Service Interface

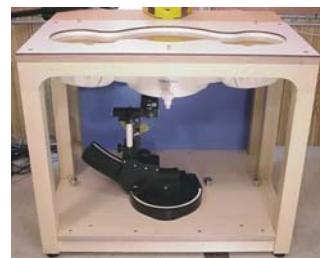
E-Field Probe

Model: ET3DV6
Serial No.: 1590
Construction: Triangular core fiber optic detection system
Frequency: 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Type: SAM V4.0C
Shell Material: Fiberglas
Thickness: 2.0 ± 0.1 mm
Volume: Approx. 20 liters

11.0 PROBE SPECIFICATION (ET3DV6)


Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol)
Calibration:	In air from 10 MHz to 2.5 GHz In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)
Frequency:	10 MHz to >6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity:	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range:	5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB
Surface Detection	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm
Application:	Distance from probe tip to dipole centers: 2.7 mm General dosimetry up to 3 GHz Compliance tests of portable phone

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix F for specifications of the SAM phantom V4.0C).

SAM Phantom V4.0C

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

14.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
-DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
-DAE3	353	Dec 2003
-DAE3	370	May 2004
-ET3DV6 E-Field Probe	1387	Mar 2004
-ET3DV6 E-Field Probe	1590	May 2004
-300MHz Validation Dipole	135	Oct 2003
-450MHz Validation Dipole	136	Nov 2003
-835MHz Validation Dipole	411	Mar 2004
-900MHz Validation Dipole	054	June 2004
-1800MHz Validation Dipole	247	June 2004
-1900MHz Validation Dipole	151	June 2004
-2450MHz Validation Dipole	150	Sept 2003
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
-Plexiglas Planar Phantom	161	N/A
-Validation Planar Phantom	137	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2004
Gigatronics 8652A Power Meter	1835267	April 2004
Gigatronics 80701A Power Sensor	1833535	April 2004
Gigatronics 80701A Power Sensor	1833542	April 2004
Gigatronics 80701A Power Sensor	1834350	April 2004
HP E4408B Spectrum Analyzer	US39240170	Dec 2003
HP 8594E Spectrum Analyzer	3543A02721	April 2004
HP 8753E Network Analyzer	US38433013	April 2004
HP 8648D Signal Generator	3847A00611	April 2004
Amplifier Research 5S1G4 Power Amplifier	26235	N/A
WillTek Wavetek 4202S GSM/GPRS Test Set	0313573	July 2004

15.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c_i 1g	Standard Uncertainty ±% (1g)	v_i or v_{eff}
Measurement System						
Probe calibration (835 MHz)	± 5.95	Normal	1	1	± 5.95	∞
Probe calibration (1900 MHz)	± 4.85	Normal	1	1	± 4.85	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	$(1-c_p)$	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	(c_p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	$\sqrt{3}$	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 1.4	Rectangular	$\sqrt{3}$	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Test Sample Related						
Device positioning	± 6.0	Normal	$\sqrt{3}$	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	$\sqrt{3}$	1	± 5.9	8
Power drift	± 5.0	Rectangular	$\sqrt{3}$		± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Combined Standard Uncertainty						
835 MHz					± 13.76	
1900 MHz					± 13.32	
Expanded Uncertainty (k=2)						
835 MHz					± 27.51	
1900 MHz					± 26.64	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c_i 1g	Standard Uncertainty ±% (1g)	v_i or v_{eff}
Measurement System						
Probe calibration (835 MHz)	± 5.95	Normal	1	1	± 5.95	∞
Probe calibration (1900 MHz)	± 4.85	Normal	1	1	± 4.85	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	$(1-c_p)$	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	(c_p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	$\sqrt{3}$	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 1.4	Rectangular	$\sqrt{3}$	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	$\sqrt{3}$	1	± 1.2	∞
Input Power	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Combined Standard Uncertainty						
835 MHz					± 10.54	
1900 MHz					± 9.97	
Expanded Uncertainty (k=2)						
835 MHz					± 21.09	
1900 MHz					± 19.93	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

16.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
- [5] IEEE Std 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 07/28/04

System Performance Check - 835 MHz Dipole

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411; Calibrated: 03/16/2004

Ambient Temp: 23.8 °C; Fluid Temp: 23.6 °C; Barometric Pressure: 102.2 kPa; Humidity: 43%

Communication System: CW

Forward Conducted Power: 250mW

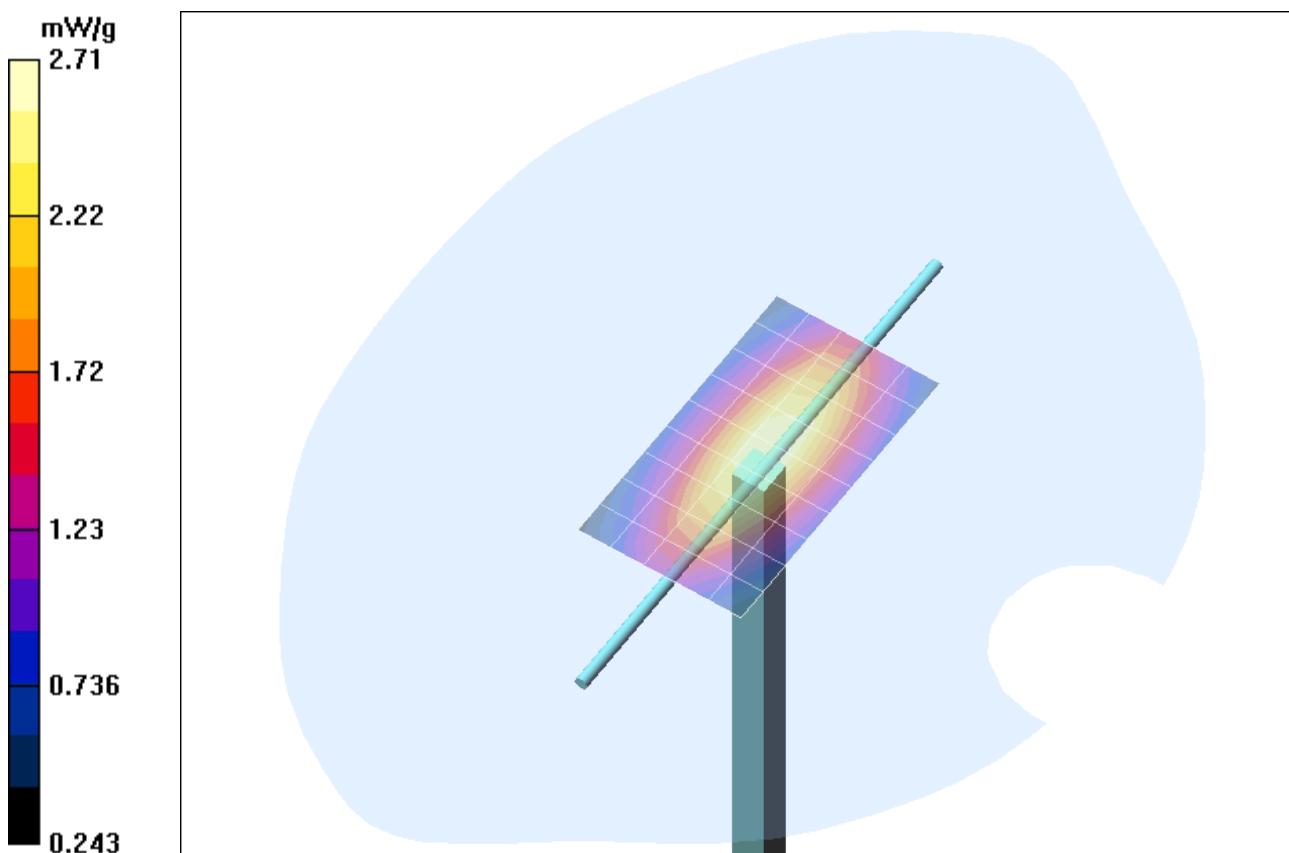
Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 ($\sigma = 0.90$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³)

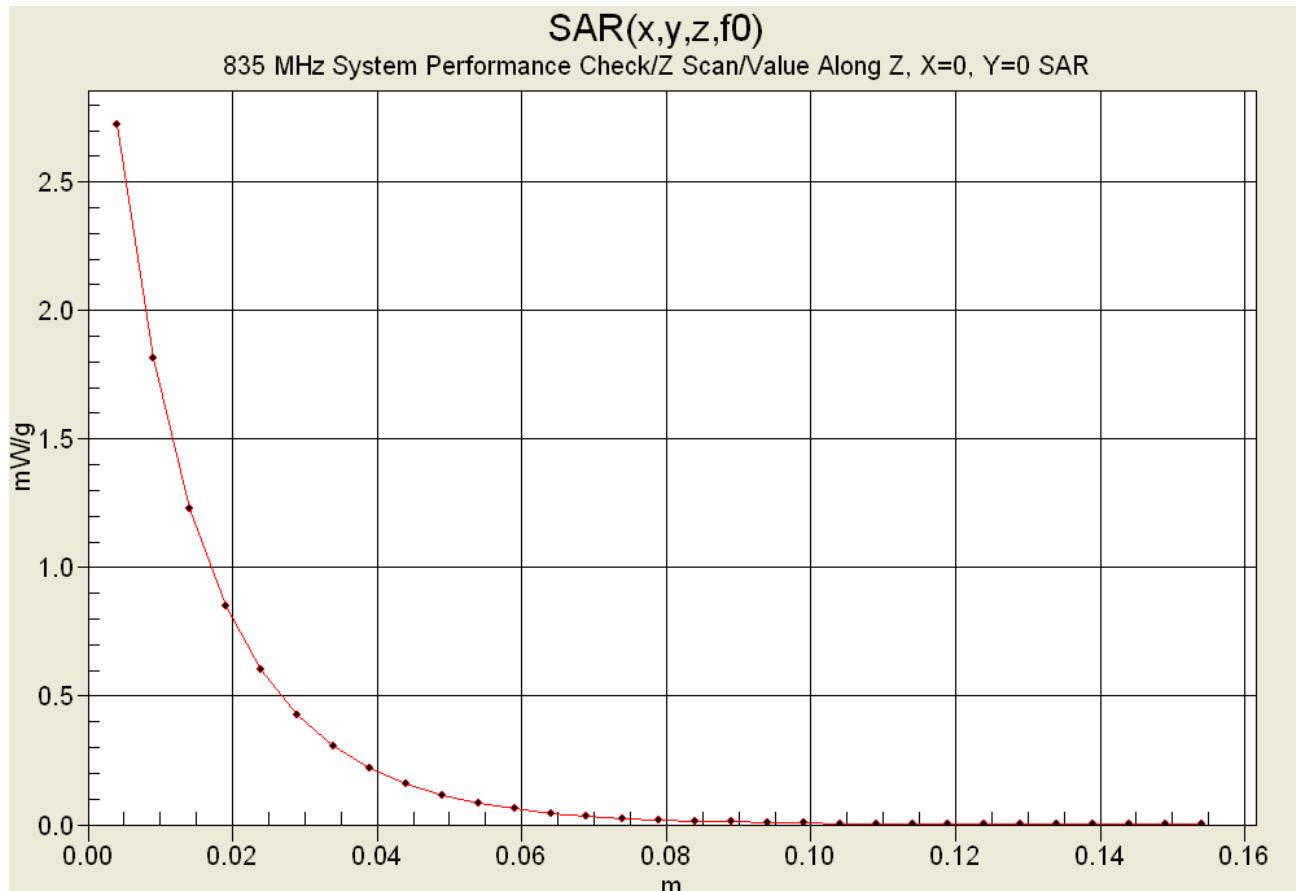
- Probe: ET3DV6 - SN1590; ConvF(6.71, 6.71, 6.71); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm


835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.8 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 3.77 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.64 mW/g

Z-Axis Scan

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 07/29/04

System Performance Check - 1900 MHz Dipole

DUT: Dipole 1900 MHz; Model: D1900V2; Type: System Performance Check; Serial: 151; Calibrated: 06/18/2004

Ambient Temp: 24.6 °C; Fluid Temp: 23.5 °C; Barometric Pressure: 101.8 kPa; Humidity: 42%

Communication System: CW

Forward Conducted Power: 250mW

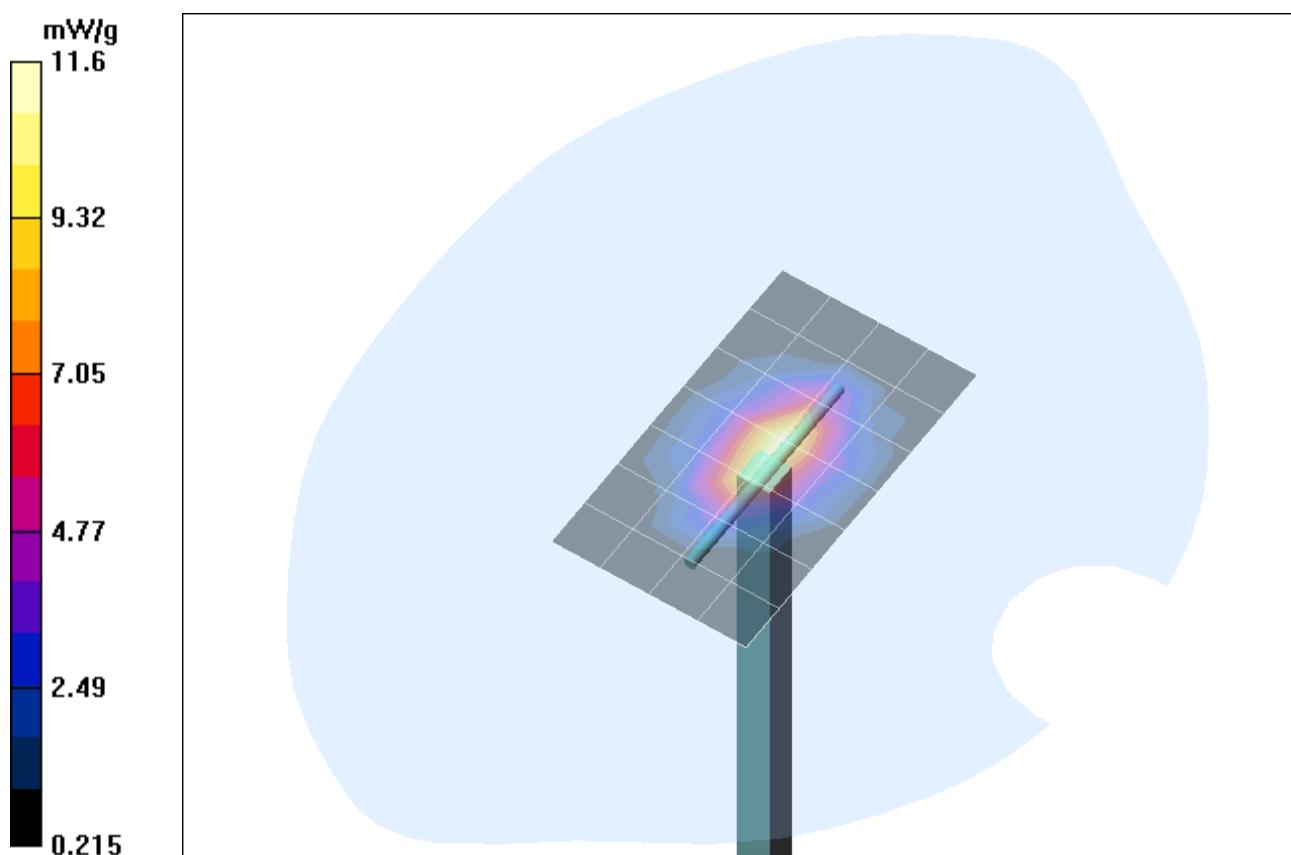
Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 ($\sigma = 1.41$ mho/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³)

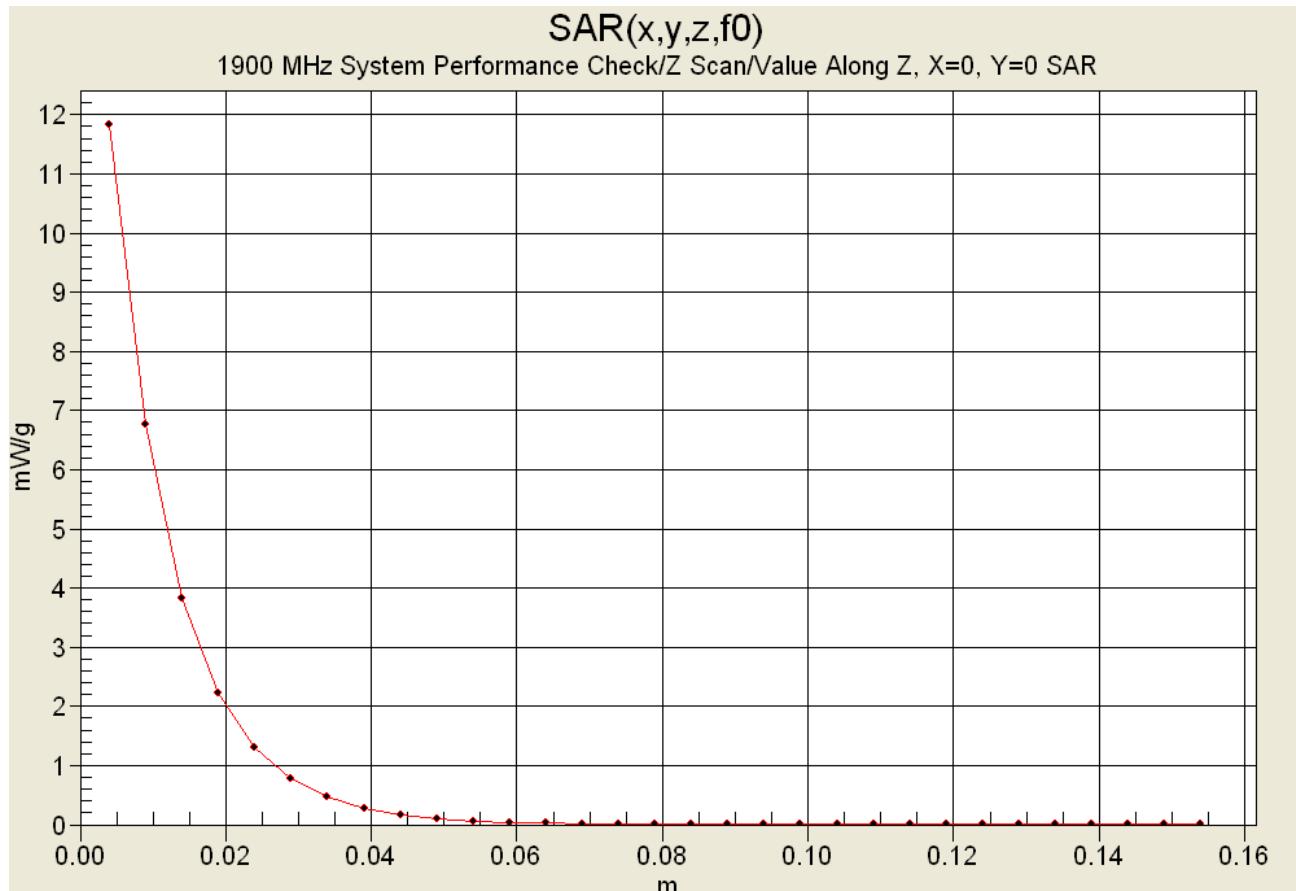
- Probe: ET3DV6 - SN1590; ConvF(5.03, 5.03, 5.03); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

1900 MHz System Performance Check/Area Scan (5x8x1):

Measurement grid: dx=15mm, dy=15mm


1900 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 95.5 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.45 mW/g

Z-Axis Scan

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 07/31/04

System Performance Check - 835 MHz Dipole

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411; Calibrated: 03/16/2004

Ambient Temp: 24.0 °C; Fluid Temp: 23.5 °C; Barometric Pressure: 101.9 kPa; Humidity: 39%

Communication System: CW

Forward Conducted Power: 250mW

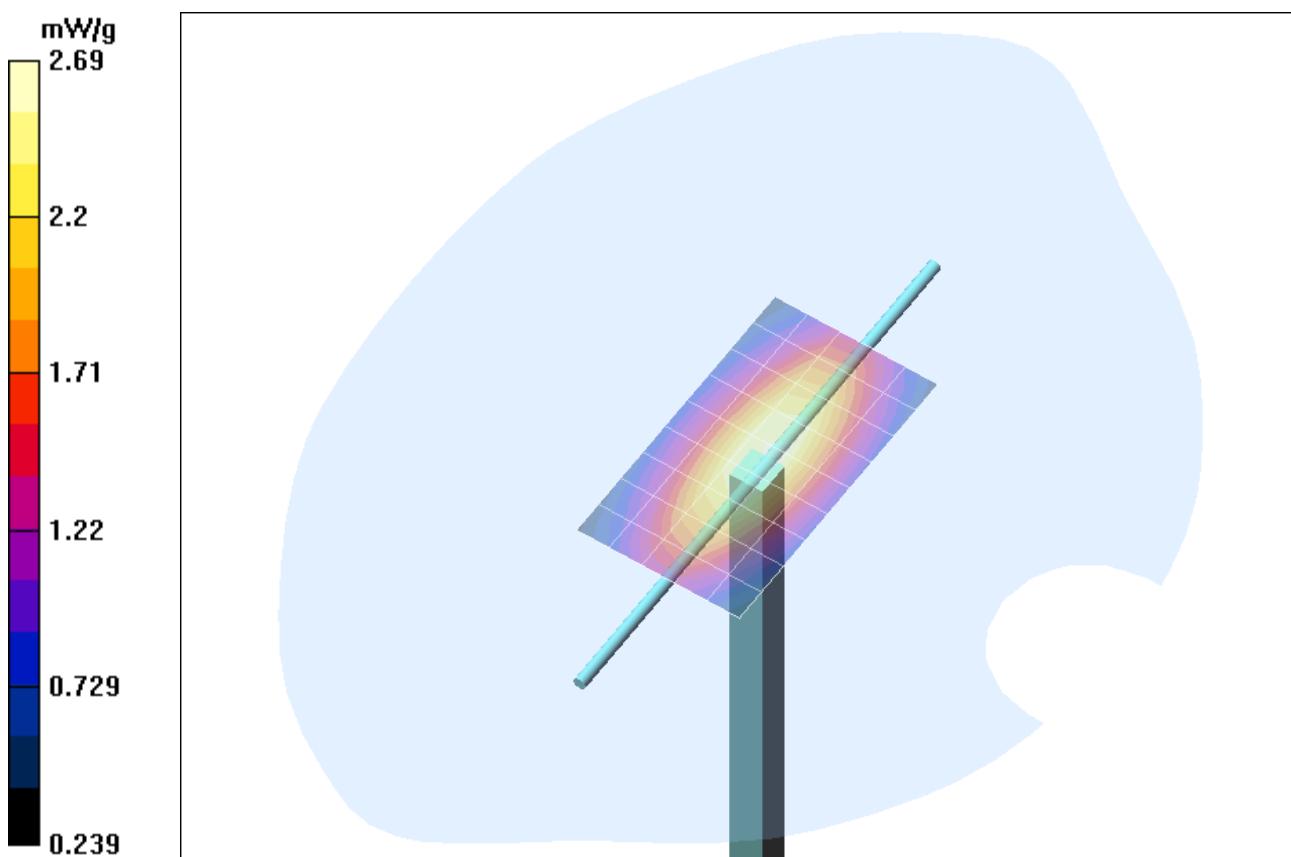
Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 ($\sigma = 0.92$ mho/m; $\epsilon_r = 41.0$; $\rho = 1000$ kg/m³)

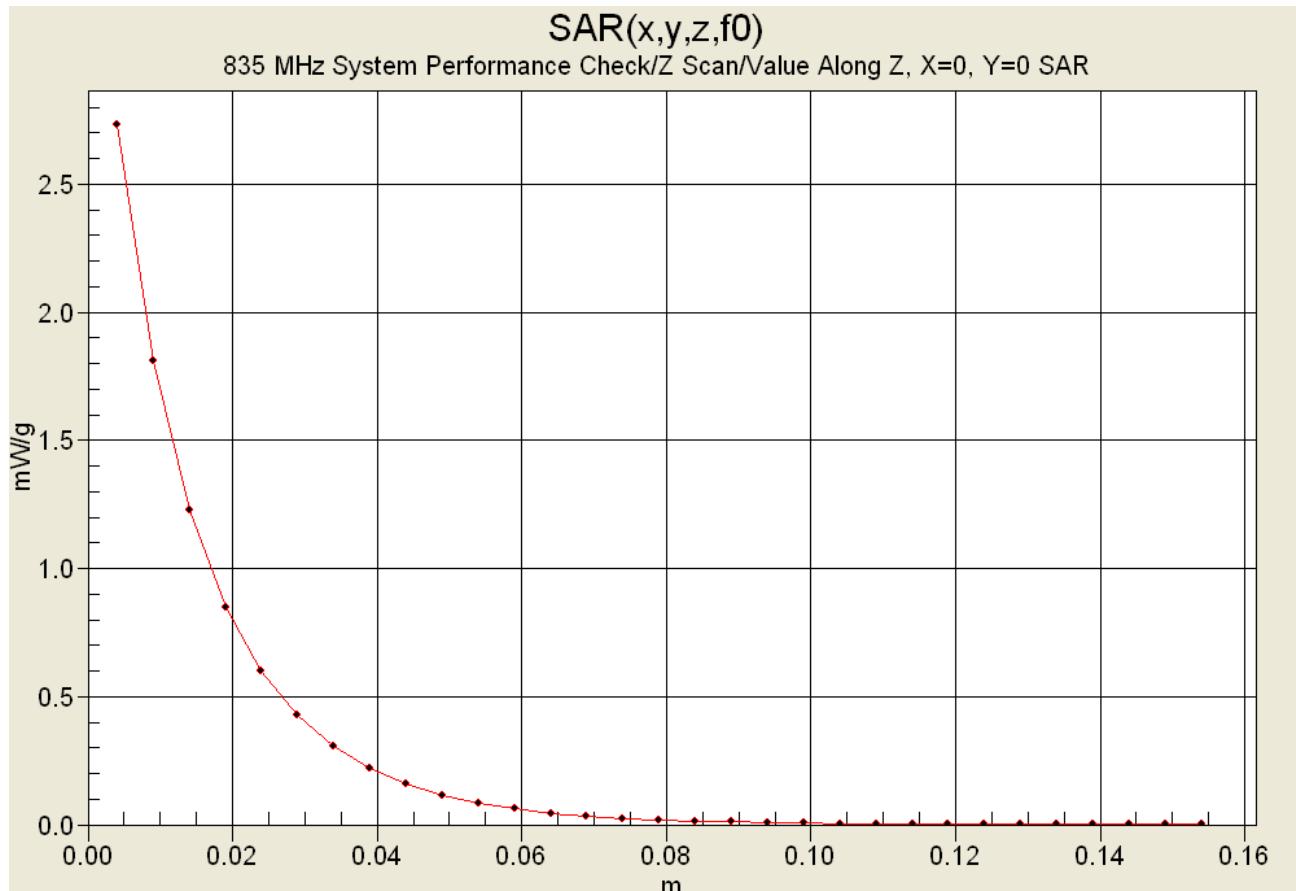
- Probe: ET3DV6 - SN1590; ConvF(6.71, 6.71, 6.71); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm


835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.50 mW/g; SAR(10 g) = 1.62 mW/g

Z-Axis Scan

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 08/03/04

System Performance Check - 1900 MHz Dipole

DUT: Dipole 1900 MHz; Model: D1900V2; Type: System Performance Check; Serial: 151; Calibrated: 06/18/2004

Ambient Temp: 24.4 °C; Fluid Temp: 22.9 °C; Barometric Pressure: 101.5 kPa; Humidity: 36%

Communication System: CW

Forward Conducted Power: 250mW

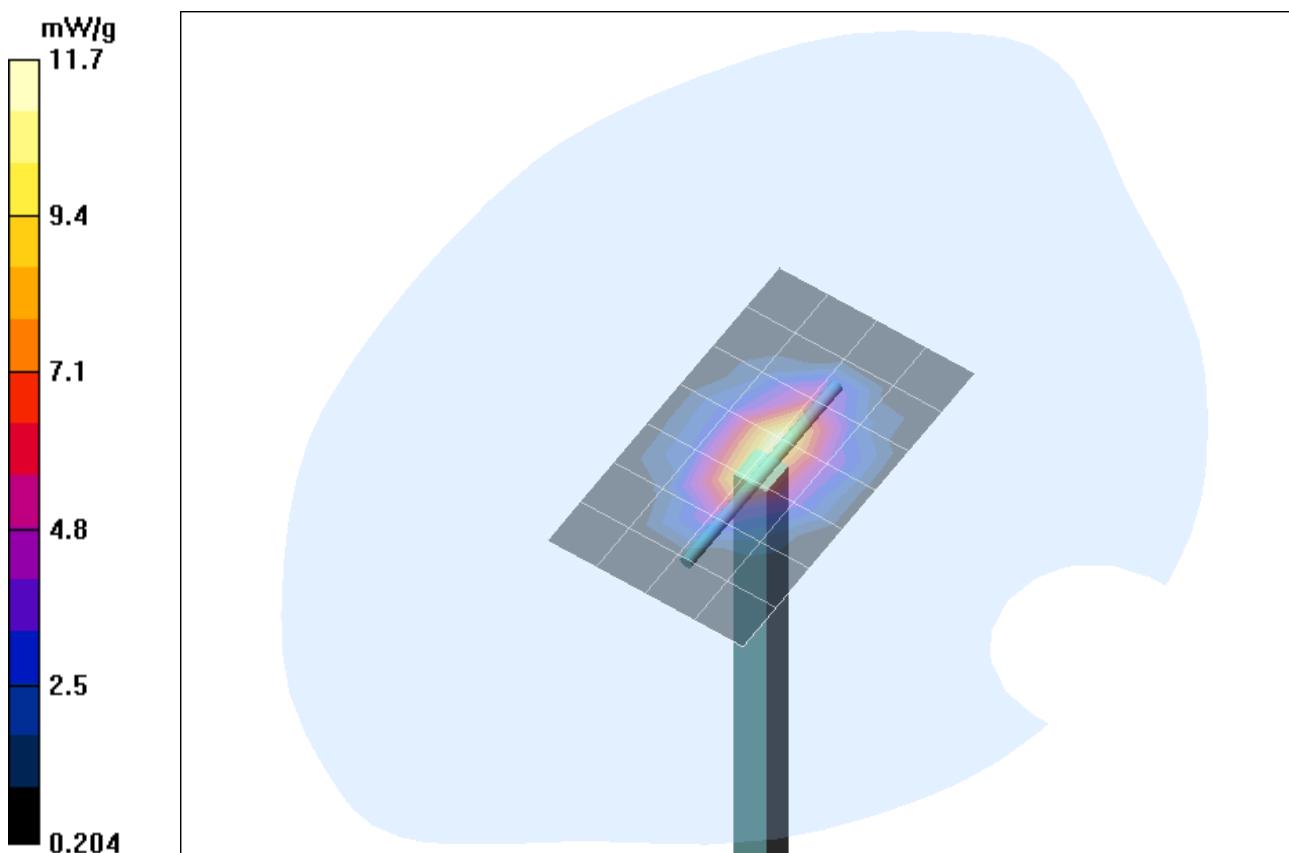
Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 ($\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$)

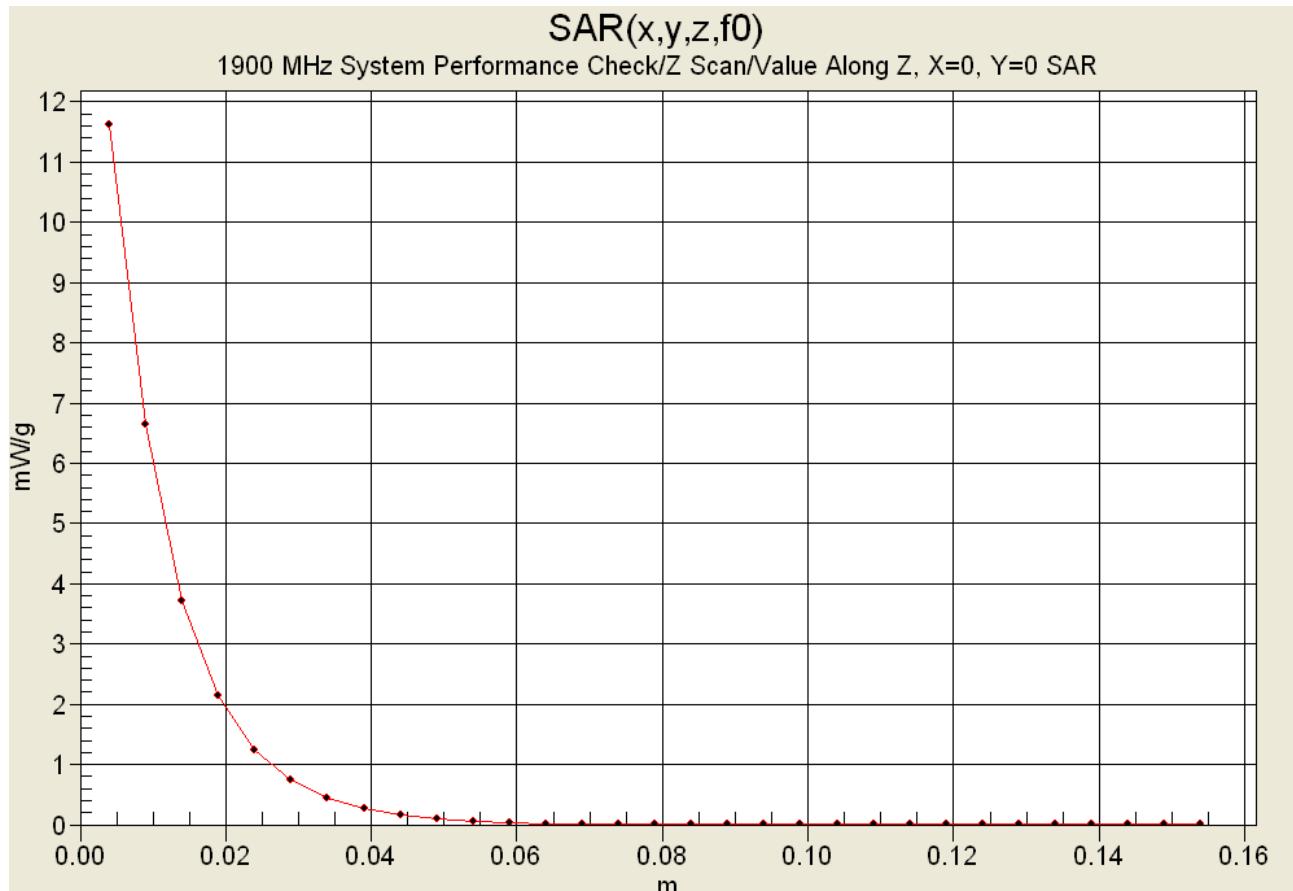
- Probe: ET3DV6 - SN1590; ConvF(5.03, 5.03, 5.03); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

1900 MHz System Performance Check/Area Scan (5x8x1):

Measurement grid: dx=15mm, dy=15mm


1900 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 96.5 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.43 mW/g

Z-Axis Scan

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX C - SYSTEM VALIDATION

835 MHz SYSTEM VALIDATION DIPOLE

Type:

835 MHz Validation Dipole

Serial Number:

411

Place of Calibration:

Celltech Labs Inc.

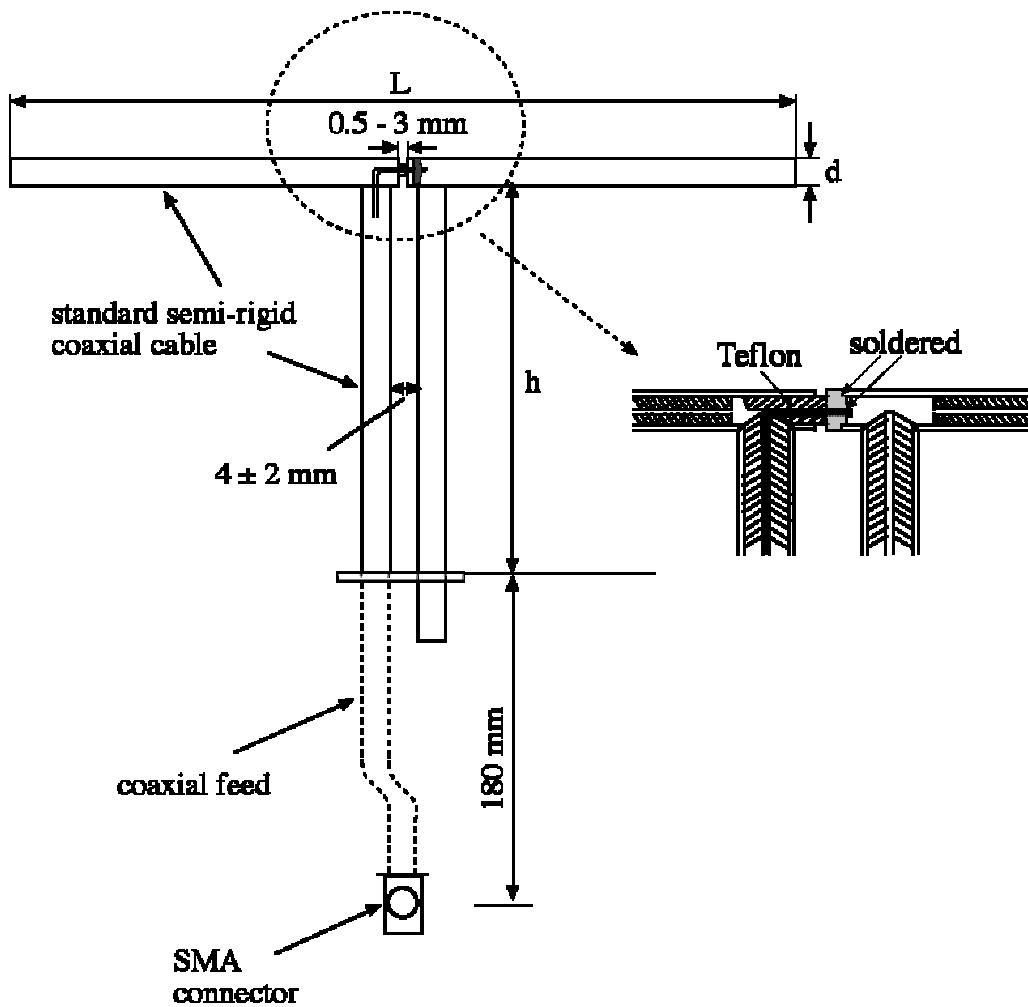
Date of Calibration:

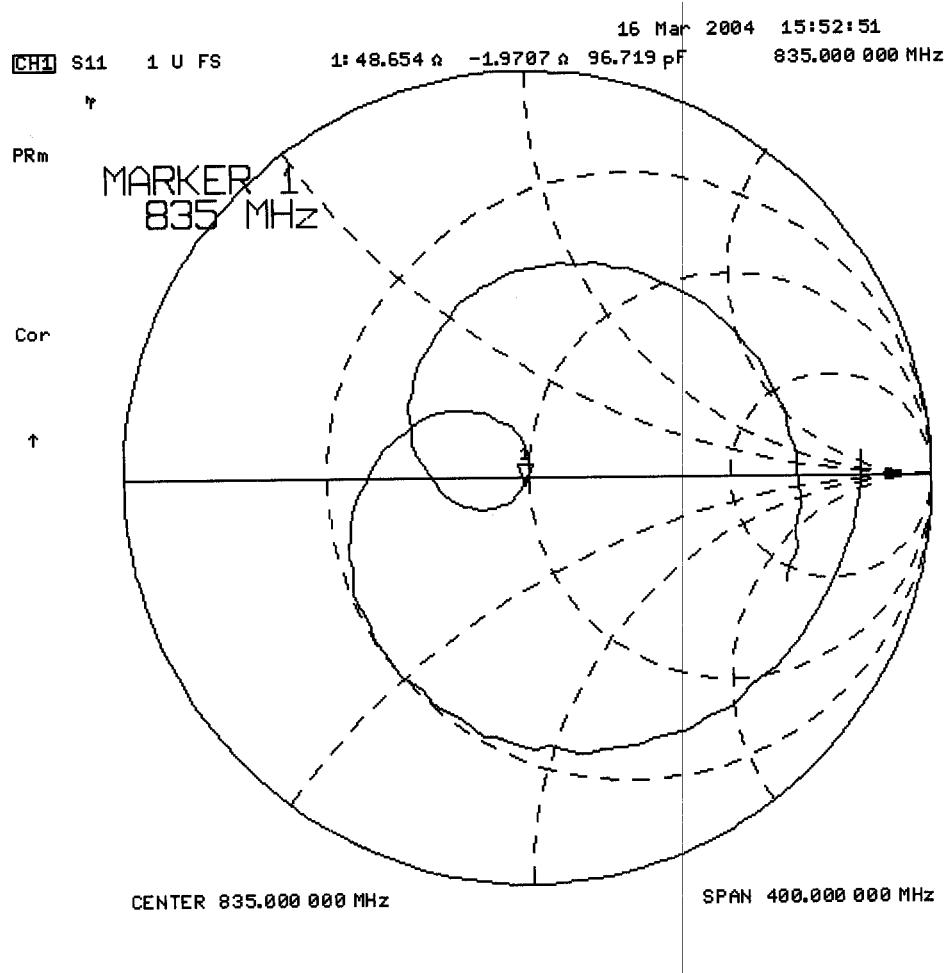
March 16, 2004

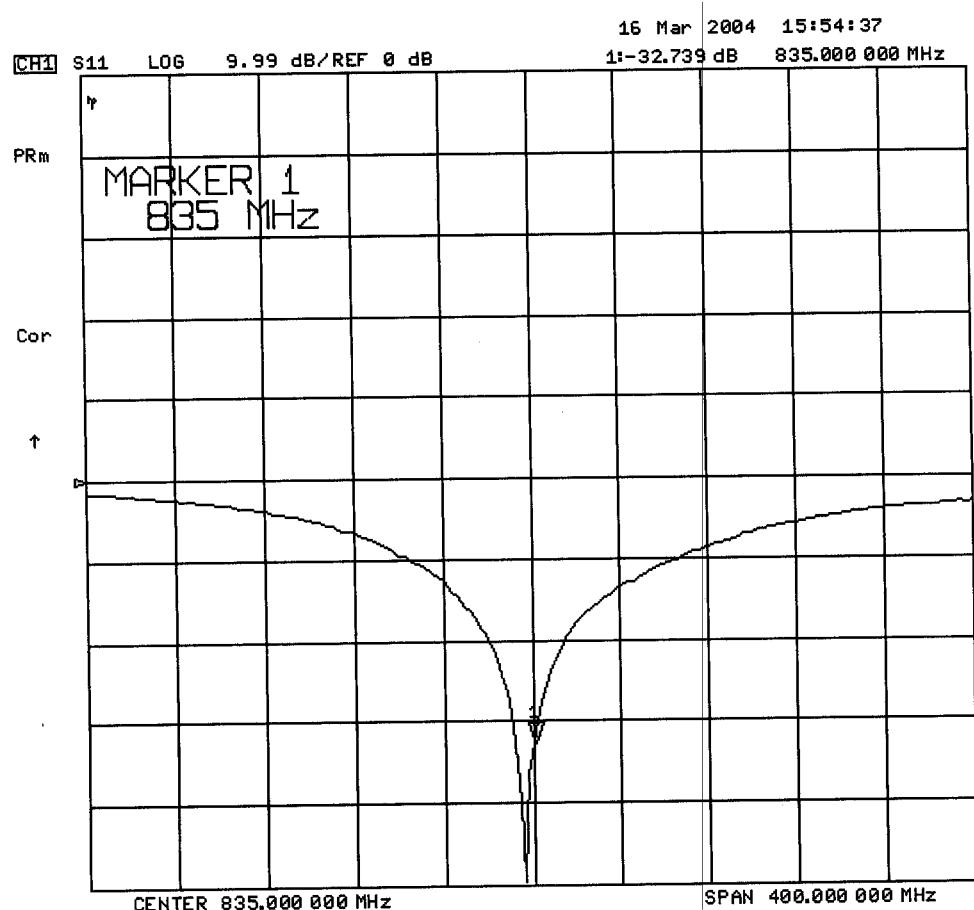
Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

Calibrated by:

Approved by:




1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 835MHz $\text{Re}\{Z\} = 48.654\Omega$
 $\text{Im}\{Z\} = -1.9707\Omega$

Return Loss at 835MHz -32.739dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: 2.0 ± 0.1 mm
Filling Volume: Approx. 20 liters
Dimensions: 50 cm (W) x 100 cm (L)

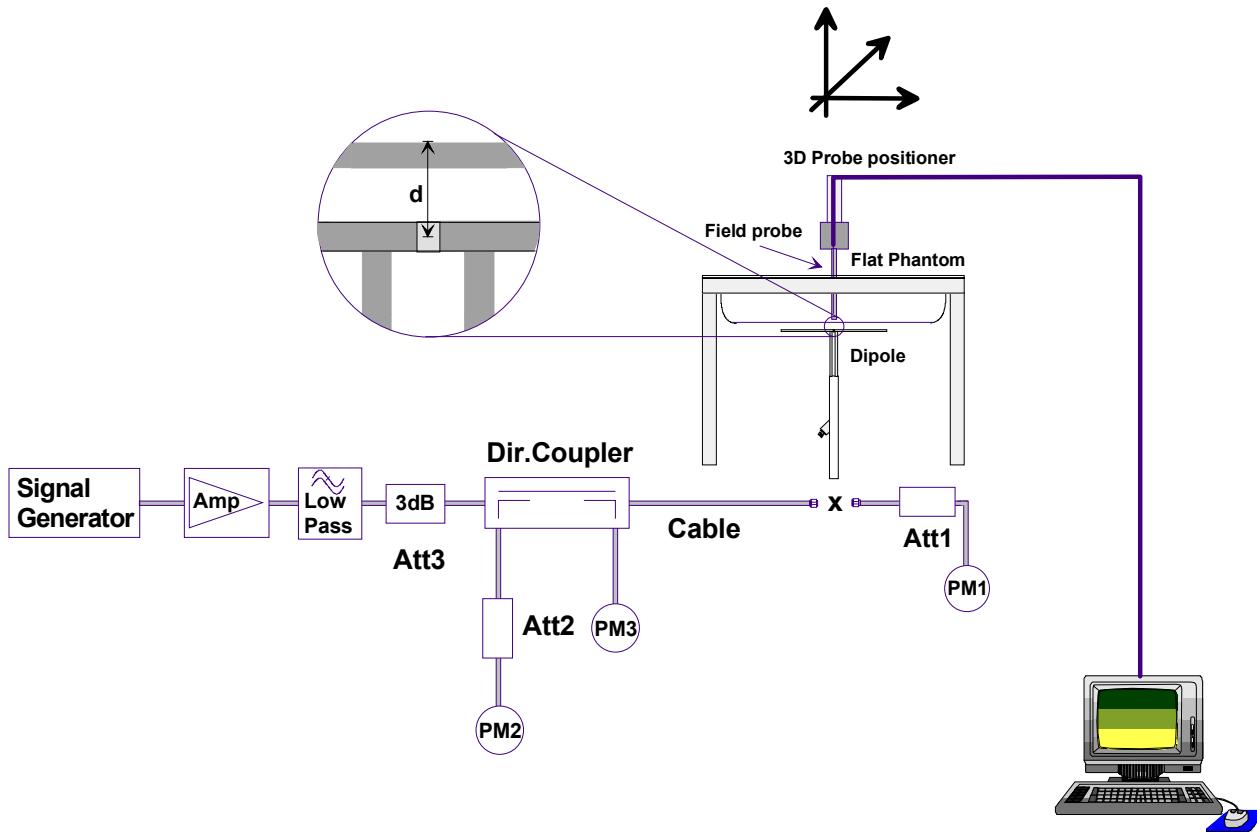
835 MHz System Validation Setup

835 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 835 MHz brain simulating tissue.

Relative Permittivity: 42.6
Conductivity: 0.94 mho/m
Ambient Temperature: 24.6 °C
Fluid Temperature: 21.9 °C
Fluid Depth: ≥ 15.0 cm
Barometric Pressure: 101.6 kPa
Humidity: 31%


The 835 MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight
Water	40.71%
Sugar	56.63%
Salt	1.48%
HEC	0.99%
Dowicil 75	0.19%
Target Dielectric Parameters at 22 °C	$\epsilon_r = 41.5$ $\sigma = 0.90$ S/m

Measurements were taken in the flat section of the SAM phantom using a dosimetric E-field probe ET3DV6 (s/n: 1590, conversion factor 7.0).

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	2.46	9.84	1.61	6.44	3.56
Test 2	2.45	9.80	1.60	6.40	3.56
Test 3	2.45	9.80	1.61	6.44	3.56
Test 4	2.44	9.76	1.60	6.40	3.55
Test 5	2.43	9.72	1.60	6.40	3.53
Test 6	2.44	9.76	1.60	6.40	3.53
Test 7	2.44	9.76	1.60	6.40	3.55
Test 8	2.44	9.76	1.60	6.40	3.54
Test 9	2.47	9.88	1.62	6.48	3.58
Test10	2.47	9.88	1.62	6.48	3.62
Average Value	2.45	9.80	1.61	6.42	3.56

The results have been normalized to 1W (forward power) into the dipole.

Averaged over 1cm (1g) of tissue: 9.80 mW/g

Averaged over 10cm (10g) of tissue: 6.42 mW/g

835 MHz System Validation - March 16, 2004

DUT: Dipole 835 MHz; Type: D835V2; Serial: 411

Ambient Temp: 24.6°C; Fluid Temp: 21.9°C; Barometric Pressure: 101.6 kPa; Humidity: 31%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 ($\sigma = 0.94 \text{ mho/m}$; $\epsilon_r = 42.6$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(7, 7, 7); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

835 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

835 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

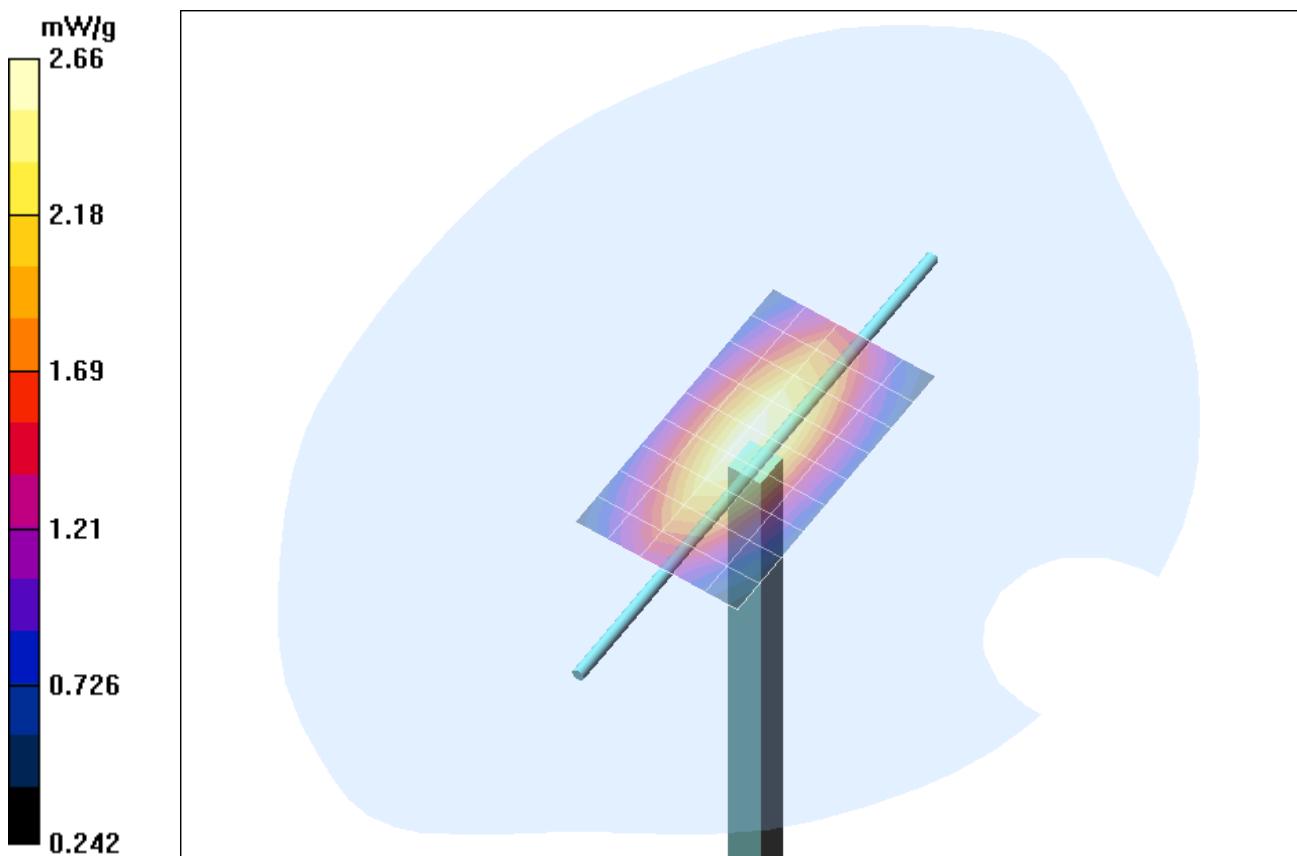
Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 11 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

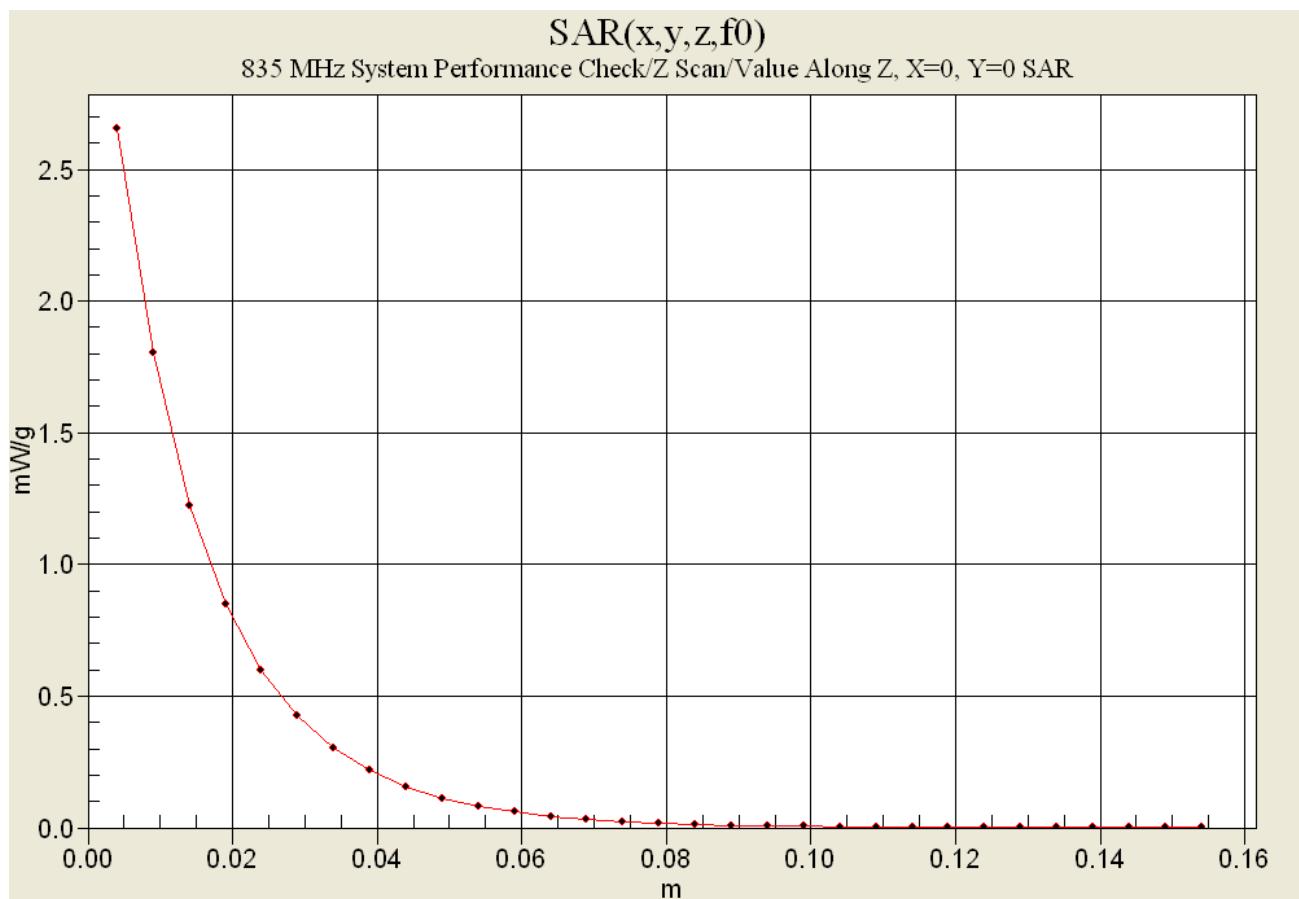
Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.58 W/kg


SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

835 MHz System Validation/Zoom Scan 12 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB


Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

1 g average of 10 measurements: 2.449 mW/g

10 g average of 10 measurements: 1.606 mW/g

835 MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain)

March 16, 2004

Frequency	e'	e"
735.000000 MHz	43.8577	20.6938
745.000000 MHz	43.6899	20.6481
755.000000 MHz	43.5341	20.5840
765.000000 MHz	43.4161	20.5576
775.000000 MHz	43.3026	20.5312
785.000000 MHz	43.2065	20.5122
795.000000 MHz	43.1067	20.5061
805.000000 MHz	43.0154	20.4762
815.000000 MHz	42.8927	20.4182
825.000000 MHz	42.7420	20.3806
835.000000 MHz	42.6206	20.2993
845.000000 MHz	42.4357	20.2595
855.000000 MHz	42.2984	20.1872
865.000000 MHz	42.1422	20.1432
875.000000 MHz	42.0082	20.1253
885.000000 MHz	41.8996	20.1110
895.000000 MHz	41.8514	20.0192
905.000000 MHz	41.7550	20.0083
915.000000 MHz	41.6535	19.9701
925.000000 MHz	41.5521	19.9380
935.000000 MHz	41.4477	19.9175

1900 MHz SYSTEM VALIDATION DIPOLE

Type:

1900 MHz Validation Dipole

Serial Number:

151

Place of Calibration:

Celltech Labs Inc.

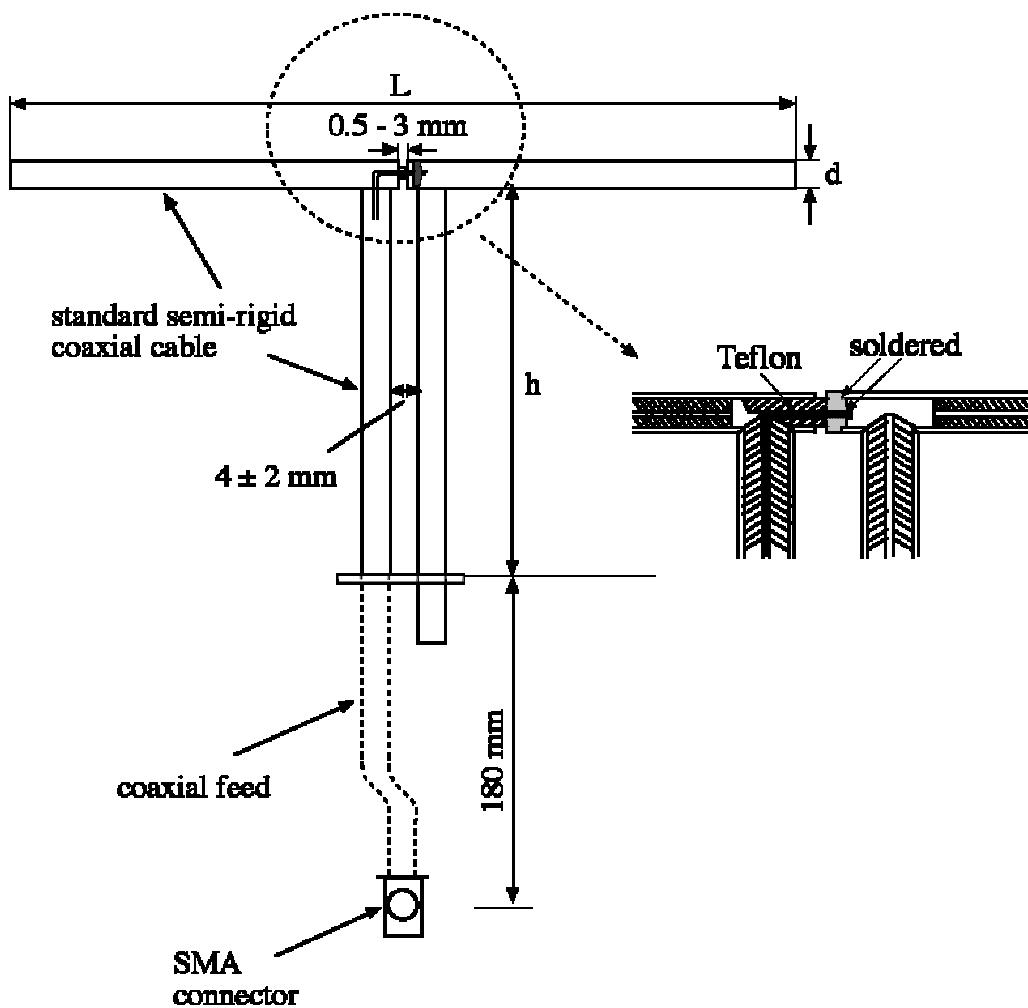
Date of Calibration:

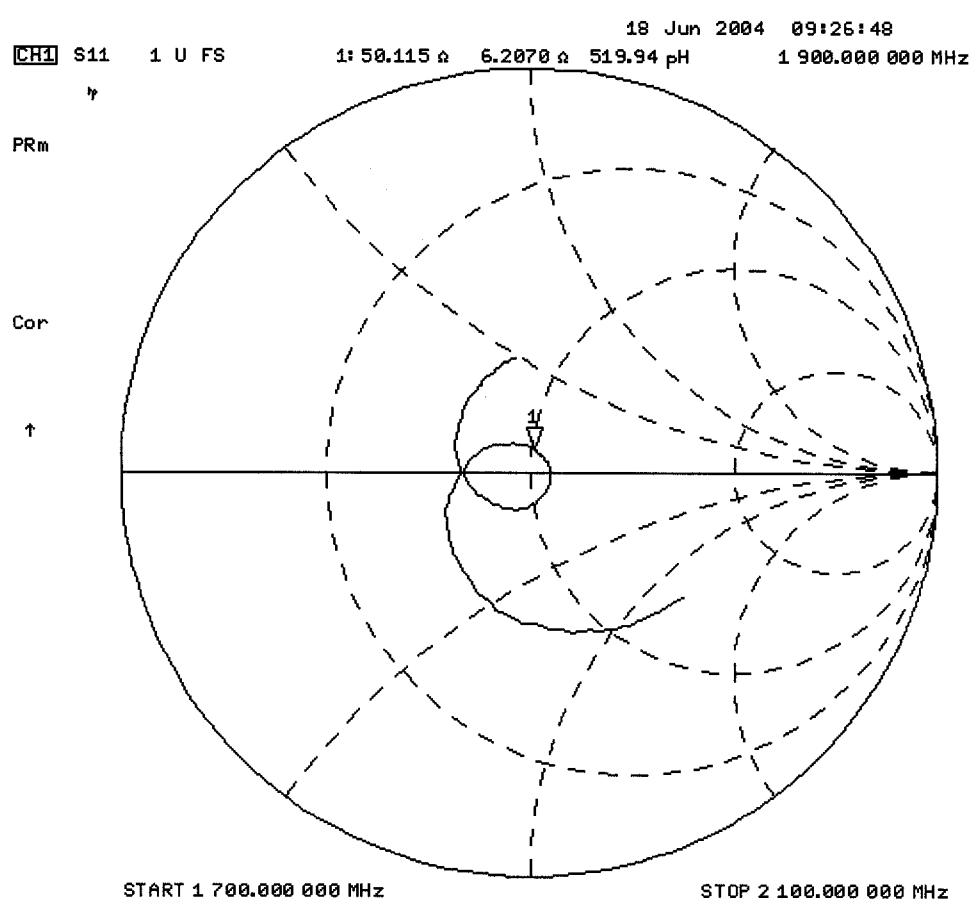
June 18, 2004

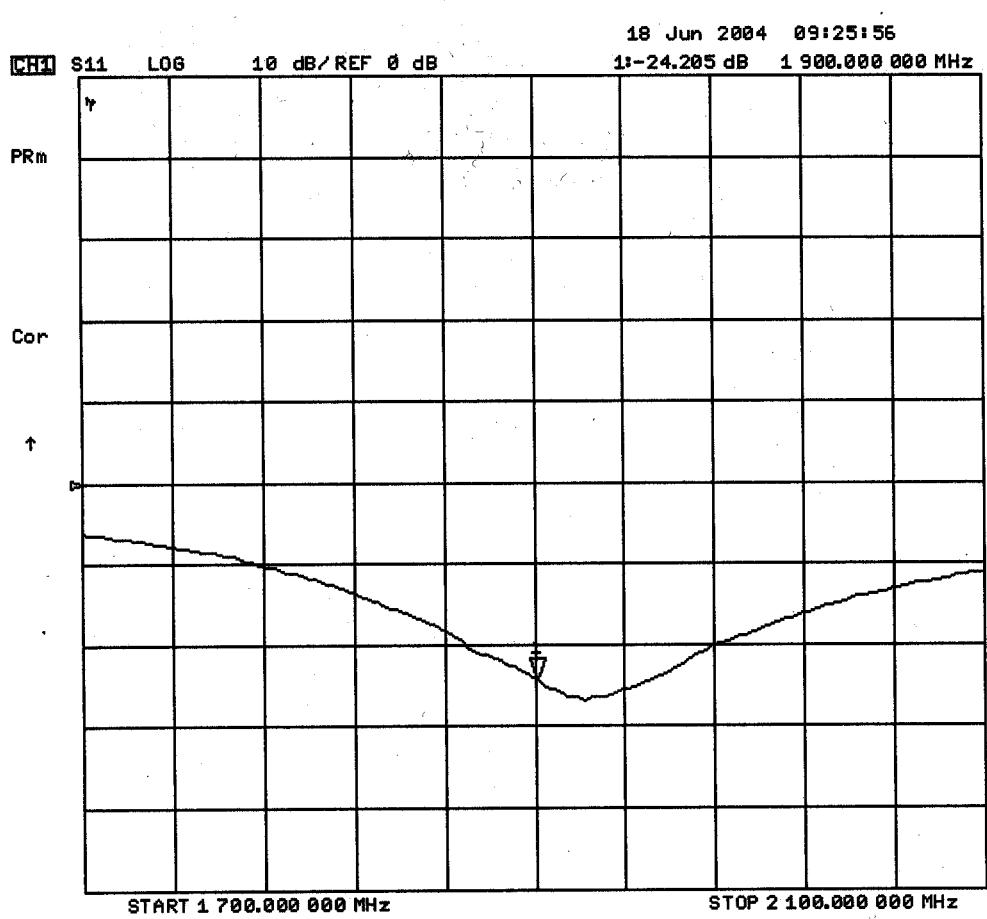
Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

Calibrated by:

Approved by:




1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900MHz $\text{Re}\{Z\} = 50.115\Omega$
 $\text{Im}\{Z\} = 6.2070\Omega$

Return Loss at 1900MHz -24.205dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

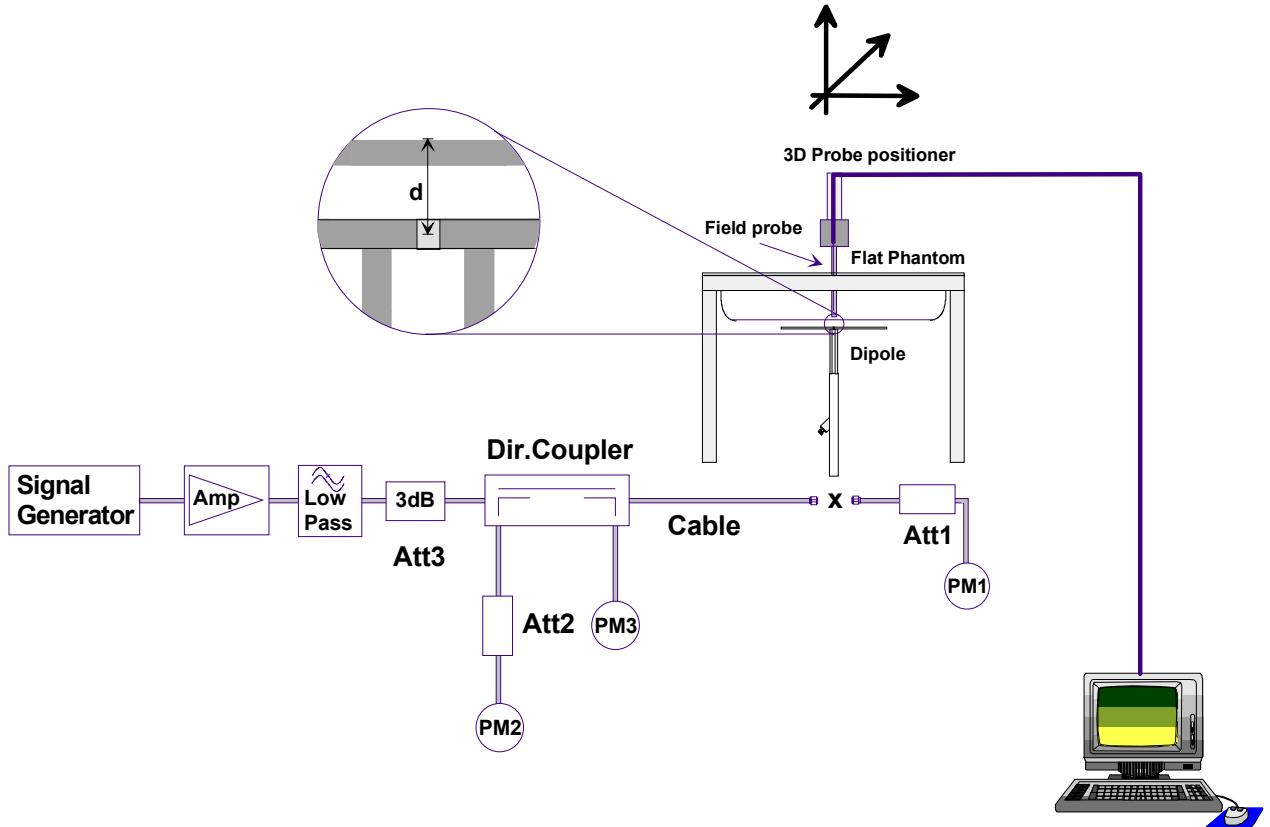
Shell Thickness: 2.0 \pm 0.1 mm
Filling Volume: Approx. 20 liters
Dimensions: 50 cm (W) x 100 cm (L)

1900 MHz System Validation Setup

1900 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 1900 MHz brain simulating tissue.


Relative Permittivity: 38.3
Conductivity: 1.43 mho/m
Ambient Temperature: 24.0 °C
Fluid Temperature: 22.6 °C
Fluid Depth: ≥ 15.0 cm
Barometric Pressure: 103.0 kPa
Humidity: 37%

The 1900 MHz tissue simulant consists of the following ingredients:

Ingredient	Percentage by weight
Water	55.85%
Glycol	44.00%
Salt	0.15%
Target Dielectric Parameters at 22 °C	$\epsilon_r = 40.0$ $\sigma = 1.40 \text{ S/m}$

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	10.1	40.40	5.30	21.20	17.4
Test 2	9.93	39.72	5.21	20.84	17.2
Test 3	9.98	39.92	5.23	20.92	17.3
Test 4	9.99	39.96	5.21	20.84	17.4
Test 5	9.97	39.88	5.22	20.88	17.4
Test 6	9.90	39.60	5.20	20.80	17.1
Test 7	9.93	39.72	5.21	20.84	17.2
Test 8	9.96	39.84	5.20	20.80	17.3
Test 9	9.94	39.76	5.20	20.80	17.2
Test 10	9.96	39.84	5.21	20.84	17.2
Average	9.966	39.864	5.219	20.876	17.27

The results have been normalized to 1W (forward power) into the dipole.

1g/10g Averaged	Average Measured SAR @ 1W Input	IEEE Target SAR @ 1W Input	Deviation (%)
1 gram	39.864	39.7	+ 0.413
10 gram	20.876	20.5	+ 1.835

1900 MHz System Validation - June 18, 2004

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 151

Ambient Temp: 24.0°C; Fluid Temp: 22.6°C; Barometric Pressure: 103.0 kPa; Humidity: 37%

Communication System: CW

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 ($\sigma = 1.43 \text{ mho/m}$; $\epsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1387; ConvF(5.25, 5.25, 5.25); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

1900 MHz System Validation/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 96.9 V/m; Power Drift = 0.1 dB

1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.9 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.3 mW/g

1900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.2 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.23 mW/g

1900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.9 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.99 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.2 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.97 mW/g; SAR(10 g) = 5.22 mW/g

1900 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.2 mW/g

1900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.1 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.2 mW/g

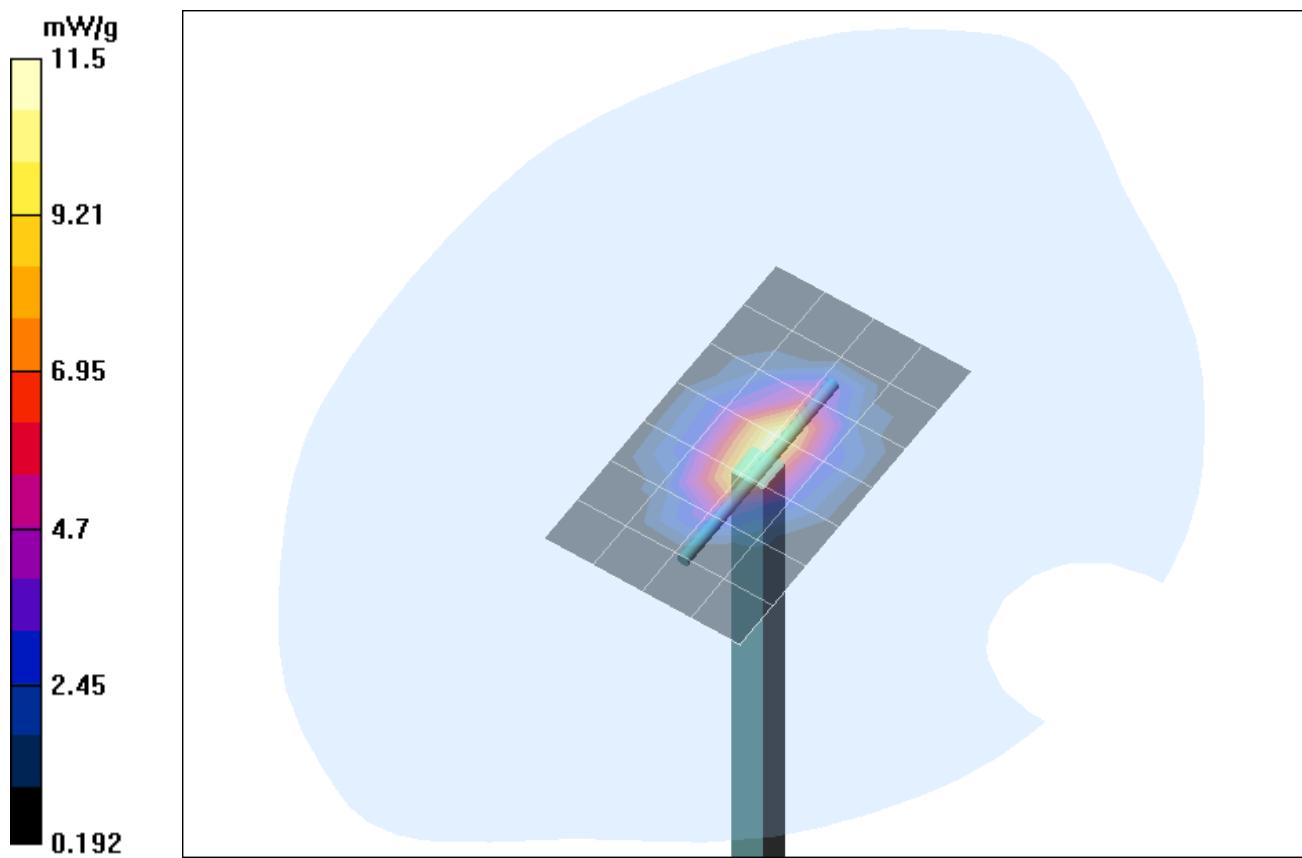
1900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.7 V/m; Power Drift = -0.0 dB

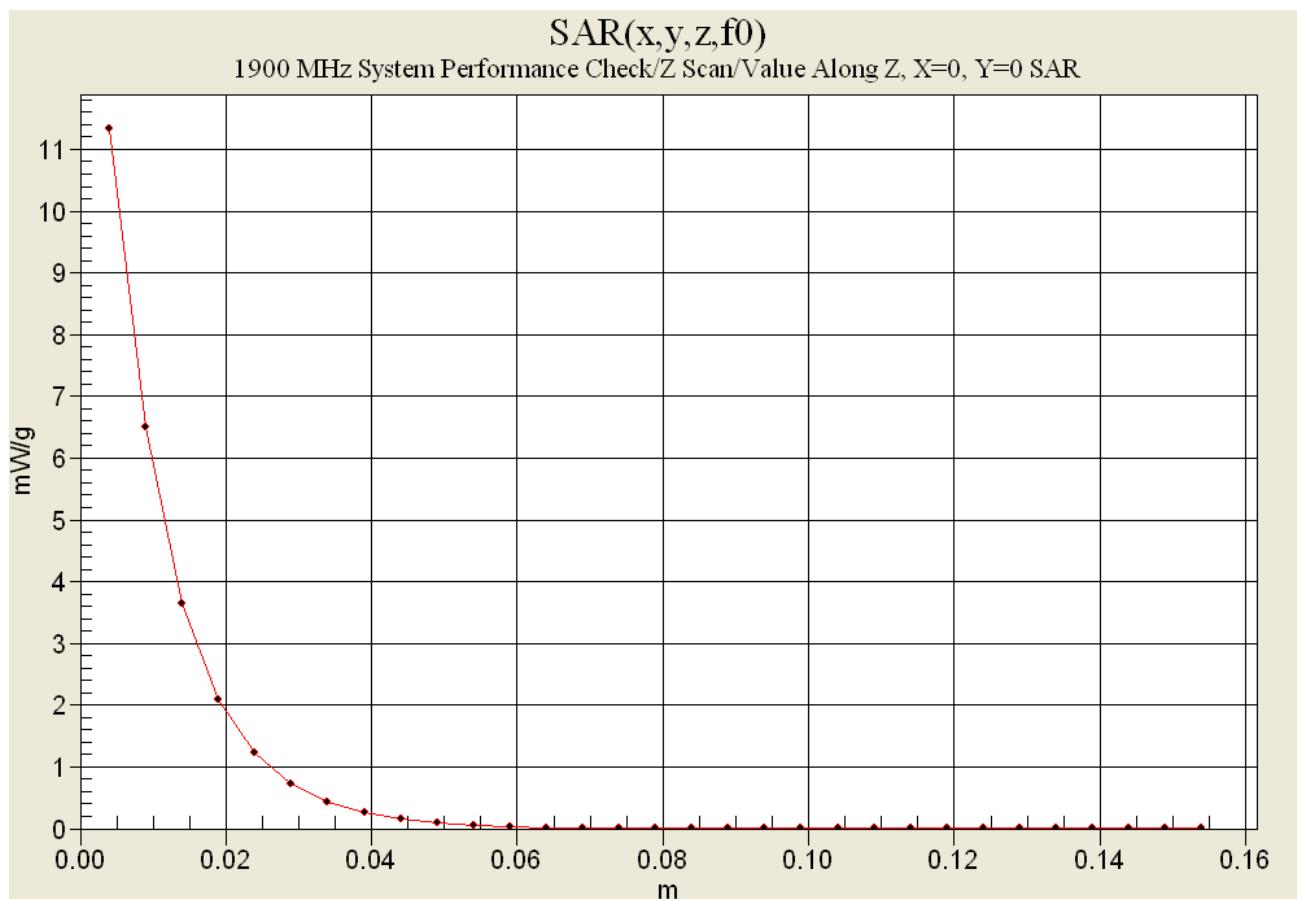
Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.94 mW/g; SAR(10 g) = 5.2 mW/g


1900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.1 V/m; Power Drift = -0.0 dB


Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.21 mW/g

1 g average of 10 measurements: 9.966 mW/g

10 g average of 10 measurements: 5.219 mW/g

1900 MHz System Validation

Measured Fluid Dielectric Parameters (Brain)

June 18, 2004

Frequency	e'	e"
1.800000000 GHz	38.7685	13.2945
1.810000000 GHz	38.7232	13.3253
1.820000000 GHz	38.6647	13.3519
1.830000000 GHz	38.6047	13.3737
1.840000000 GHz	38.5593	13.4078
1.850000000 GHz	38.5136	13.4244
1.860000000 GHz	38.4736	13.4289
1.870000000 GHz	38.4328	13.4399
1.880000000 GHz	38.3934	13.4856
1.890000000 GHz	38.3637	13.4872
1.900000000 GHz	38.3205	13.5178
1.910000000 GHz	38.2981	13.5327
1.920000000 GHz	38.2590	13.5755
1.930000000 GHz	38.2344	13.5976
1.940000000 GHz	38.2172	13.6297
1.950000000 GHz	38.1838	13.6574
1.960000000 GHz	38.1575	13.6807
1.970000000 GHz	38.1070	13.6962
1.980000000 GHz	38.0516	13.7296
1.990000000 GHz	38.0093	13.7634
2.000000000 GHz	37.9485	13.7978

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX D - PROBE CALIBRATION

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

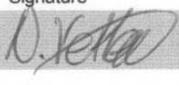
Celltech Labs

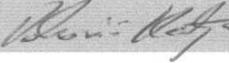
CALIBRATION CERTIFICATE

Object(s) **ET3DV6 - SN:1590**

Calibration procedure(s) **QA CAL-01.v2**
Calibration procedure for dosimetric E-field probes

Calibration date: **May 24, 2004**


Condition of the calibrated item **In Tolerance (according to the specific calibration document)**


This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	5-May-04 (METAS, No 251-00388)	May-05
Power sensor E4412A	MY41495277	5-May-04 (METAS, No 251-00388)	May-05
Reference 20 dB Attenuator	SN: 5086 (20b)	3-May-04 (METAS, No 251-00389)	May-05
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05

Calibrated by: **Name** **Function** **Signature**
Nico Vetterli **Technician**

Approved by: **Name** **Function** **Signature**
Katja Pokovic **Laboratory Director**

Date issued: May 24, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1590

Manufactured:	March 19, 2001
Last calibrated:	May 15, 2003
Recalibrated:	May 24, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space		Diode Compression ^A		
NormX	1.85 $\mu\text{V}/(\text{V}/\text{m})^2$	DCP X	91	mV
NormY	2.01 $\mu\text{V}/(\text{V}/\text{m})^2$	DCP Y	91	mV
NormZ	1.73 $\mu\text{V}/(\text{V}/\text{m})^2$	DCP Z	91	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 7.

Boundary Effect

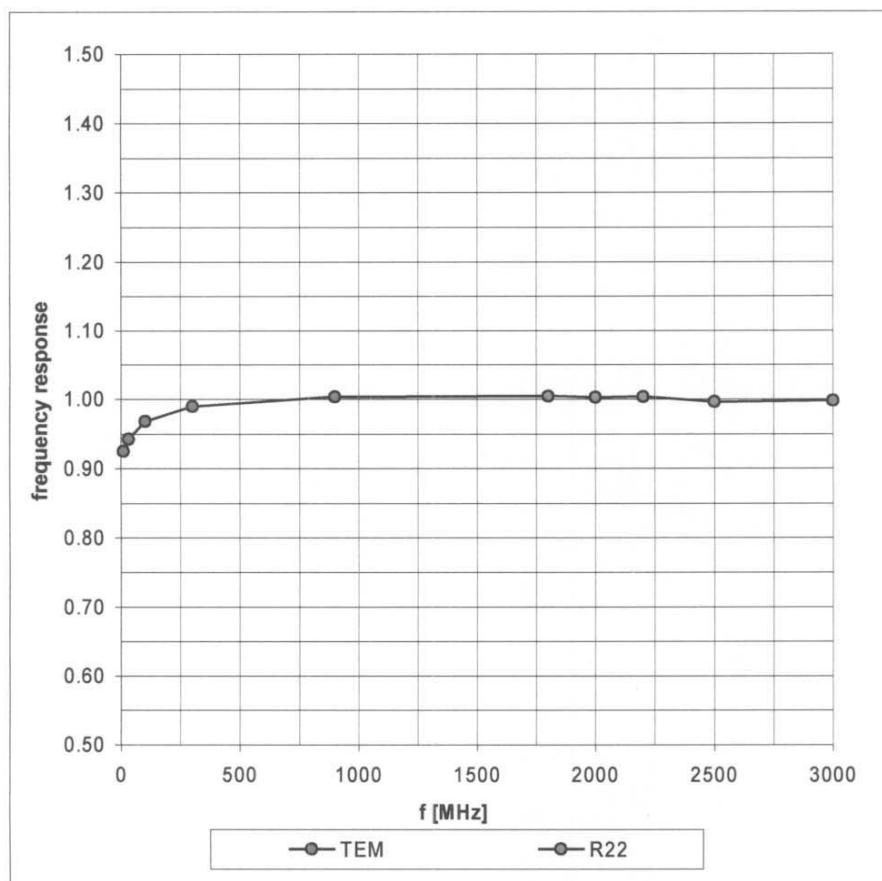
Head 900 MHz Typical SAR gradient: 5 % per mm

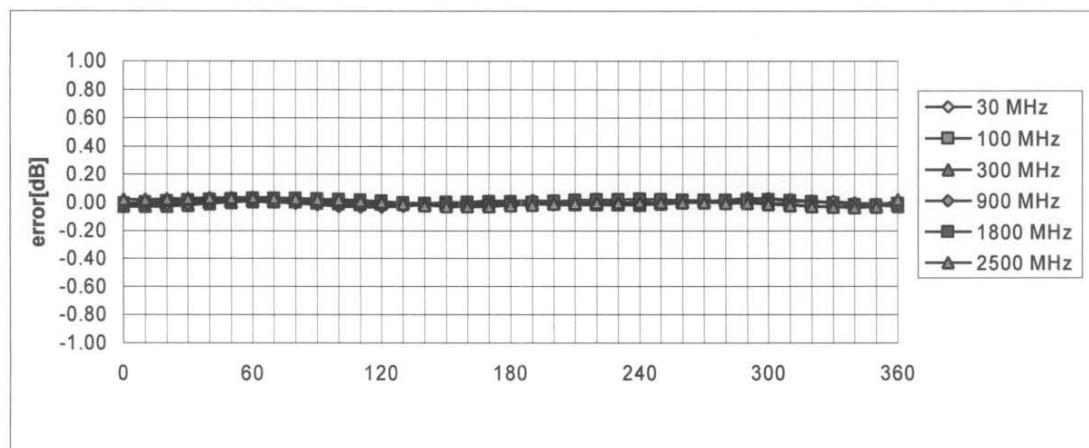
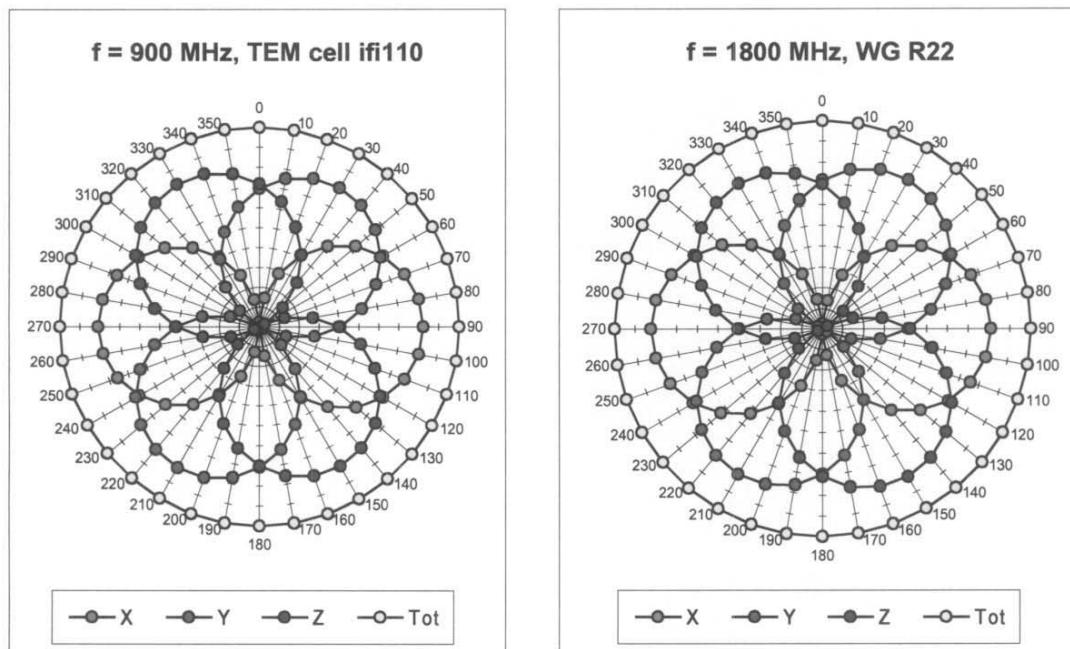
Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.0	4.4
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

Head 1800 MHz Typical SAR gradient: 10 % per mm

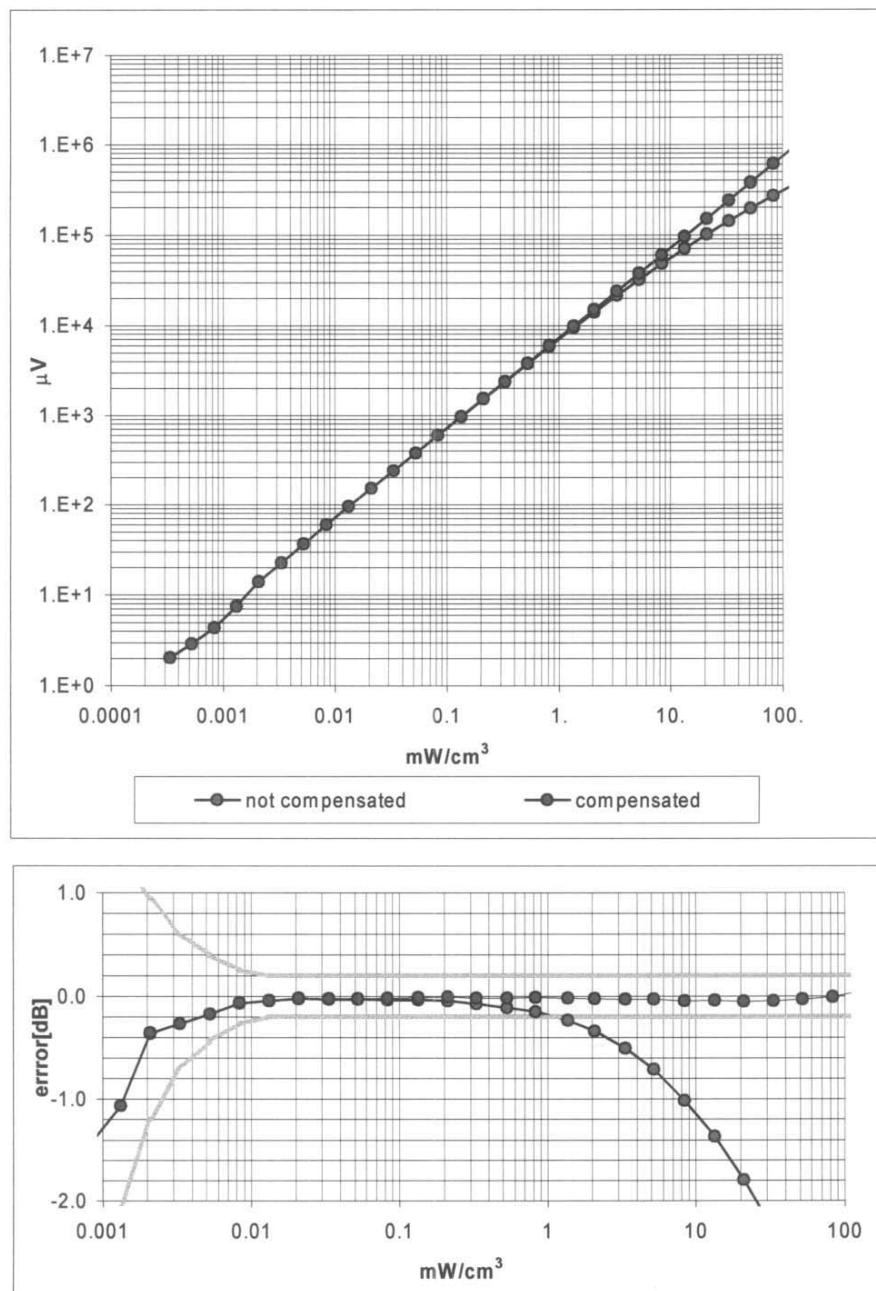
Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.2	8.5
SAR _{he} [%]	With Correction Algorithm	0.2	0.1

Sensor Offset

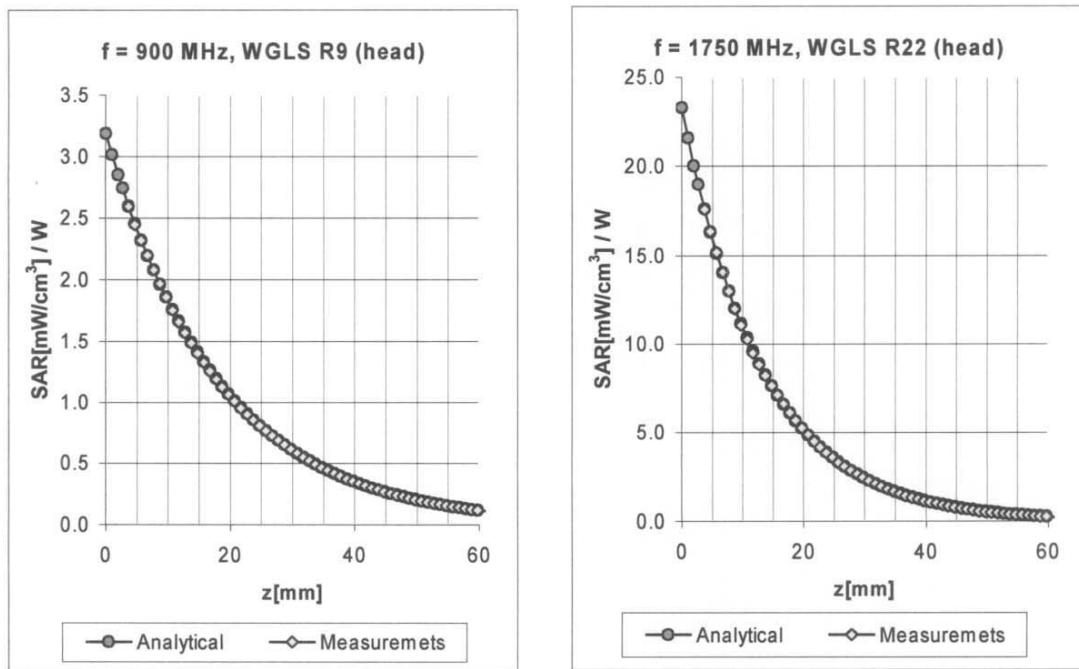

Probe Tip to Sensor Center **2.7 mm**
Optical Surface Detection **in tolerance**



The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A numerical linearization parameter: uncertainty not required


Frequency Response of E-Field

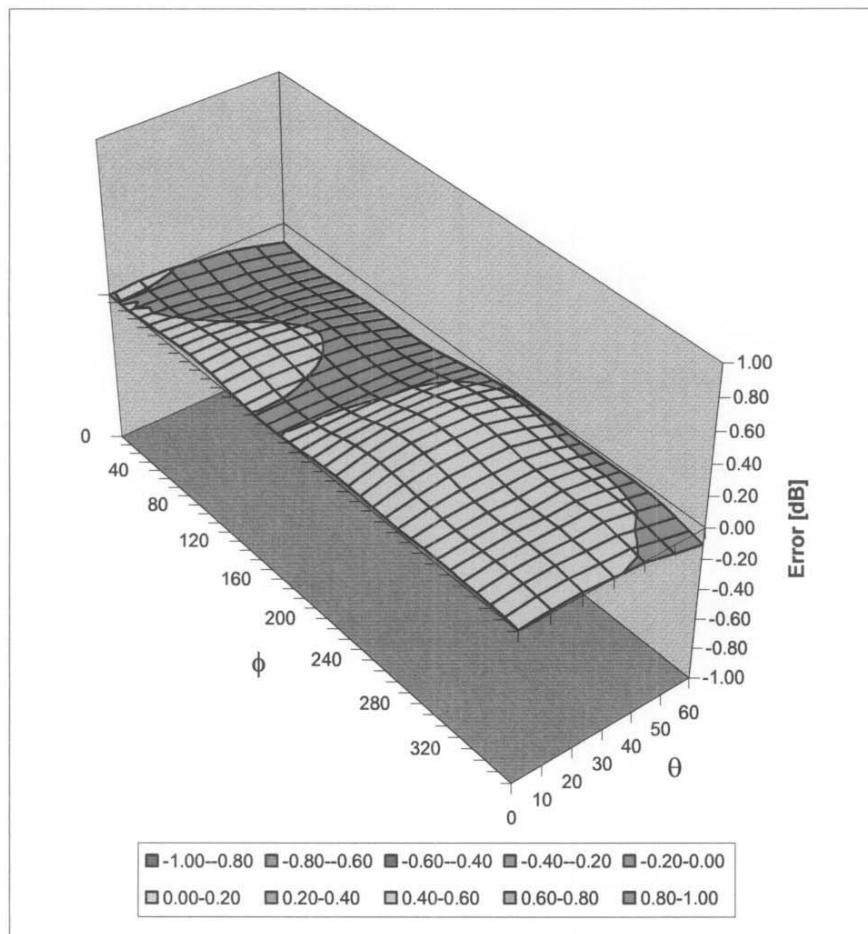
(TEM-Cell:ifi110, Waveguide R22)


Receiving Pattern (ϕ), $\theta = 0^\circ$ Axial Isotropy Error $< \pm 0.2$ dB

Dynamic Range f(SAR_{head}) (Waveguide R22)

Probe Linearity Error < ± 0.2 dB

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	750-950	Head	41.5 ± 5%	0.90 ± 5%	0.68	1.64	6.71	± 11.9% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.43	2.67	5.28	± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.46	2.81	5.03	± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.81	1.95	4.44	± 9.7% (k=2)

835	750-950	Body	55.2 ± 5%	0.97 ± 5%	0.49	1.99	6.54	± 11.9% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.50	2.87	4.68	± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.52	2.93	4.58	± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	0.91	1.78	4.22	± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (θ, ϕ), $f = 900$ MHz

Spherical Isotropy Error $< \pm 0.4$ dB

Additional Conversion Factors for Dosimetric E-Field Probe

Type:

ET3DV6

Serial Number:

1590

Place of Assessment:

Zurich

Date of Assessment:


May 25, 2004

Probe Calibration Date:

May 24, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (\pm standard deviation)

150 MHz	ConvF	9.1 \pm 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
300 MHz	ConvF	7.9 \pm 8%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
450 MHz	ConvF	7.5 \pm 8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
150 MHz	ConvF	8.8 \pm 8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
450 MHz	ConvF	7.7 \pm 8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

835 MHz System Performance Check & DUT Evaluation (Head)

Measured Fluid Dielectric Parameters (Brain)

July 28, 2004

Frequency	e'	e"
735.000000 MHz	41.7385	19.7591
745.000000 MHz	41.5868	19.7253
755.000000 MHz	41.4644	19.6743
765.000000 MHz	41.2880	19.6161
775.000000 MHz	41.1382	19.5981
785.000000 MHz	41.0451	19.5667
795.000000 MHz	40.9351	19.5407
805.000000 MHz	40.8337	19.4917
815.000000 MHz	40.7629	19.4842
825.000000 MHz	40.6202	19.4540
835.000000 MHz	40.5023	19.4027
845.000000 MHz	40.3226	19.3596
855.000000 MHz	40.2010	19.3231
865.000000 MHz	40.0494	19.2760
875.000000 MHz	39.9366	19.2804
885.000000 MHz	39.8421	19.2301
895.000000 MHz	39.7662	19.1659
905.000000 MHz	39.6488	19.1200
915.000000 MHz	39.5458	19.0958
925.000000 MHz	39.4483	19.0468
935.000000 MHz	39.3154	19.0145

835 MHz DUT Evaluation (Head)

Measured Fluid Dielectric Parameters (Brain)

July 29, 2004

Frequency	e'	e"
735.000000 MHz	41.5982	19.7821
745.000000 MHz	41.4755	19.7415
755.000000 MHz	41.3088	19.6450
765.000000 MHz	41.1634	19.6139
775.000000 MHz	41.0241	19.5883
785.000000 MHz	40.9286	19.5858
795.000000 MHz	40.8226	19.5701
805.000000 MHz	40.7433	19.5589
815.000000 MHz	40.6276	19.4989
825.000000 MHz	40.5039	19.4747
835.000000 MHz	40.3673	19.4079
845.000000 MHz	40.2207	19.3668
855.000000 MHz	40.0401	19.3367
865.000000 MHz	39.9281	19.2792
875.000000 MHz	39.7872	19.2516
885.000000 MHz	39.6689	19.2191
895.000000 MHz	39.6183	19.1685
905.000000 MHz	39.5063	19.1366
915.000000 MHz	39.4117	19.1202
925.000000 MHz	39.3354	19.0896
935.000000 MHz	39.2124	19.0544

1900 MHz System Performance Check & 1880 MHz DUT Evaluation (Head)

Measured Fluid Dielectric Parameters (Brain)

July 29, 2004

Frequency	e'	e"
1.800000000 GHz	38.5122	13.1237
1.810000000 GHz	38.4600	13.1480
1.820000000 GHz	38.4102	13.1740
1.830000000 GHz	38.3772	13.1813
1.840000000 GHz	38.3279	13.2192
1.850000000 GHz	38.2801	13.2326
1.860000000 GHz	38.2155	13.2357
1.870000000 GHz	38.1808	13.2622
1.880000000 GHz	38.1484	13.3051
1.890000000 GHz	38.1126	13.3354
1.900000000 GHz	38.0790	13.3819
1.910000000 GHz	38.0505	13.4107
1.920000000 GHz	38.0140	13.4531
1.930000000 GHz	37.9900	13.4761
1.940000000 GHz	37.9515	13.4880
1.950000000 GHz	37.9215	13.5120
1.960000000 GHz	37.8752	13.5175
1.970000000 GHz	37.8042	13.5187
1.980000000 GHz	37.7543	13.5472
1.990000000 GHz	37.6852	13.5795
2.000000000 GHz	37.6260	13.6030

1880 MHz DUT Evaluation (Head)

Measured Fluid Dielectric Parameters (Brain)

July 30, 2004

Frequency	e'	e"
1.780000000 GHz	38.5424	13.2058
1.790000000 GHz	38.5119	13.2292
1.800000000 GHz	38.4657	13.2647
1.810000000 GHz	38.4077	13.2982
1.820000000 GHz	38.3733	13.3239
1.830000000 GHz	38.3218	13.3389
1.840000000 GHz	38.2731	13.3763
1.850000000 GHz	38.2271	13.3914
1.860000000 GHz	38.1716	13.4035
1.870000000 GHz	38.1193	13.4288
1.880000000 GHz	38.0856	13.4488
1.890000000 GHz	38.0409	13.4874
1.900000000 GHz	38.0035	13.5215
1.910000000 GHz	37.9576	13.5493
1.920000000 GHz	37.9296	13.5807
1.930000000 GHz	37.8858	13.5987
1.940000000 GHz	37.8546	13.6351
1.950000000 GHz	37.8211	13.6615
1.960000000 GHz	37.7697	13.6529
1.970000000 GHz	37.7161	13.6806
1.980000000 GHz	37.6678	13.6966

835 MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain)

July 31, 2004

Frequency	e'	e"
735.000000 MHz	42.1920	20.1491
745.000000 MHz	42.0711	20.0891
755.000000 MHz	41.8820	20.0141
765.000000 MHz	41.7893	19.9850
775.000000 MHz	41.6265	19.9303
785.000000 MHz	41.5184	19.8967
795.000000 MHz	41.4482	19.9089
805.000000 MHz	41.3347	19.8676
815.000000 MHz	41.2354	19.8452
825.000000 MHz	41.0979	19.8448
835.000000 MHz	40.9829	19.7758
845.000000 MHz	40.8334	19.7393
855.000000 MHz	40.6556	19.6606
865.000000 MHz	40.5244	19.6227
875.000000 MHz	40.3797	19.5597
885.000000 MHz	40.2589	19.5322
895.000000 MHz	40.2190	19.4625
905.000000 MHz	40.1149	19.4374
915.000000 MHz	40.0275	19.4084
925.000000 MHz	39.9212	19.3714
935.000000 MHz	39.7871	19.3439

835 MHz DUT Evaluation (Body)

Measured Fluid Dielectric Parameters (Muscle)

July 31, 2004

Frequency	e'	e"
735.000000 MHz	55.0041	22.0205
745.000000 MHz	54.8820	21.9534
755.000000 MHz	54.7685	21.8613
765.000000 MHz	54.6596	21.7698
775.000000 MHz	54.5485	21.7279
785.000000 MHz	54.5010	21.6882
795.000000 MHz	54.4465	21.6512
805.000000 MHz	54.3883	21.5930
815.000000 MHz	54.2830	21.5355
825.000000 MHz	54.1927	21.5074
835.000000 MHz	54.0634	21.4666
845.000000 MHz	53.9579	21.4184
855.000000 MHz	53.8340	21.3675
865.000000 MHz	53.7013	21.3106
875.000000 MHz	53.5944	21.3098
885.000000 MHz	53.5215	21.2752
895.000000 MHz	53.4689	21.1756
905.000000 MHz	53.3961	21.1114
915.000000 MHz	53.3155	21.0461
925.000000 MHz	53.2283	21.0206
935.000000 MHz	53.1532	20.9909

1900 MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain)

August 03, 2004

Frequency	e'	e"
1.800000000 GHz	38.6454	13.1925
1.810000000 GHz	38.6014	13.2053
1.820000000 GHz	38.5486	13.2115
1.830000000 GHz	38.5032	13.2433
1.840000000 GHz	38.4589	13.2597
1.850000000 GHz	38.4163	13.2723
1.860000000 GHz	38.3673	13.2771
1.870000000 GHz	38.3196	13.2873
1.880000000 GHz	38.2823	13.3031
1.890000000 GHz	38.2455	13.3276
1.900000000 GHz	38.2208	13.3652
1.910000000 GHz	38.1815	13.3913
1.920000000 GHz	38.1742	13.4296
1.930000000 GHz	38.1507	13.4634
1.940000000 GHz	38.1381	13.4758
1.950000000 GHz	38.1112	13.5145
1.960000000 GHz	38.0580	13.5235
1.970000000 GHz	38.0138	13.5359
1.980000000 GHz	37.9566	13.5624
1.990000000 GHz	37.9121	13.6070
2.000000000 GHz	37.8699	13.6531

1880 MHz DUT Evaluation (Body)

Measured Fluid Dielectric Parameters (Muscle)

August 03, 2004

Frequency	e'	e"
1.780000000 GHz	52.3500	14.5652
1.790000000 GHz	52.3116	14.6201
1.800000000 GHz	52.2869	14.6671
1.810000000 GHz	52.2467	14.7275
1.820000000 GHz	52.2154	14.7659
1.830000000 GHz	52.1567	14.7740
1.840000000 GHz	52.1171	14.8023
1.850000000 GHz	52.0835	14.7896
1.860000000 GHz	52.0377	14.8024
1.870000000 GHz	51.9975	14.8359
1.880000000 GHz	51.9576	14.8514
1.890000000 GHz	51.9201	14.8797
1.900000000 GHz	51.9212	14.9493
1.910000000 GHz	51.8892	14.9875
1.920000000 GHz	51.8677	15.0668
1.930000000 GHz	51.8357	15.0768
1.940000000 GHz	51.8421	15.0952
1.950000000 GHz	51.8455	15.1164
1.960000000 GHz	51.8129	15.1241
1.970000000 GHz	51.7548	15.1450
1.980000000 GHz	51.7063	15.1898

Test Report S/N:	072604-53708F
Test Date(s):	July 28-31 & August 03, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9

(*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date 18.11.2001

Signature / Stamp

Schmid & Partner
Engineering AG

Zeughausstrasse 43, CH-8004 Zurich
Tel. +41 1 245 97 00, Fax +41 1 245 97 79