FCC
Certification
Test Report

FCC Certification Test Report for

Pelican Accessories, Inc.

Predator Wireless Playstation-2 Dongle
("Controller Host")

FCC ID: O7X-PRED-S2

August 17, 2005

Prepared for:

Pelican Accessories, Inc. 1840 East 27th Street Vernon, CA 90058

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC Certification Test Report for the Pelican Accessories, Inc. Predator Wireless Playstation-2 Dongle ("Controller Host") FCC ID: O7X-PRED-S2

August 17, 2005

WLL JOB# 8830

Prepared by: Brian J. Dettling

Documentation Specialist

Reviewed by: Gregory M. Snyder

President

Abstract

This report has been prepared on behalf of Pelican Accessories, Inc. to support the attached Application for Equipment Authorization. The test report and application are submitted for an Intentional Radiator under Part 15.249 of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for a Pelican Accessories, Inc. Predator Wireless PS-2 Dongle "Controller Host".

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

The Pelican Accessories, Inc. Predator Wireless PS-2 Controller complies with the limits for an Intentional Radiator device under Part 15.249 of the FCC Rules and Regulations.

Table of Contents

Abstr	act	ii
1	Introduction	1
1.1	Compliance Statement	1
1.2	Test Scope	1
1.3	Contract Information	1
1.4	Test Dates	1
1.5	Test and Support Personnel	1
2	Equipment Under Test	2
2.1	EUT Identification & Description	2
2.2	Test Configuration	2
2.3	Testing Algorithm	2
2.4	Test Location	3
2.5	Measurements	3
2	2.5.1 References	3
2.6	Measurement Uncertainty	3
3	Test Equipment	4
4	Test Results	5
4.1	Occupied Bandwidth: (FCC Part §2.1049)	5
4.2	Radiated Emissions: (FCC Part §2.1053)	8
4	1.2.1 Test Procedure	8
4.3	Conducted Emissions (AC Power Line)	13
List o	f Tables	
Table	1. Device Summary	2
	2: Test Equipment List.	
	3. Occupied Bandwidth Results	
Table	4. Radiated Emissions Limits	8
Table	5. Radiated Emissions Test Data, Low Frequency	9
	6. Radiated Emissions Data, Low Channel Emmissions	
	7. Radiated Emissions Data, Mid Channel Spurious	
	8. Radiated Emissions Data, High Channel Emissions	
	9: AC Power Line Conducted Emissions Test Data Sheet	

1 Introduction

1.1 Compliance Statement

The Pelican Accessories, Inc. Predator Wireless PS-2 Dongle complies with the limits for an Intentional Radiator device under Part 15.249 of the FCC Rules and Regulations.

This test report reflects the testing performed for the certification of the Wireless PS-2 Dongle. Separate testing was performed for the digital and receiver portion under the DoC process.

1.2 Test Scope

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 2003 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: Pelican Accessories, Inc.

1840 East 27th Street Vernon, CA 90058

WLL Quotation Number: 62459

1.4 Test Dates

Testing was performed from June 22nd to June 24th, 2005.

1.5 Test and Support Personnel

Washington Laboratories, LTD Greg Snyder, James Ritter

2 Equipment Under Test

2.1 EUT Identification & Description

The Pelican Accessories, Inc. Predator Wireless PS-2 Dongle ("Controller Host") is part of the wireless Controller system for the PS-2 video game console. It replaces the hardwired Controller interface to the PS-2 box, and transmits play commands (rumble data) to the Pelican Wireless Controller Pad (separate certification, FCC ID: O7X-PRED-S1). The RF Controller Host is powered from the video game console and operates in the 2400M – 2483.5MHz band.

DESCRIPTION ITEM Manufacturer: Pelican Accessories, Inc. FCC ID Number O7X-PRED-S2 **EUT Name:** Predator Wireless PS-2 Dongle (Host) Model: FCC Rule Parts: §15.249 Frequency Range: 2407M - 2470MHz Maximum Output Power: <1 mWModulation: FSK 1.53MHz Occupied Bandwidth: Keying: Automatic Type of Information: Control Power Output Level Fixed Antenna Type Integral Interface Cables: N/A Power Source & Voltage: 120Vdc via game console

Table 1. Device Summary

2.2 Test Configuration

The Predator Host was connected to a PS-2 console and configured with the Wireless Controller Pad. The PS-2 game console was powered via 120Vac and the output was connected to a television.

2.3 Testing Algorithm

The Predator Wireless Controller host transmits "rumble" data to the Wireless Controller pad when commanded by the game console. The system was configured for normal game play with the Wireless Controller pad continuously sending data to the host so that the transmit of the host would be continuous.

Worst case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Land Mobile FM or PM Communications Equipment Measurement and Performance Standards (ANSI/TIA/EIA-603-93)

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

Total Uncertainty =
$$(A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3 \text{ dB}$.

3 Test Equipment

Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Table 2: Test Equipment List

Equipment	WLL Asset #	Calibration Due
Hewlett-Packard 8568B Spectrum Analyzer	0073	7/08/05
Hewlett-Packard 85650A Quasi-Peak Adapter	0069	7/08/05
Hewlett-Packard 85685A RF Preselector	0071	7/08/05
Hewlett-Packard 8593A Spectrum Analyzer	0074	8/17/05
Hewlett-Packard 8449B Microwave Preamp	0312	9/29/05
ARA LPB-2520 BiconiLog Antenna	0007	9/14/05
ARA DRG118/A Microwave Horn Antenna	0425	6/30/06
Narda V638 Horn Antenna	0210	12/25/08

4 Test Results

4.1 Occupied Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer. As the antenna is integral to the device a receive antenna was placed in close proximity of the controller pad.

At full modulation, the occupied bandwidth was measured as shown:

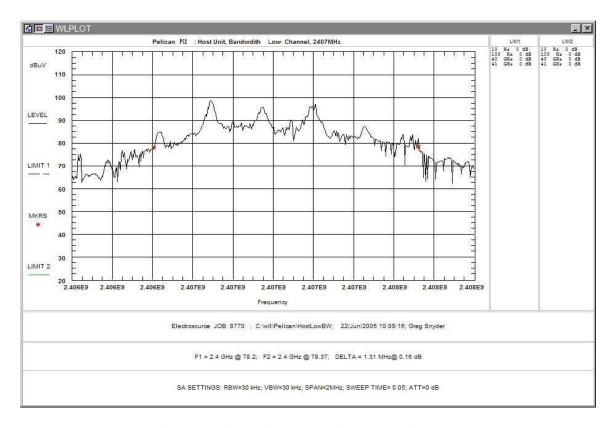


Figure 1. Occupied Bandwidth, Low Channel

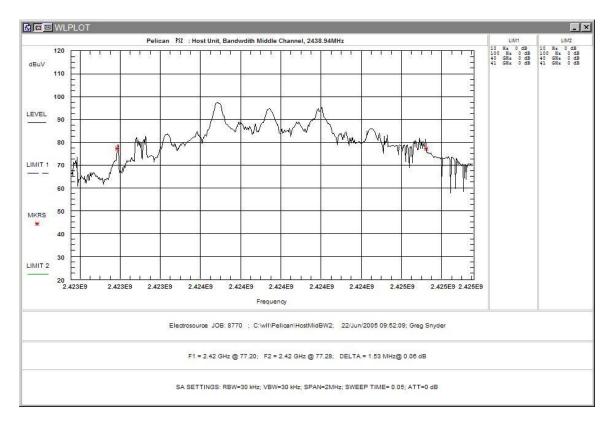


Figure 2. Occupied Bandwidth, Mid Channel

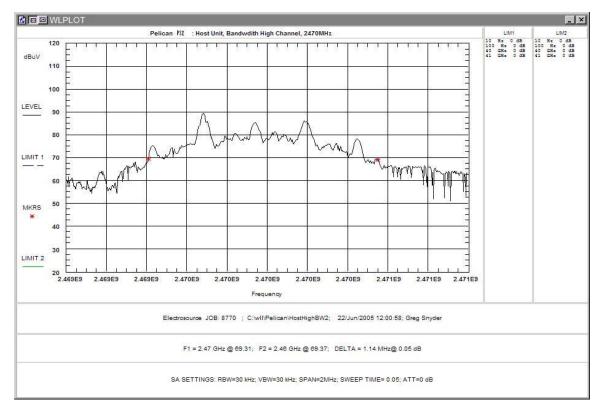


Figure 3. Occupied Bandwidth, High Channel

Table 3 provides a summary of the Occupied Bandwidth Results.

Table 3. Occupied Bandwidth Results

Frequency	Bandwidth				
Low Channel 2407MHz	1.31MHz				
Mid Channel 2438MHz	1.53MHz				
High Channel 2470MHz	1.14MHz				

4.2 Radiated Emissions: (FCC Part §2.1053)

The EUT must comply with the radiated emission limits of 15.249(a). The limits are as shown in the following table.

Fundamental Field Strength of Field Strength of **Fundamental Harmonics Frequency** $(\mu V/m)$ $(\mu V/m)$ 902 - 928 MHz50,000 500 2400 - 2483.5 MHz 50,000 500 5725 – 5875 MHz 50,000 500 24.00 - 24.25 GHz250,000 2500

Table 4. Radiated Emissions Limits

4.2.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2003. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The emissions were measured using the following resolution bandwidths:

Frequency Range	Resolution Bandwidth	Video Bandwidth
30MHz-1000 MHz	100kHz	>100kHz
>1000 MHz	1 MHz	1MHz (peak)

Emissions were measured to the 10th harmonic of the transmit frequency. Worst case emission levels are reported.

The following is a sample calculation used in the data tables for calculating the final field strength of spurious emissions and comparing these levels to the specified limits.

Sample Calculation:

 $\begin{array}{lll} \mbox{Spectrum Analyzer Voltage (SA Level):} & V \ dB\mu V \\ \mbox{Antenna Factor (Ant Corr):} & \mbox{AFdB/m} \\ \mbox{Cable Loss Correction (Cable Corr):} & \mbox{CCdB} \end{array}$

Duty Cycle Correction (Average) DCCdB (if applicable)

Amplifier Gain: GdB

Electric Field (Corr Level): $EdB\mu V/m = VdB\mu V + AFdB/m + CCdB +$

DCCdB - GdB

Table 5. Radiated Emissions Test Data, Low Frequency

Electrosource DATE: 6/24/2005 CLIENT: 8830 TESTER: Greg Snyder JOB #:

EUT Information:

Test Requirements: TEST STANDARD: Predator Host FCC Part 15

CONFIGURATION: PS-2 DISTANCE: 3mCLOCKS: В 16M, 6M, CLASS:

Test Equipment/Limit:

EUT:

ANTENNA: A 00007 LIMIT: LFCC_3m_Class_B

CABLE: CSITE2_3m AMPLIFIER (dB) None

Frequenc y (MHz)	Polarity H/V	Azimuth Degree	Ant. Height (m)	SA Level (QP) (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (µV/m)	Margin dB
48.000	V	0.0	1.0	10.9	14.3	1.6	26.8	21.9	100.0	-13.2
112.000	V	90.0	1.0	7.5	10.4	2.2	20.0	10.1	150.0	-23.5
130.940	V	180.0	1.0	9.2	9.8	2.3	21.3	11.6	150.0	-22.2
144.000	V	180.0	1.0	9.6	8.1	2.4	20.1	10.1	150.0	-23.4
160.000	V	180.0	1.0	9.3	8.8	2.5	20.6	10.7	150.0	-22.9
208.000	V	225.0	1.5	5.2	10.1	2.8	18.1	8.1	150.0	-25.4
224.000	V	270.0	2.0	5.6	11.3	2.9	19.9	9.8	200.0	-26.2
48.000	Н	45.0	2.0	6.8	14.3	1.6	22.7	13.7	100.0	-17.3
112.000	Н	180.0	2.0	6.2	10.4	2.2	18.7	8.7	150.0	-24.8
125.340	Н	270.0	2.5	5.3	10.5	2.3	18.0	8.0	150.0	-25.5
143.970	Н	135.0	2.5	10.5	8.1	2.4	21.0	11.2	150.0	-22.5
157.090	Н	0.0	2.5	8.9	8.5	2.5	19.9	9.9	150.0	-23.6
168.000	Н	315.0	2.0	11.8	9.5	2.6	23.8	15.6	150.0	-19.7
160.000	Н	180.0	2.0	10.0	8.8	2.5	21.3	11.6	150.0	-22.2
192.000	Н	315.0	1.5	14.4	9.5	2.7	26.6	21.4	150.0	-16.9
208.000	Н	270.0	1.5	13.3	10.1	2.8	26.2	20.5	150.0	-17.3
209.755	Н	180.0	1.5	13.5	10.3	2.8	26.6	21.4	150.0	-16.9
224.000	Н	180.0	1.0	10.7	11.3	2.9	25.0	17.7	200.0	-21.1
228.830	Н	315.0	1.0	16.5	11.6	2.9	31.1	35.8	200.0	-14.9
294.890	Н	180.0	1.0	16.2	12.5	3.3	32.0	39.9	200.0	-14.0
322.540	Н	180.0	1.0	9.7	13.2	3.5	26.4	20.8	200.0	-19.6
420.000	Н	90.0	1.0	10.2	15.8	4.0	30.0	31.5	200.0	-16.1

Document 8830-01, Rev. 0 FCC ID: 07X-PRED-S2

August 2005

Table 6. Radiated Emissions Data, Low Channel Emmissions

CLIENT: Electrosource DATE: 6/22/2005
TESTER: Greg Snyder JOB #: 8830
EUT Information: Test Requirements:

EUT: Predator TEST STANDARD: FCC Part 15.249

CONFIGURATION: Host DISTANCE: 3m Tx Frequency: 2407, 2438, 2470 M CLASS: B

Test Equipment/Limit:

ANTENNA: A_00004 LIMIT: \$15.249 CABLE: CSITE1_HF AMPLIFIER (dB) A_00066

Frequency (MHz)	Pol H/V	Az Deg	Ant. Hght (m)	SA Level Peak (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (µV/m)	Margin dB	Notes
Fundamental												
2407.000	Н	180.0	1.0	79.8	28.9	2.9	35.5	76.1	6386.4	50000.0	-17.9	
2407.000	V	90.0	1.0	82.5	28.9	2.9	35.5	78.8	8714.8	50000.0	-15.2	
Harmonics	and sp	urious										
1179.550	V	90.0	1.0	54.2	25.4	2.3	36.1	44.4	165.6	500.0	-9.6	
1769.400	V	202.5	1.0	55.7	27.4	2.4	35.6	50.4	332.3	500.0	-3.5	
1179.550	Н	180.0	1.0	49.7	25.4	2.3	36.1	43.5	149.3	500.0	-10.5	
1769.400	Н	180.0	1.0	54.3	27.4	2.4	35.6	48.9	279.6	500.0	-5.0	
4821.800	V	90.0	1.0	41.8	32.5	4.1	35.9	44.2	162.0	500.0	-9.8	
4821.000	Н	90.0	1.0	42.7	32.5	4.1	35.9	43.5	149.5	500.0	-10.5	
7221.800	V	0.0	1.0	34.8	37.1	5.0	35.7	41.2	114.2	500.0	-12.8	NF Avg
7221.800	Н	0.0	1.0	34.8	37.1	5.0	35.7	41.2	114.2	500.0	-12.8	NF Avg
9628.000	Н	0.0	1.0	34.5	38.6	5.7	36.3	42.5	132.8	500.0	-11.5	NF Avg
9628.000	V	0.0	1.0	34.6	38.6	5.7	36.3	42.6	134.3	500.0	-11.4	NF Avg
12035.000	Н	0.0	1.0	36.5	40.0	6.6	35.7	47.4	234.9	500.0	-6.6	NF Avg
12035.000	V	0.0	1.0	36.5	40.0	6.6	35.7	47.4	234.9	500.0	-6.6	NF Avg
14442.000	Н	0.0	1.0	33.7	41.4	7.5	34.6	48.0	251.6	500.0	-6.0	NF Avg
14442.000	V	0.0	1.0	33.7	41.4	7.5	34.6	48.0	251.6	500.0	-6.0	NF Avg
16849.000	Н	0.0	1.0	32.8	42.5	8.0	34.9	48.3	260.2	500.0	-5.7	NF Avg
16849.000	V	0.0	1.0	32.8	42.5	8.0	34.9	48.3	260.2	500.0	-5.7	NF Avg

Note: NF = Noise floor/no detectable emissions.

All emissions are peak unless noted in notes column.

Table 7. Radiated Emissions Data, Mid Channel Spurious

Test Requirements:

CLIENT: Electrosource DATE: 6/22/2005 TESTER: Greg Snyder JOB #: 8830

EUT Information:

EUT: Predator TEST STANDARD: FCC Part 15.249

CONFIGURATION: Host DISTANCE: 3m Tx Frequency: 2407, 2438, 2470 M CLASS: B

Test Equipment/Limit:

 ANTENNA:
 A_00004
 LIMIT:
 §15.249

 CABLE:
 CSITE1_HF
 AMPLIFIER (dB)
 A_00066

Frequency (MHz)	Pol H/V	Az Deg	Ant. Hght (m)	SA Level Peak (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (µV/m)	Margin dB	Notes
Fundamental												
2438.000	V	180.0	1.0	80.2	29.0	3.0	35.5	76.6	6747.6	50000.0	-17.4	
2438.000	Н	90.0	1.0	81.0	29.0	3.0	35.5	77.4	7398.6	50000.0	-16.6	
Harmoni	ics and	l spurio	us									
4846.000	V	90.0	1.0	40.1	32.6	4.1	35.9	42.7	136.8	500.0	-11.3	
4846.000	Н	90.0	1.0	42.2	32.6	4.1	35.9	44.5	168.3	500.0	-9.5	
7252.940	Н	0.0	1.0	35.8	37.1	5.0	35.7	42.2	128.2	500.0	-11.8	NF Avg
7252.940	V	0.0	1.0	35.8	37.1	5.0	35.7	42.2	128.2	500.0	-11.8	NF Avg
9660.000	V	0.0	1.0	36.7	38.6	5.7	36.3	44.7	171.7	500.0	-9.3	NF Avg
9660.000	Н	0.0	1.0	36.7	38.6	5.7	36.3	44.7	171.7	500.0	-9.3	NF Avg
12067.000	V	0.0	1.0	36.7	40.0	6.6	35.6	47.7	241.5	500.0	-6.3	NF Avg
12067.000	Н	0.0	1.0	36.7	40.0	6.6	35.6	47.7	241.5	500.0	-6.3	NF Avg
14474.000	V	0.0	1.0	33.7	41.3	7.5	34.6	48.0	249.8	500.0	-6.0	NF Avg
14474.000	Н	0.0	1.0	33.7	41.3	7.5	34.6	48.0	249.8	500.0	-6.0	NF Avg
16881.000	V	0.0	1.0	33.5	42.4	8.0	34.9	49.0	281.2	500.0	-5.0	NF Avg
16881.000	Н	0.0	1.0	33.5	42.4	8.0	34.9	49.0	281.2	500.0	-5.0	NF Avg

Note: NF = Noise floor/no detectable emissions.

All emissions are peak unless noted in notes column.

Table 8. Radiated Emissions Data, High Channel Emissions

CLIENT: Electrosource DATE: 6/22/2005
TESTER: Greg Snyder JOB #: 8830
EUT Information: Test Requirements:

EUT: Predator TEST STANDARD: FCC Part 15.249

CONFIGURATION: Controller DISTANCE: 3m Tx Frequency: 2407, 2438, 2470 M CLASS: B

Test Equipment/Limit:

ANTENNA: A_00004 LIMIT: \$15.249
CABLE: CSITE1 HF AMPLIFIER (dB) A 00066

Frequency (MHz)	Pol H/V	Az Deg	Ant. Hght (m)	SA Level Peak (dBµV)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Amp Gain (dB)	Corr. Level (dBµV/m)	Corr. Level (µV/m)	Limit (µV/m)	Margin dB	Notes
Fundamental												
2470.000	V	180.0	1.0	81.7	29.0	3.0	35.6	78.2	8093.1	50000.0	-15.8	
2470.000	Н	90.0	1.0	82.4	29.0	3.0	35.6	78.9	8772.3	50000.0	-15.1	
Harmoni	cs and	l spurio	ous									
2483.500	V	0.0	1.0	43.5	29.1	3.0	35.6	40.0	99.9	500.0	-14.0	Amb
2483.500	Н	0.0	1.0	43.5	29.1	3.0	35.6	40.0	99.9	500.0	-14.0	Amb
4877.000	V	90.0	1.0	40.3	32.6	4.1	35.9	42.6	134.2	500.0	-11.4	
4877.000	Н	90.0	1.0	41.7	32.6	4.1	35.9	43.1	142.2	500.0	-10.9	
7284.000	Н	0.0	1.0	35.7	37.1	5.0	35.7	42.1	126.8	500.0	-11.9	NF Avg
7284.000	V	0.0	1.0	35.7	37.1	5.0	35.7	42.1	126.8	500.0	-11.9	NF Avg
9691.000	V	0.0	1.0	36.5	38.6	5.7	36.3	44.5	168.4	500.0	-9.5	NF Avg
9691.000	Н	0.0	1.0	36.5	38.6	5.7	36.3	44.5	168.4	500.0	-9.5	NF Avg
12098.000	V	0.0	1.0	35.5	40.0	6.6	35.6	46.5	211.3	500.0	-7.5	NF Avg
12098.000	Н	0.0	1.0	35.5	40.0	6.6	35.6	46.5	211.3	500.0	-7.5	NF Avg
14505.000	V	0.0	1.0	33.5	41.3	7.5	34.6	47.7	242.4	500.0	-6.3	NF Avg
14505.000	Н	0.0	1.0	33.5	41.3	7.5	34.6	47.7	242.4	500.0	-6.3	NF Avg
16912.000	V	0.0	1.0	33.3	42.3	8.0	34.9	48.8	274.1	500.0	-5.2	NF Avg
16912.000	Н	0.0	1.0	33.3	42.3	8.0	34.9	48.8	274.1	500.0	-5.2	NF Avg

Note: NF = Noise floor/no detectable emissions.

All emissions are peak unless noted in notes column.

4.3 Conducted Emissions (AC Power Line)

The EUT was placed on an 80 cm high 1 x 1.5 m non-conductive table above a ground plane. Power to the EUT was provided through a Solar Corporation 50 Ω /50 μ H Line Impedance Stabilization Network bonded to a 3 x 2 meter ground plane. The LISN has its AC input supplied from a filtered AC power source. Power and data cables were moved about to obtain maximum emissions.

The 50 Ω output of the LISN was connected to the input of the spectrum analyzer and the emissions in the frequency range of 150 kHz to 30 MHz were measured. The detector function was set to quasi-peak or peak, as appropriate, and the resolution bandwidth during testing was at least 9 kHz, with all post-detector filtering no less than 10 times the resolution bandwidth.

AC Power Line conducted emissions test data are included in Table 9.

Table 9: AC Power Line Conducted Emissions Test Data Sheet

CLIENT: Electrosource DATE: 6/22/2005

MODEL: Predator Dongle System JOB #: 8830

TESTER: Adam Black

TEST SITE: CSITE1_CE TEST STANDARD: FCC Part 15

TEST VOLTAGE: 120 VAC CLASS: FCC_B

LINE 1 - NEUTRAL

Frequenc										
у	Level	Cable	Limit	Level	Margin	Level	Cable	Level	Limit	Margin
	QP	Loss	QP	Corr	QP	AVG	Loss	Corr	AVG	AVG
MHz	dBuV	dB	dBuV	dBuV	dB	dBuV	dB	dBuV	dBuV	dB
0.151	52.8	10.3	66.0	63.1	-2.9	42.0	10.3	52.3	56.0	-3.7
0.220	35.2	10.2	62.8	45.4	-17.4	32.6	10.2	42.8	52.8	-10.0
0.236	38.4	10.2	62.2	48.6	-13.7	34.5	10.2	44.7	52.2	-7.6
0.252	37.9	10.1	61.7	48.0	-13.6	33.0	10.1	43.1	51.7	-8.5
0.286	41.4	10.1	60.6	51.5	-9.1	21.5	10.1	31.6	50.6	-19.0
0.300	41.1	10.1	60.2	51.2	-9.0	28.1	10.1	38.2	50.2	-12.0
0.472	27.7	10.2	56.5	37.9	-18.6	20.3	10.2	30.5	46.5	-16.0
0.512	26.3	10.2	56.0	36.5	-19.5	6.2	10.2	16.4	46.0	-29.6

LINE 2 - PHASE

Frequenc	_		_							=
у	Level	Cable	Limit	Level	Margin	Level	Cable	Level	Limit	Margin
	QP	Loss	QP	Corr	QP	AVG	Loss	Corr	AVG	AVG
MHz	dBuV	dB	dBuV	dBuV	dB	dBuV	dB	dBuV	dBuV	dB
0.151	51.2	10.3	65.9	61.5	-4.4	42.0	10.3	52.3	55.9	-3.6
0.220	35.2	10.2	62.8	45.4	-17.4	32.3	10.2	42.5	52.8	-10.3
0.236	39.5	10.2	62.2	49.7	-12.6	34.2	10.2	44.4	52.2	-7.9
0.252	38.3	10.1	61.7	48.4	-13.2	32.7	10.1	42.8	51.7	-8.8
0.283	42.4	10.1	60.7	52.5	-8.2	24.6	10.1	34.7	50.7	-16.0
0.304	41.6	10.1	60.1	51.7	-8.4	27.9	10.1	38.0	50.1	-12.1
0.471	25.2	10.2	56.5	35.4	-21.1	19.5	10.2	29.7	46.5	-16.8
0.613	19.0	10.2	56.0	29.2	-26.8	9.7	10.2	19.9	46.0	-26.1