FCC CERTIFICATION On Behalf of Pelican Accessories

PS2 Nerf Wireless Controller Model No.: PL-6681, PL-6677

FCC ID: O7X-NERFPS2-02

Prepared for : Pelican Accessories

Address : 1840 East 27th Street, Vernon, CA 90058, USA

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20072805

Date of Test : November 21,2007

Date of Report : November 26,2007

TABLE OF CONTENTS

Ι	Descri	ption	Page
Ί	est R	eport Certification	
1.	GI	ENERAL INFORMATION	4
	1.1.	Description of Device (EUT)	4
	1.2.	Description of Test Facility	
	1.3.	Measurement Uncertainty	4
2.	M	EASURING DEVICE AND TEST EQUIPMENT	5
3.	FU	INDAMENTAL AND HARMONICS RADIATED EMISSION MEASURMENT	6
	3.1.	Block Diagram of Test Setup	6
	3.2.	The Emission Limit	6
	3.3.	Configuration of EUT on Measurement	
	3.4.	Operating Condition of EUT	
	3.5.	Test Procedure	
	3.6.	The Field Strength of Radiation Emission Measurement Results	8
4.	\mathbf{R}^{A}	ADIATED EMISSION FOR FCC PART 15 SECTION 15.249(D)	11
	4.1.	Block Diagram of Test Setup	11
	4.2.	The Emission Limit For Section 15.249(d)	11
	4.3.	EUT Configuration on Measurement	
	4.4.	Operating Condition of EUT	
	4.5.	Test Procedure	
	4.6.	The Emission Measurement Result	14
5.	$\mathbf{B}A$	AND EDGES	
	5.1.	The Requirement	
	5.2.	EUT Configuration on Measurement	
	5.3.	Operating Condition of EUT	
	5.4.	Test Procedure	
	5.5.	The Measurement Result	
6.	AN	VTENNA REQUIREMENT	19
	6.1.	The Requirement	19
	6.2.	Antenna Construction	19
	Α	PPENDIX I (TEST CURVES) (20pages)	

Test Report Certification

Applicant : Pelican Accessories

Manufacturer : Ciponic Industrial (HK) Ltd.EUT Description : PS2 Nerf Wireless Controller

(A) MODEL NO.: PL-6681, PL-6677

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3.0V ("AAA" batteries × 2)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249:2007 & ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section15.249 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	November 21, 2007	
Prepared by :	sky wang	
	(Engineer)	
Reviewer:	Seem =	
	(Quality Manager)	
Approved & Authorized Signer:	Martinh	
	(Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT PS2 Nerf Wireless Controller

Model Number PL-6681, PL-6677

(Note: Model PL-6677 is identical to model PL-6681, except appearance color

are difference. Therefore only model PL-6681 is tested.)

Power Supply : DC 3.0V ("AAA" batteries × 2)

Operate Frequency 2410M-2470MHz

Channel Number 57

Applicant Pelican Accessories

1840 East 27th Street, Vernon, CA 90058, USA Address

Manufacturer Ciponic Industrial (HK) Ltd.

Address Room 16, 10/F., Profit Ind. Bldg., 1-15Kwai Fung St.,

Kwai Fong, Hong Kong

Date of sample received: November 09, 2007 Date of Test November 14, 2007

1.2.Description of Test Facility

EMC Lab Listed by FCC

The Registration Number is 274801

Listed by Industry Canada

The Registration Number is IC4174

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L0579

Name of Firm Shenzhen Academy of Metrology& Quality Inspection Site Location Bldg. Metrology& Quality Inspection, Longzhu Road,

Nanshan, Shenzhen, Guangdong, P.R. China

1.3. Measurement Uncertainty

Conducted emission expanded uncertainty 3.5dB, k=2

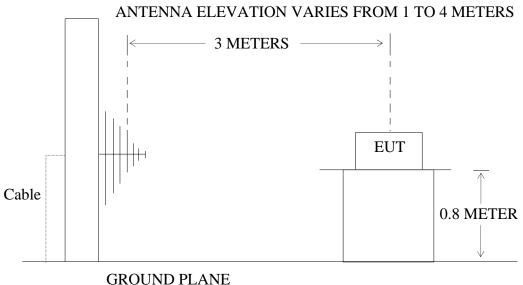
Radiated emission expanded uncertainty 4.5dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	03.31.2008
EMI Test Receiver	Rohde&Schwarz	ESI26	838786/013	01.24.2008
Bilog Antenna	Schwarzbeck	VULB9163	9163-194	03.31.2008
Bilog Antenna	Chase	CBL6112B	2591	01.24.2008
Horn Antenna	Rohde&Schwarz	HF906	100013	01.24.2008
Spectrum Analyzer	Anritsu	MS2651B	6200238856	03.31.2008
Pre-Amplifier	Agilent	8447D	2944A10619	03.31.2008
L.I.S.N.	Rohde&Schwarz	ESH3-Z5	100305	03.31.2008
L.I.S.N.	Rohde&Schwarz	ESH3-Z5	100310	03.31.2008

3. FUNDAMENTAL AND HARMONICS RADIATED EMISSION


MEASURMENT

- 3.1.Block Diagram of Test Setup
 - 3.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: PS2 Nerf Wireless Controller)

3.1.2. Anechoic Chamber Test Setup Diagram

(EUT: PS2 Nerf Wireless Controller)

3.2. The Emission Limit

3.2.1 For intentional radiators, According to section 15.249(a), Operation within the frequency band of 2.4 to 2.4835GHz, The fundamental field strength shall not exceed 94 dBμV/m and the harmonics shall not exceed 54 dBμV/m.

Fundamental Frequency	Field Strength of Fundamental	Field Strength of harmonics		
	(millivolts/meter)	(microvolts/meter)		
902-928MHz	50	500		
2400-2483.5MHz	50	500		
5725-5875MHz	50	500		
24.0-24.25GHz	250	2500		

3.2.2 According to section 15.249(e), as shown in section 15.35(b), The peak field strength

of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

3.3. Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.3.1. PS2 Nerf Wireless Controller (EUT)

Model Number : PL-6681 Serial Number : N/A

Manufacturer : Ciponic Industrial (HK) Ltd.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 2410MHz -2470MHz.We are select 2410MHz, 2440MHz, 2470MHz TX frequency to transmitted.

3.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver (R&S ESI26) is set at 1MHz.

3.6. The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test: November 21, 2007 Temperature: 24°C

EUT: PS2 Nerf Wireless Controller Humidity: 47%

Model No.: PL-6681 Power Supply: DC3.0V("AAA" batteries × 2)

Test Mode: TX 2410MHz Test Engineer: Fen

Fundamental Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(c	lBμV/m)	Limit(dl	BμV/m)	Margin(dBμV/m)	Polarizati
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	on
2410.070	60.3	84.7	-3.6	56.7	81.1	94	114	37.3	32.9	Vertical
2410.070	53.8	83.5	-3.6	50.2	79.9	94	114	43.8	54.1	Horizontal

Harmonics Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(c	lBμV/m)	Limit(dl	BμV/m)	Margin(c	dBμV/m)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	_	_	-	-	_	_	_	-	-	Vertical
-	-	_	-	-	_	-	-	-	-	Horizontal

The spectral diagrams in appendix I display the measurement of peak values.

Note:

- 1. Remark "- " means that the emission level is too low to be measured.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Date of Test: November 21, 2007 Temperature: 24°C

EUT: PS2 Nerf Wireless Controller Humidity: 47%

Model No.: PL-6681 Power Supply: DC3.0V("AAA" batteries × 2)

Test Mode: TX 2440MHz Test Engineer: Fen

Fundamental Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor(dB)	actor(dB) Result(dB μ V/m)		Limit(dBµV/m)		Margin(dBµV/m)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2440.090	60.8	84.4	-3.5	57.3	80.9	94	114	36.7	33.1	Vertical
2440.090	58.4	81.8	-3.5	54.9	78.3	94	114	39.1	35.7	Horizontal

Harmonics Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(dBμV/m)		Limit(dBµV/m)		Margin(dBµV/m)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	-	-	-	-	_	-	-	-	-	Vertical
-	-	_	_	_	-	-	-	-	-	Horizontal

The spectral diagrams in appendix I display the measurement of peak values.

Note:

- 1. Remark "- " means that the emission level is too low to be measured.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Date of Test: November 21, 2007 Temperature: 24°C

EUT: PS2 Nerf Wireless Controller Humidity: 47%

Model No.: PL-6681 Power Supply: DC3.0V("AAA" batteries × 2)

Test Mode: TX 2470MHz Test Engineer: Fen

Fundamental Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(c	lBμV/m)	Limit(dI	BμV/m)	Margin(c	dBμV/m)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2470.010	60.0	83.9	-3.4	56.6	80.5	94	114	37.4	33.5	Vertical
2470.010	57.7	81.6	-3.4	54.3	78.2	94	114	39.7	35.8	Horizontal

Harmonics Radiated Emissions

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(dBμV/m)		Limit(dBµV/m)		Margin(dBµV/m)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	-	-	-	-	_	-	-	-	-	Vertical
-	-	_	_	_	-	-	-	-	-	Horizontal

The spectral diagrams in appendix I display the measurement of peak values.

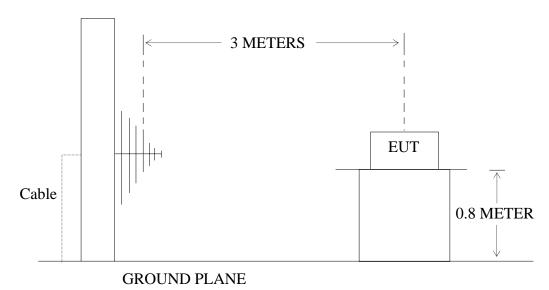
Note:

- 1. Remark "- " means that the emission level is too low to be measured.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

4. RADIATED EMISSION FOR FCC PART 15 SECTION 15.249(D)

4.1.Block Diagram of Test Setup


4.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: PS2 Nerf Wireless Controller)

4.1.2. Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

(EUT: PS2 Nerf Wireless Controller)

4.2. The Emission Limit For Section 15.249(d)

4.2.1 Emission radiated outside of the specified frequency bands, except for harmonics, shall be comply with the general radiated emission limits in Section 15.209. Radiation Emission Measurement Limits According to Section 15.209

	Limit,						
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is				
30 - 88	100	40	performed with Average detector.				

00 216	150	12.5	Except those
88 - 216	150	43.5	frequency bands
			mention above, the
216 - 960	200	46	final measurement for
210 700		.0	frequencies below
			1000MHz is
Above 960	500	54	performed with Quasi
			Peak detector.

4.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1. PS2 Nerf Wireless Controller (EUT)

Model Number : PL-6681 Serial Number : N/A

Manufacturer : Ciponic Industrial (HK) Ltd.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 2410MHz -2470MHz. We are select 2410MHz, 2440MHz, 2470MHz TX frequency to transmitted.

4.5. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver (R&S ESI26) is set at 120KHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

4.6. The Emission Measurement Result

PASS.

Date of Test:	November 21, 2007	Temperature:	24°C
EUT:	PS2 Nerf Wireless Controller	Humidity:	47%
Model No.:	PL-6681	Power Supply:	DC3.0V("AAA" batteries × 2)
Test Mode:	TX 2410MHz	Test Engineer:	Fen

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dBµV/m)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

The spectral diagrams in appendix I display the measurement of peak values.

Note:

- 1. Remark "- " means that the emission level is too low to be measured.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Date of Test:	November 21, 2007	Temperature:	24°C
EUT:	PS2 Nerf Wireless Controller	Humidity:	47%
Model No.:	PL-6681	Power Supply:	DC3.0V("AAA" batteries × 2)
Test Mode:	TX 2440MHz	Test Engineer:	Fen

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dBµV/m)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

The spectral diagrams in appendix I display the measurement of peak values.

Note:

- 1. Remark "- " means that the emission level is too low to be measured.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Date of Test:	November 21, 2007	Temperature:	24°C
EUT:	PS2 Nerf Wireless Controller	Humidity:	47%
Model No.:	PL-6681	Power Supply:	DC3.0V("AAA" batteries × 2)
Test Mode:	TX 2470MHz	Test Engineer:	Fen

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dBµV/m)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

The spectral diagrams in appendix I display the measurement of peak values.

Note:

- 1. Remark "- " means that the emission level is too low to be measured.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

5. BAND EDGES

5.1.The Requirement

5.1.1. Band Edge from 2400MHz to 2483.5MHz. Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

5.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.2.1. PS2 Nerf Wireless Controller (EUT)

Model Number : PL-6681 Serial Number : N/A

Manufacturer : Ciponic Industrial (HK) Ltd.

5.3. Operating Condition of EUT

- 5.3.1. Setup the EUT and simulator as shown as Section 4.1.
- 5.3.2. Turn on the power of all equipment.
- 5.3.3. Let the EUT work in TX modes measure it. The transmit frequency are 2410MHz -2470MHz. We are select 2410MHz, 2470MHz TX frequency to transmitted.

5.4.Test Procedure

- 5.4.1. Measure the fundamental amplitude appearing on spectral display and set it as a reference level. measure the lower band edge amplitude. Get the delta amplitude and edge frequency.
- 5.4.2. Repeat above procedures, Measure the fundamental amplitude appearing on spectral display and set it as a reference level. measure the upper band edge amplitude. Get the delta amplitude and edge frequency.

5.5. The Measurement Result

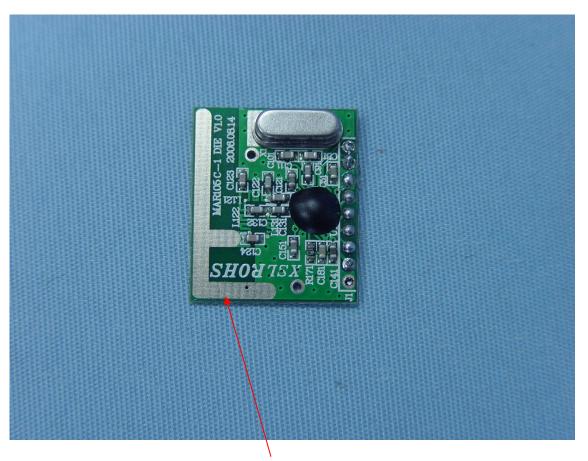
Pass

5.5.1 Lower band edge: Emission radiated outside of the lower band edge are 48.1 dB below the level of the fundamental.

The emission of	The maximum field	Limit	Margin	Result
carrier power	strength in restrict			
strength	band			
$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
81.1	33.0	74	41.0	Peak
56.7	8.6	54	45.4	Average

5.5.2 Upper band edge: Emission radiated outside of the upper band edge are 43.2 dB below the level of the fundamental.

The emission of	The maximum field	Limit	Margin	Result
carrier power	strength in restrict			
strength	band			
$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
80.5	37.3	74	36.7	Peak
56.6	13.4	54	40.6	Average


6. ANTENNA REQUIREMENT

6.1. The Requirement

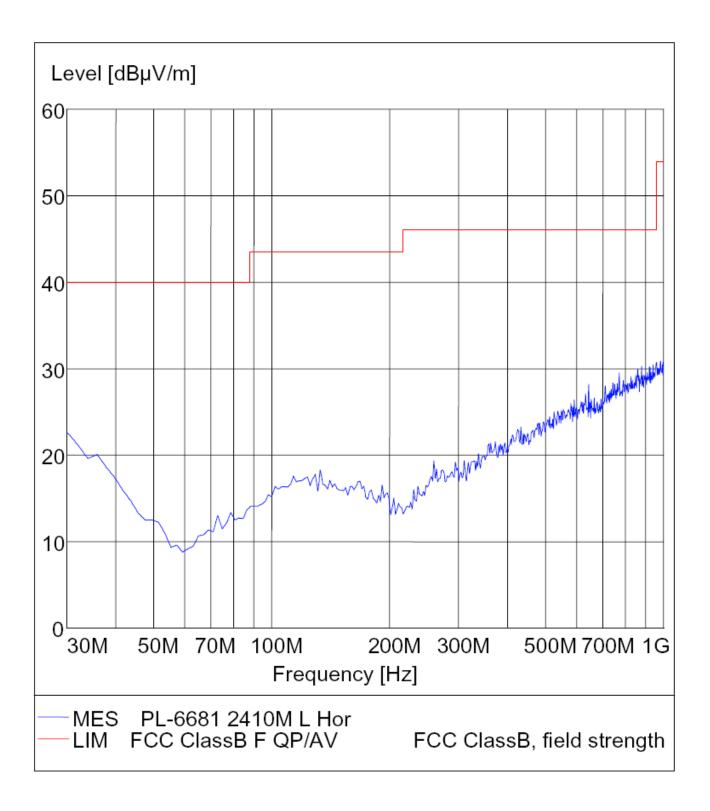
7.1.1. According to Section 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

6.2. Antenna Construction

The antenna is PCB Layout antenna, no consideration of replacement.

APPENDIX I (Test Curves)

FCC Part 15

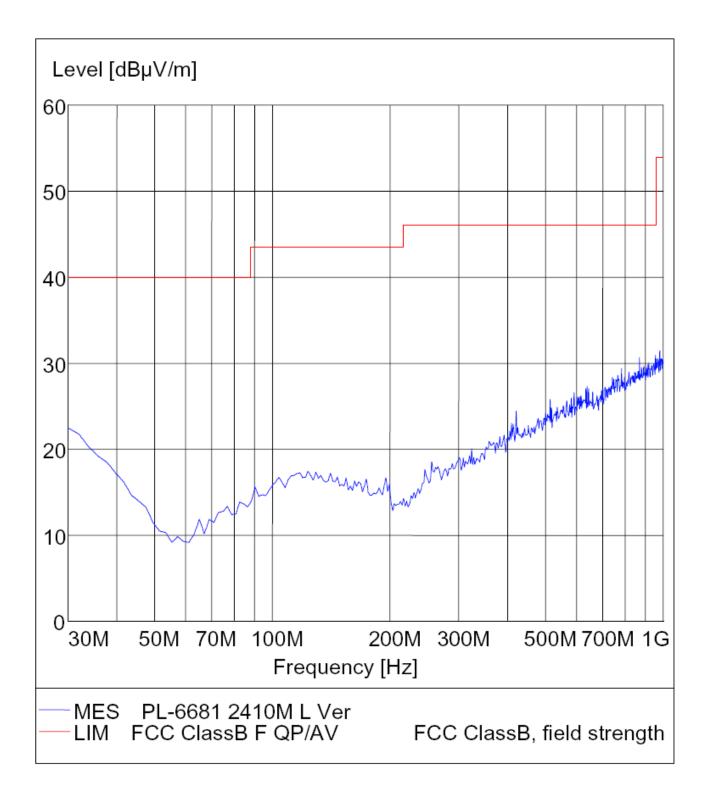

EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2410MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Horizontal Comment: DC 3.0V


FCC Part 15

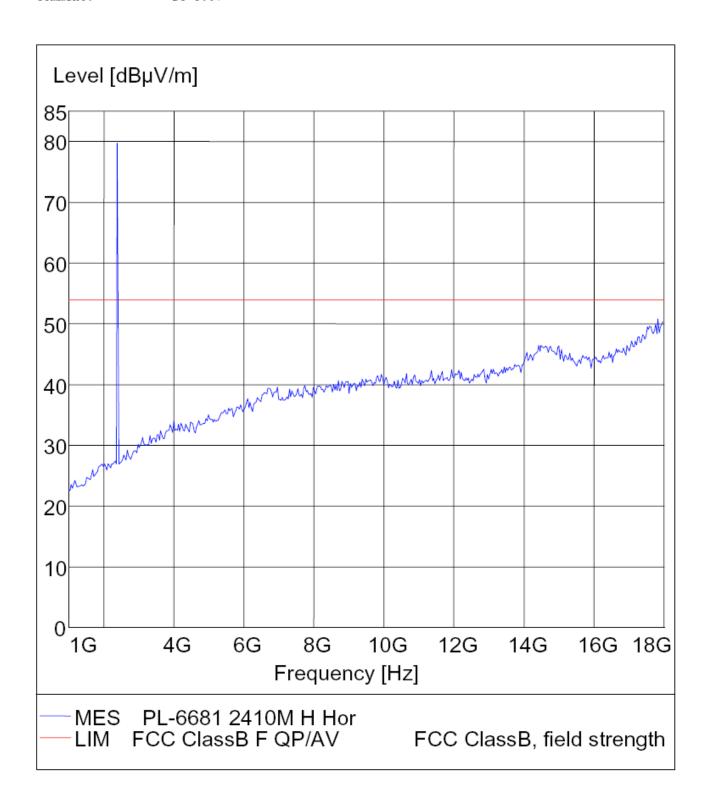
EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2410MHz
Test Site: ATC EMC Lab.SAC

Status: Fen
Test Specification: Vertical
Comment: DC 3.0V

FCC Part 15

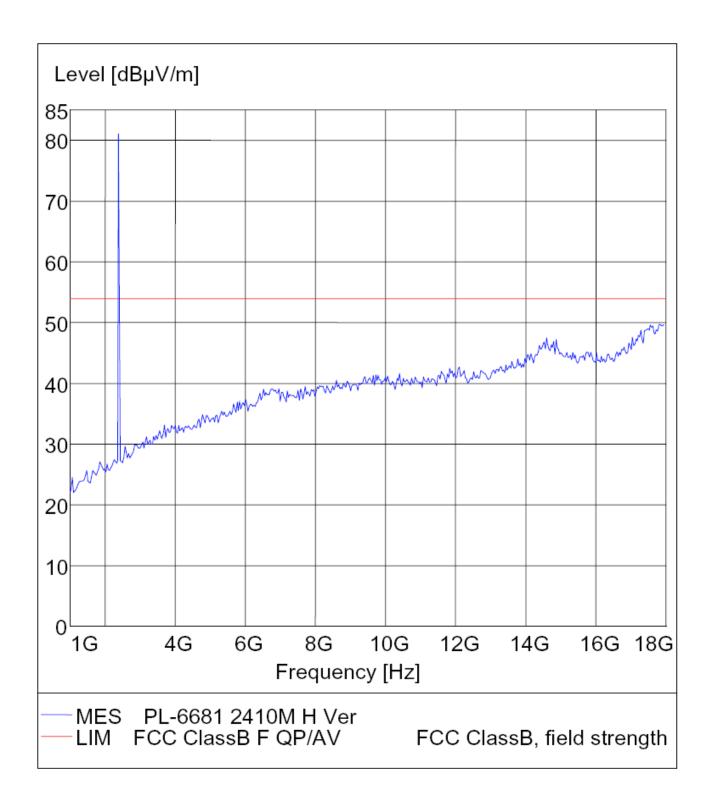

EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2410MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Horizontal Comment: DC 3.0V


FCC Part 15

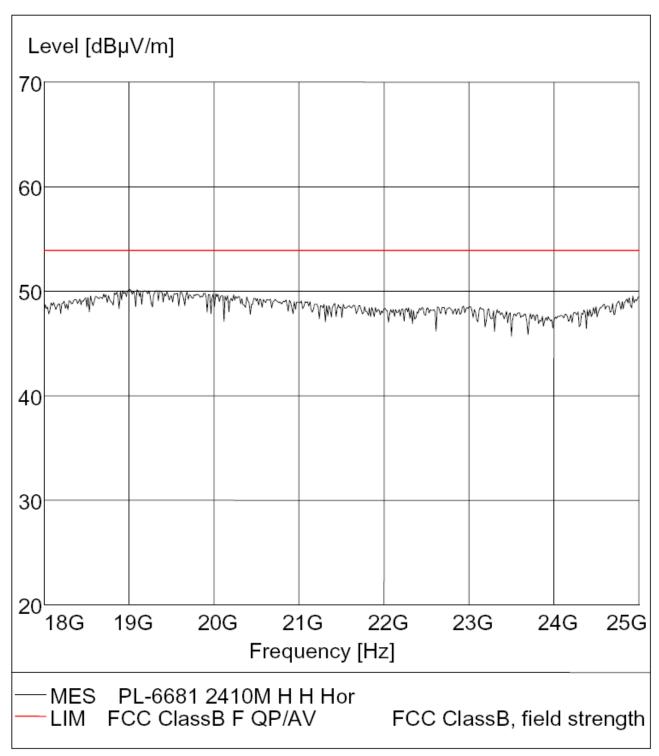
EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2410MHz
Test Site: ATC EMC Lab.SAC

Status: Fen
Test Specification: Vertical
Comment: DC 3.0V

FCC Part 15

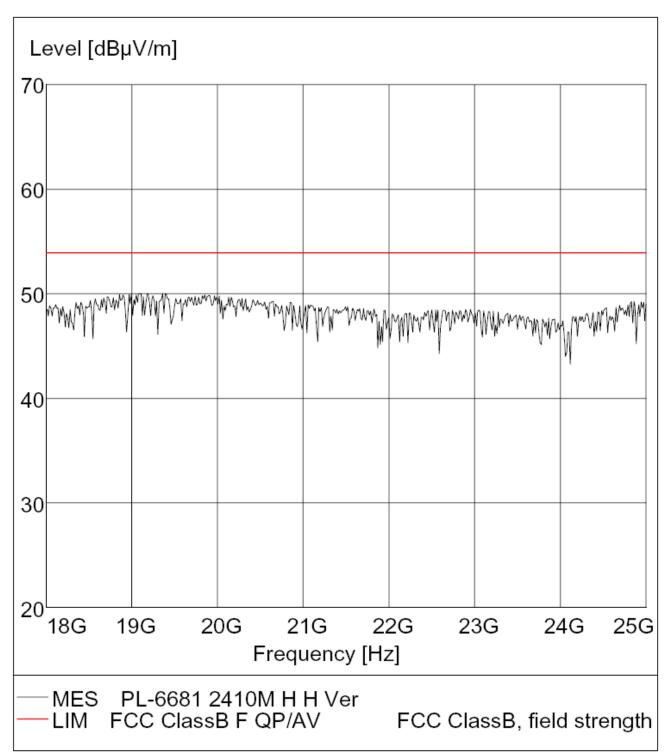

EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2410MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Horizontal Comment: DC 3.0V


FCC Part 15

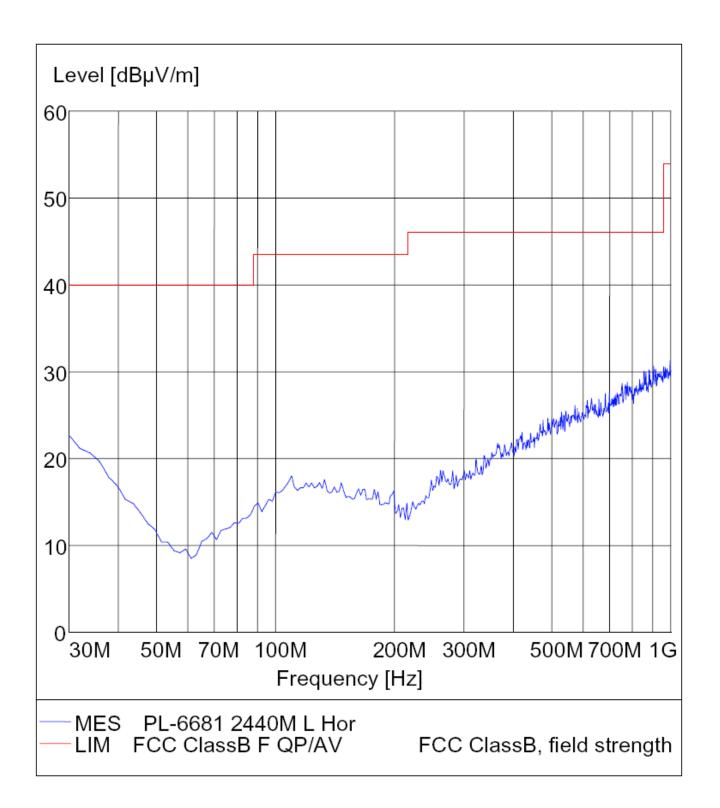
EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2410MHz
Test Site: ATC EMC Lab.SAC

Status: Fen
Test Specification: Vertical
Comment: DC 3.0V

FCC Part 15

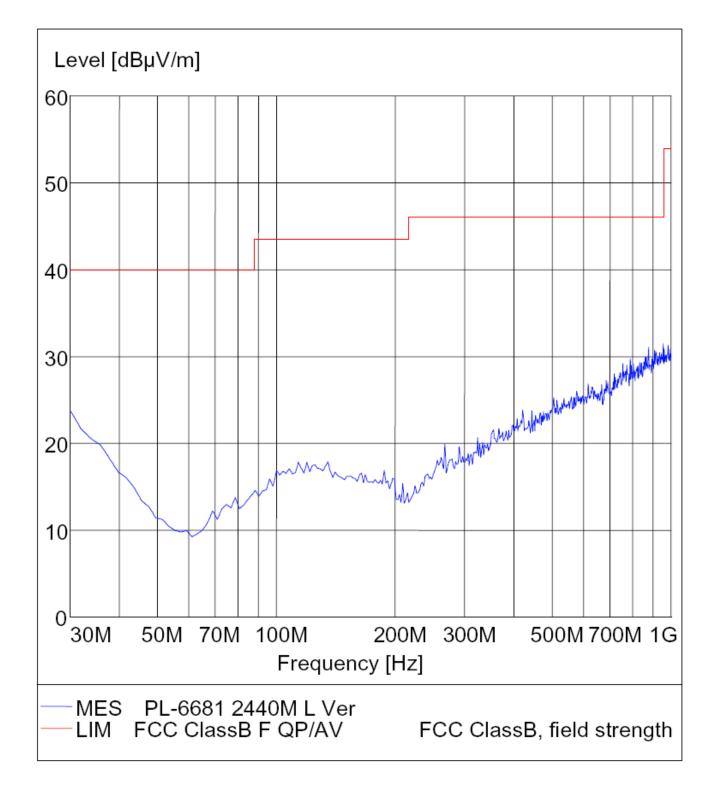

M/N:PL-6681 EUT: PS2 Nerf Wireless Controller

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2440MHz ATC EMC Lab.SAC Test Site:

Status: Fen

Test Specification: Horizontal DC 3.0V Comment :


FCC Part 15

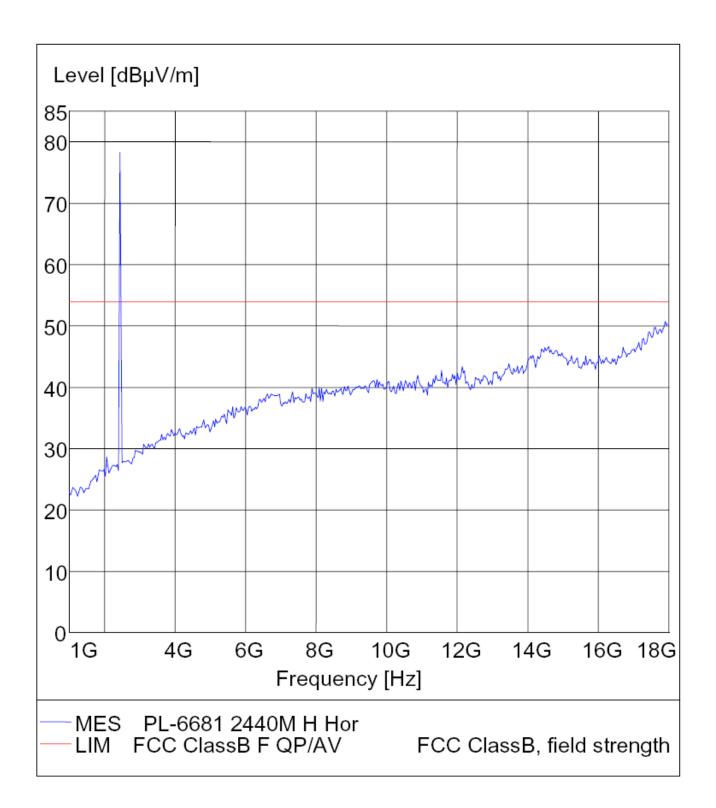
M/N:PL-6681 EUT: PS2 Nerf Wireless Controller

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2440MHz Test Site: ATC EMC Lab.SAC

Status: Fen Test Specification: Vertical DC 3.0V Comment :

FCC Part 15


EUT: PS2 Nerf Wireless Controller M/N:PL-6681

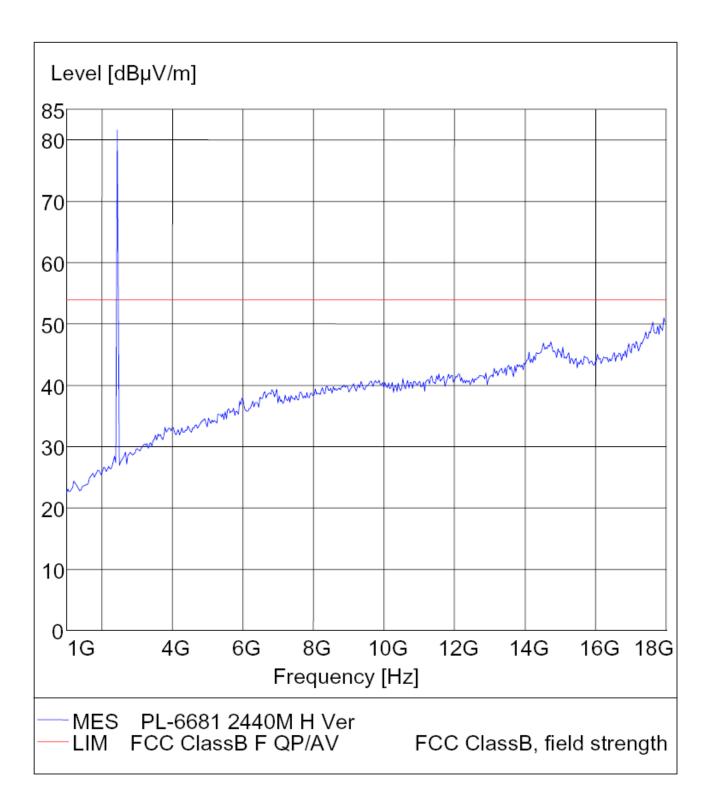
Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2440MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Horizontal Comment: DC 3.0V

FCC Part 15


EUT: PS2 Nerf Wireless Controller M/N:PL-6681

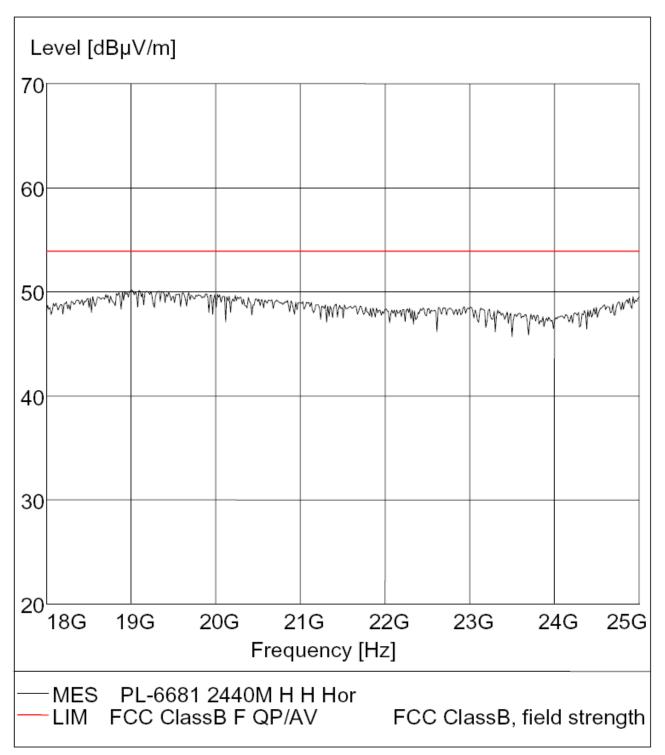
Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2440MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Vertical Comment: DC 3.0V

FCC Part 15


EUT: PS2 Nerf Wireless Controller M/N:PL-6681

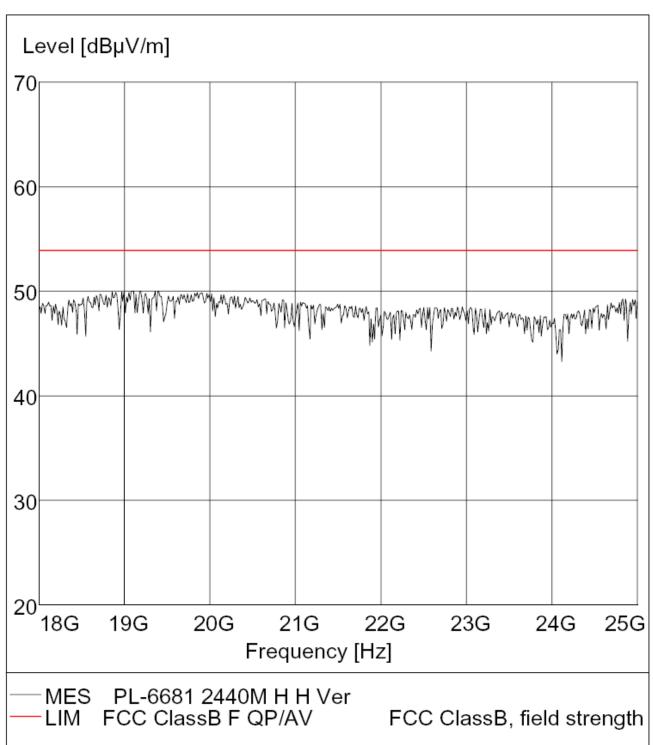
Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2440MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Horizontal Comment: DC 3.0V

FCC Part 15


EUT: PS2 Nerf Wireless Controller M/N:PL-6681

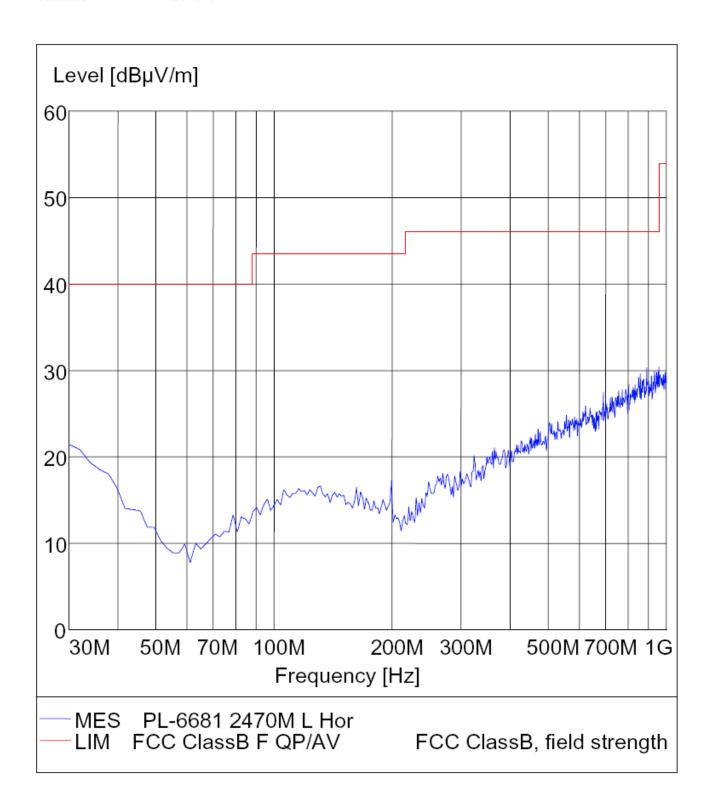
Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2440MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Vertical Comment: DC 3.0V

FCC Part 15

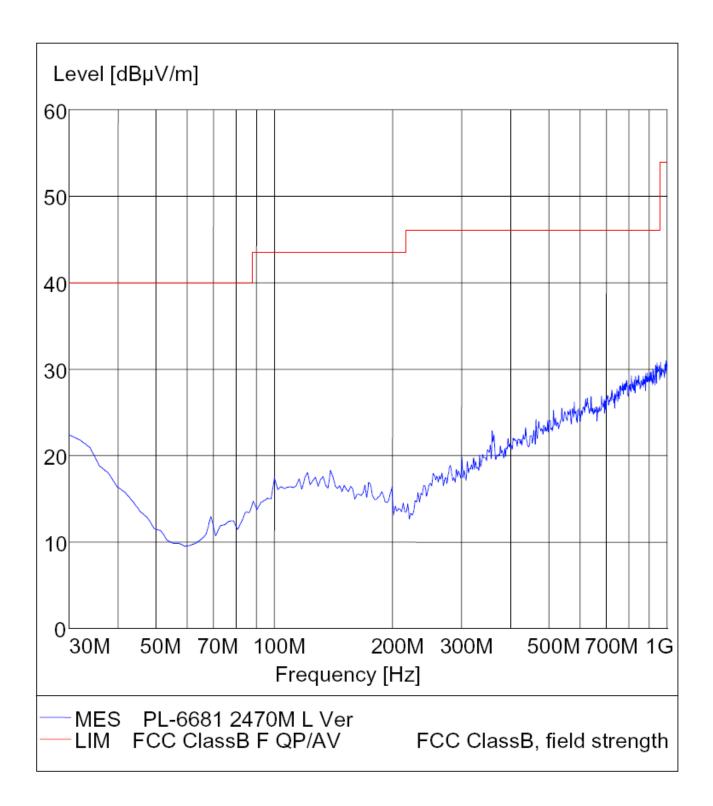

EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2470MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Horizontal
Comment: DC 3.0V


FCC Part 15

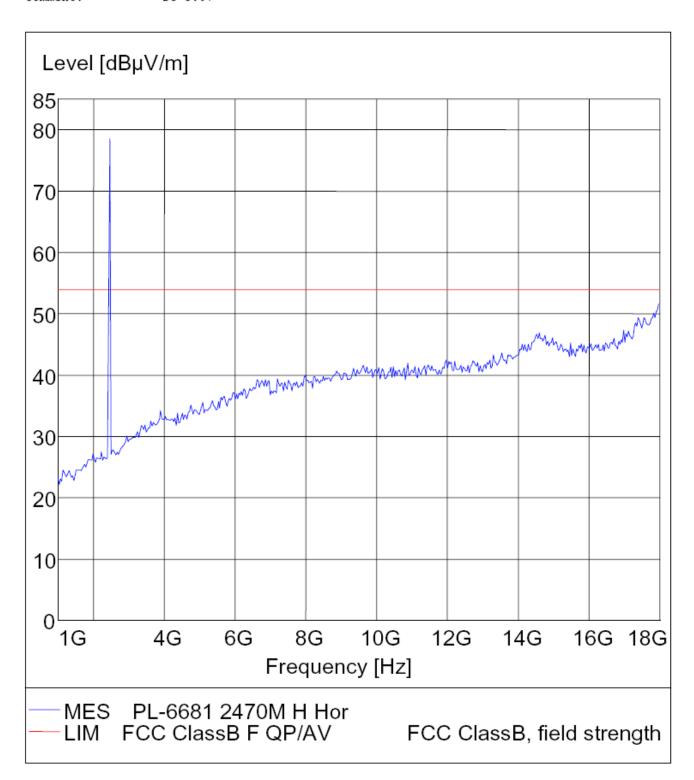
EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2470MHz
Test Site: ATC EMC Lab.SAC

Status: Fen
Test Specification: Vertical
Comment: DC 3.0V

FCC Part 15

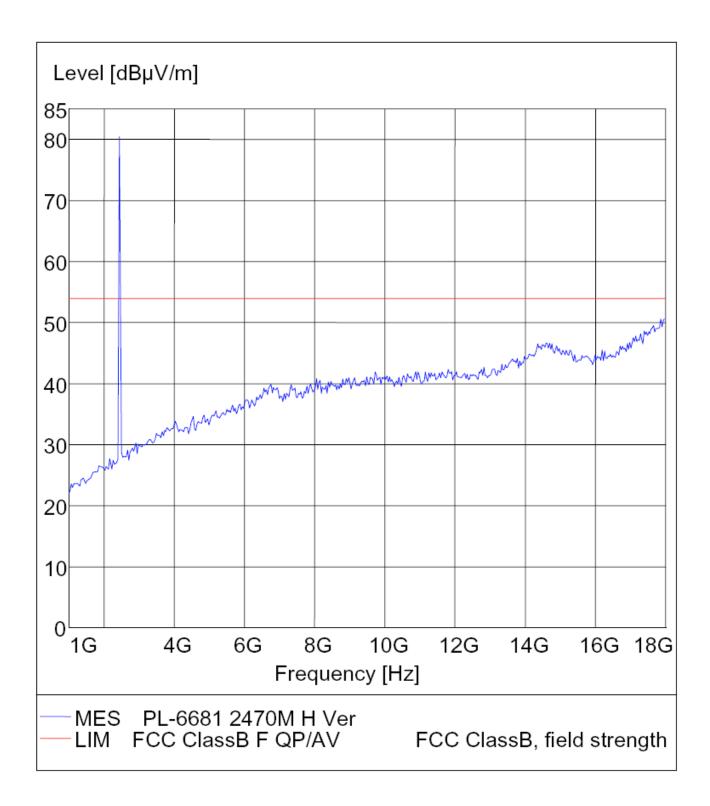

EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

Operating Condition: TX 2470MHz
Test Site: ATC EMC Lab.SAC

Status: Fen

Test Specification: Horizontal Comment: DC 3.0V


FCC Part 15

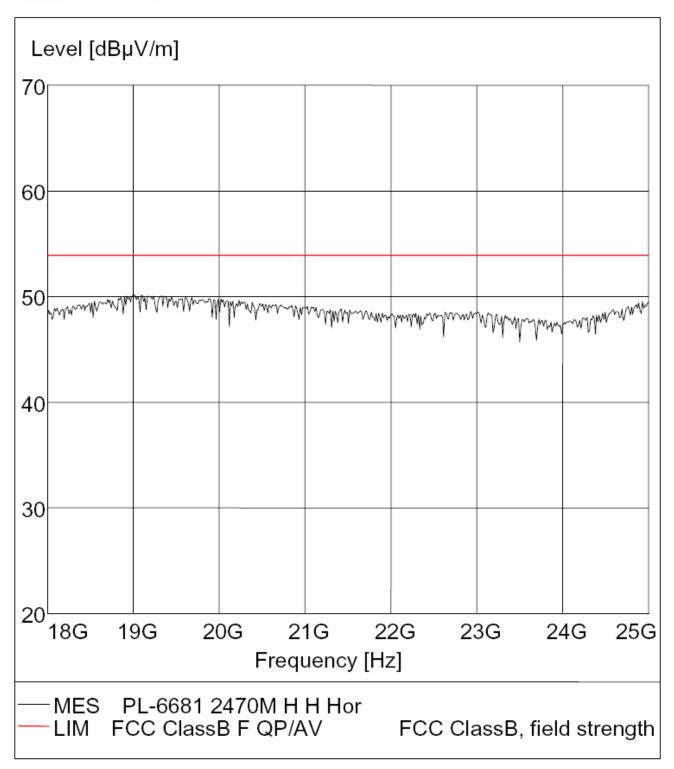
EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd. Operating Condition: TX 2470MHz

Operating Condition: TX 24/UMHz
Test Site: ATC EMC Lab.SAC

Status: Fen
Test Specification: Vertical
Comment: DC 3.0V

FCC Part 15

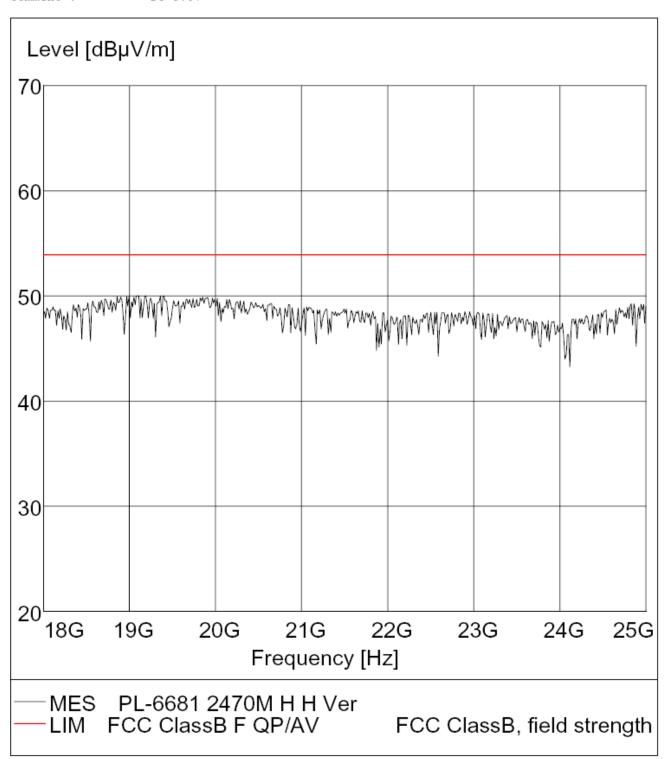

EUT: PS2 Nerf Wireless Controller M/N:PL-6681

Manufacturer: Ciponic Industrial (HK) Ltd.

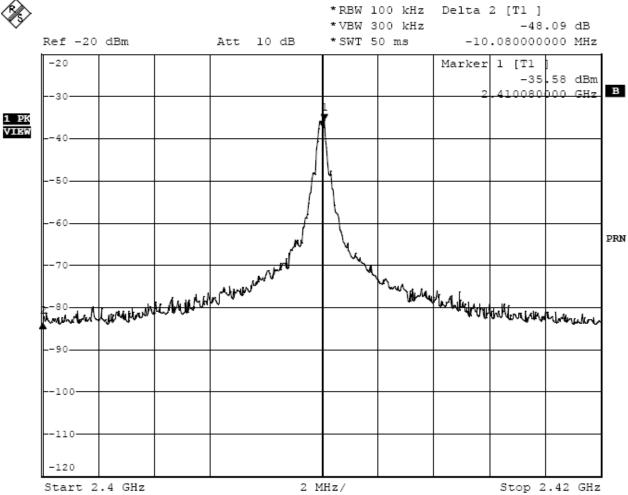
Operating Condition: TX 2470MHz
Test Site: ATC EMC Lab.SAC

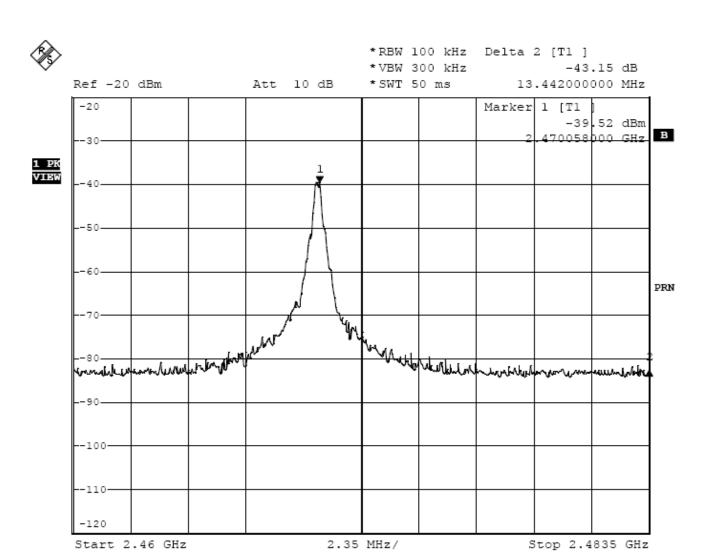
Status: Fen

Test Specification: Horizontal Comment: DC 3.0V


FCC Part 15

EUT: PS2 Nerf Wireless Controller M/N:PL-6681


Manufacturer: Ciponic Industrial (HK) Ltd.


Operating Condition: TX 2470MHz
Test Site: ATC EMC Lab.SAC

Status: Fen
Test Specification: Vertical
Comment: DC 3.0V

