US Tech Test Report:	FCC Part 15 Certification/ RSS 210
FCC ID:	O7P-362
IC:	10147A-362
Test Report Number:	21-0267
Issue Date:	November 12, 2021
Customer:	Inventek Systems
Model:	ISM43362-M3G-L44-*

Maximum Permissible Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, **S** as per the respective limits in Table 1 below, at a distance, d, of 20 cm (Mobile condition) from the EUT.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)	
Limits for General Population/Uncontrolled Exposure					
0.3-1.34	614	1.63	*100	30	
1.34-30	824/f	2.19/f	*180/f ²	30	
30-300	27.5	0.073	0.2	30	
300-1,500			f/1500	30	
1,500-100,000			1.0	30	

|--|

f = frequency in MHz * = Plane-wave equivalent power density

Therefore, for:

MPE for 2400-2483.5 MHz:

Inventek Wi-Fi module

Limit: 1.0 mW/cm² Peak Power (dBm) = 19.9 dBm Peak Power (Watts) = 0.0977 W Gain of Transmit Antenna = 5.0 dB_i = 3.16 numeric

d = Distance = 20 cm = 0.2 m

S = (PG/ $4\pi d^2$) = EIRP/4A = 0.0977 (3.16)/4* π *0.2*0.2 = 0.3087/0.5027 = 0.6141 W/m² = (0.6141 W/m²) (1m²/W) (0.1 mW/cm²) = 0.06141 mW/cm²

which is << less than S = 1.0 mW/cm²

US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date: Customer: Model:

Microchip Technology Inc., BLE Module

Limit: 1.0 mW/cm² Peak Power (dBm) = 1.36 dBm Peak Power (Watts) = 0.00136 W Gain of Transmit Antenna = 1.63 dB_i = 1.456 numeric

d = Distance = 20 cm = 0.2 m

S = (**PG**/ $4\pi d^2$) = EIRP/4A = 0.00136 (1.456)/4* π *0.2*0.2 = 0.00198/0.5027 = 0.003939 W/m² = (0.6141 W/m²) (1m²/W) (0.1 mW/cm²) = 0.000394 mW/cm²

which is << less than S = 1.0 mW/cm²

MMB Research Inc, Hornet MiO/Z357PA40

Limit: 1.0 mW/cm² Peak Power (dBm) = 19.2 dBm Peak Power (Watts) = 0.083 W Gain of Transmit Antenna = 5.0 dB_i = 3.16 numeric

d = Distance = 20 cm = 0.2 m

S = (PG/ $4\pi d^2$) = EIRP/4A = 0.083 (3.16)/4* π *0.2*0.2 = 0.2623/0.5027 = 0.5217 W/m² = (0.5217 W/m²) (1m²/W) (0.1 mW/cm²) = 0.05217 mW/cm²

which is << less than S = 1.0 mW/cm²

Sum of all MPE for all 2.4 GHz band radios:

 $0.06141 + 0.05217 + 0.000394 = 0.1140 \text{ mW/cm}^2$ which is << less than S = 1.0 mW/cm²

US Tech Test Report:	FCC Part 15 Certification/ RSS 210
FCC ID:	O7P-362
IC:	10147A-362
Test Report Number:	21-0267
Issue Date:	November 12, 2021
Customer:	Inventek Systems
Model:	ISM43362-M3G-L44-*

RSS-102, 2.5.2 compliance for 2400-2483.5 MHz radio device:

At or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where *f* is in MHz;

In this case f = 2440 MHz

1.31 * 10⁻²* 2440^{0.6834}= 2.7 W (2700 mW)

EUT max EIRP = 19.8 dBm + 5 dBi = 24.8 dBm EIRP = 301.9 mW

Microchip Technology Inc., BLE Module: 1.36 dBm + 1.63 dBi = 2.99 dBm EIRP = 2.99 mW

MMB Research Inc, Hornet MiO/Z357PA40: 19.2 dBm + 5 dBi = 24.2 dBm EIPR = 263.0 mW

Sum of all MPE for all 2.4 GHz band radios = 567.89 mW

Which is << than 2700 mW

All calculations performed by: Date: November 12, 2021 Test Engineer: George Yang

Signature: