# FCC 47 CFR PART 15 SUBPART C AND ANSI C63.10:2013 TEST REPORT

For

SiME Smart Q

# Model: SiME Q1

Data Applies To: SiME Q1xxxxxx (X="0-9,"A-Z","a-z","+","-","(",")","/","blank")



Issued for

# ChipSip Technology Co., Ltd.

8F-1, No.186, Jian 1st Rd., Zhonghe District., New Taipei City 235, Taiwan (R.O.C.)

Issued by

Compliance Certification Services Inc. Hsinchu Lab. No.989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.) TEL: +886-3-5921698 FAX: +886-3-5921108

> http://www.ccsrf.com E-Mail: service@ccsrf.com

Issued Date: March 03, 2017



**Note:** This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Page 1 / 96

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

# **Revision History**

| Rev. | Issue Date | Revisions                   | Effect Page | Revised By |
|------|------------|-----------------------------|-------------|------------|
| 00   | 02/15/2017 | Initial Issue               | All Page 96 | Dola Hsieh |
| 01   | 03/03/2017 | Add Measurement Uncertainty | P.9         | Dola Hsieh |
|      |            |                             |             |            |
|      |            |                             |             |            |
|      |            |                             |             |            |

# TABLE OF CONTENTS

| ΤI | TLE | P/                           | AGE NO. |
|----|-----|------------------------------|---------|
| 1. | TES | ST REPORT CERTIFICATION      | 4       |
| 2. | EUT | T DESCRIPTION                | 5       |
| 3. | DES | SCRIPTION OF TEST MODES      | 7       |
| 4. | TES | ST METHODOLOGY               | 8       |
| 5. | FAC | CILITIES AND ACCREDITATION   | 8       |
|    | 5.1 | FACILITIES                   | 8       |
|    | 5.2 | ACCREDITATIONS               | 8       |
|    | 5.3 | MEASUREMENT UNCERTAINTY      | 9       |
| 6. | SET | TUP OF EQUIPMENT UNDER TEST  | 10      |
| 7. | FCC | C PART 15.247 REQUIREMENTS   | 11      |
|    | 7.1 | DUTY CYCLE CORRECTION FACTOR | 11      |
|    | 7.2 | 6dB BANDWIDTH                | 12      |
|    | 7.3 | MAXIMUM PEAK OUTPUT POWER    | 22      |
|    | 7.4 | AVERAGE POWER                | 26      |
|    | 7.5 | POWER SPECTRAL DENSITY       | 29      |
|    | 7.6 | CONDUCTED SPURIOUS EMISSION  | 41      |
|    | 7.7 | RADIATED EMISSION            | 54      |
|    | 7.8 | CONDUCTED EMISSION           | 88      |
| 8. | APP | PENDIX II SETUP PHOTOS       | 93      |

# 1. TEST REPORT CERTIFICATION

| Applicant           | :  | ChipSip Technology Co., Ltd.                                                           |
|---------------------|----|----------------------------------------------------------------------------------------|
| Address             | :  | 8F-1, No.186, Jian 1st Rd., Zhonghe District., New Taipei<br>City 235, Taiwan (R.O.C.) |
| Equipment Under Tes | t᠄ | SiME Smart Q                                                                           |
| Model               | :  | SiME Q1                                                                                |
| Data Applies To     | :  | SiME Q1xxxxxx                                                                          |
|                     |    | (X="0-9,"A-Z","a-z","+","-","(",")","/","blank")                                       |
| Trade Name          | :  | SIME SIME                                                                              |
| Tested Date         | :  | September 05, 2016 ~ January 23, 2017                                                  |

| APPLICABLE STANDARD       |             |  |
|---------------------------|-------------|--|
| Standard                  | Test Result |  |
| FCC Part 15 Subpart C AND | PASS        |  |
| ANSI C63.10:2013          | FA35        |  |

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

· In

Sb. Lu Sr. Engineer

Reviewed by:

Gundarn Lin Sr. Engineer

### Page 4 / 96

# 2. EUT DESCRIPTION

| Product Name        | SiME Smart Q                                                                                                                                                                                                                                                                                          |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Model Number        | SiME Q1                                                                                                                                                                                                                                                                                               |  |
| Data Applies To     | SiME Q1xxxxxx<br>(X="0-9,"A-Z","a-z","+","-","(",")","/","blank")                                                                                                                                                                                                                                     |  |
| Identify Number     | T160905D03                                                                                                                                                                                                                                                                                            |  |
| Received Date       | September 05, 2016                                                                                                                                                                                                                                                                                    |  |
| Frequency Range     | IEEE 802.11b/g, 802.11gn HT20 Mode:<br>2412MHz ~ 2462MHz<br>IEEE 802.11gn HT40 Mode: 2422MHz ~ 2452MHz                                                                                                                                                                                                |  |
| Transmit Power      | IEEE 802.11b Mode: 15.90 dBm (0.0389 W)<br>IEEE 802.11g Mode: 25.10 dBm (0.3236 W)<br>IEEE 802.11gn HT20 MCS0 Mode: 25.02 dBm (0.3177 W)<br>IEEE 802.11gn HT40 MCS0 Mode: 24.62 dBm (0.2897 W)                                                                                                        |  |
| Channel Spacing     | 5MHz                                                                                                                                                                                                                                                                                                  |  |
| Channel Number      | IEEE 802.11b/g, 802.11gn HT20 Mode: 11 Channels<br>IEEE 802.11gn HT40 Mode: 7 Channels                                                                                                                                                                                                                |  |
| Transmit Data Rate  | IEEE 802.11b Mode: up to 11 Mbps<br>IEEE 802.11g Mode: up to 54 Mbps<br>IEEE 802.11gn HT20 Mode (800ns GI): up to 65.00 Mbps<br>IEEE 802.11gn HT20 Mode (400ns GI): up to 72.20 Mbps<br>IEEE 802.11gn HT40 Mode (800ns GI): up to 135.0 Mbps<br>IEEE 802.11gn HT40 Mode (400ns GI): up to 150.00 Mbps |  |
| Type of Modulation  | IEEE 802.11b Mode: DSSS (CCK, DQPSK, DBPSK)<br>IEEE 802.11g Mode: OFDM (64QAM, 16QAM, QPSK, BPSK)<br>IEEE 802.11gn HT20/40 Mode:<br>OFDM (64QAM, 16QAM, QPSK, BPSK)                                                                                                                                   |  |
| Antenna Type        | PIFA Antenna ×1 , Antenna Gain: 1.24 dBi                                                                                                                                                                                                                                                              |  |
| Power Rating        | 5Vdc                                                                                                                                                                                                                                                                                                  |  |
| Test Voltage        | 120Vac, 60Hz                                                                                                                                                                                                                                                                                          |  |
| DC Power Cable Type | Non-shielded cable, 1.5 m × 1 (Non-detachable)                                                                                                                                                                                                                                                        |  |
| I/O Port            | SD/MMC Port × 1, USB Port × 4, SPDIF Port × 1, AV Port × 1, HDMI Port × 1, RJ-45 Port × 1, Power Port × 1                                                                                                                                                                                             |  |
| Signal Cable        | Shielded HDMI cable, 1m × 1 (Detachable)                                                                                                                                                                                                                                                              |  |
| Support Equipment   | Remote controller                                                                                                                                                                                                                                                                                     |  |

### **ELERF Compliance Certification Services Inc.** FCC ID: 07N-SIME-Q1

## **Power Adapter:**

| No. | Manufacturer                   | Model No.        | Power Input                  | Power Output            |
|-----|--------------------------------|------------------|------------------------------|-------------------------|
| 1   | Powertron<br>Electronics Corp. | PA1015-050HUB300 | 100-240Vac,<br>50-60Hz, 0.4A | 5Vdc, 3.0A,<br>15W Max. |

# The difference of the series model

| Model Name                                                           | Difference                                                          |
|----------------------------------------------------------------------|---------------------------------------------------------------------|
| SiME Q1                                                              | Market Segmentation (Product appearance color,                      |
| SiME Q1xxxxx<br>(X="0-9,"A-Z","a-z","+","-",<br>"(",")","/","blank") | Product appearance printing, Product packaging color box different) |

Remark:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

2. For more details, please refer to the User's manual of the EUT.

3. This submittal(s) (test report) is intended for FCC ID: O7N-SIME-Q1 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

4. The model SiME Q1 was considered the main model for testing.

# 3. DESCRIPTION OF TEST MODES

The EUT (SiME Smart Q) is an 802.11b/g/n transceiver. IEEE 802.11b/g, 802.11gn HT20/HT40 Mode: 1TX / 1RX.

# Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

| No. | Pre-Test mode |
|-----|---------------|
| 1   | TX Mode       |
|     |               |

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

| Final Test mode |                    |        |  |
|-----------------|--------------------|--------|--|
| Emission        | Radiated Emission  | Mode 1 |  |
| LIIII33I0II     | Conducted Emission | Node 1 |  |

**Remark:** Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

# Conducted / Radiated Emission Test (Above 1 GHz)

# IEEE 802.11b/g, 802.11gn HT20 Mode:

The EUT had been tested under operating condition.

There are three channels have been tested as following:

| Channel | Frequency (MHz) |
|---------|-----------------|
| Low     | 2412            |
| Middle  | 2437            |
| High    | 2462            |

IEEE 802.11b Mode: 1Mbps data rate (worst case) was chosen for full testing. IEEE 802.11g Mode: 6Mbps data rate (worst case) was chosen for full testing. IEEE 802.11gn HT20 MCS0 Mode: 6.5Mbps data rate (worst case) was chosen for full testing.

## IEEE 802.11gn HT40 Mode:

The EUT had been tested under operating condition.

There are three channels have been tested as following:

| Channel | Frequency (MHz) |
|---------|-----------------|
| Low     | 2422            |
| Middle  | 2437            |
| High    | 2452            |

IEEE 802.11gn HT40 MCS0 Mode: 13.5Mbps data rate (worst case) was chosen for full testing.

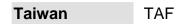
**Remark :** The field strength of spurious emission was measured in the following position: EUT stand-up position(Y axis), lie-down position(X, Z axis). The worst emission was found in lie-down position(Z axis) and the worst case was recorded.

# 4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10:2013 and FCC CFR 47, 15.207, 15.209 and 15.247.

# 5. FACILITIES AND ACCREDITATION

# 5.1 FACILITIES


All measurement facilities used to collect the measurement data are located at

No.989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.10:2013 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

# 5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.



The measuring facility of laboratories has been authorized or registered by the following approval agencies.

| Canada | INDUSTRY CANADA |
|--------|-----------------|
| Japan  | VCCI            |
| Taiwan | BSMI            |
| USA    | FCC MRA         |

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

Remark: FCC Designation Number TW1027.

# 5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

| PARAMETER                                                                    | UNCERTAINTY                 |
|------------------------------------------------------------------------------|-----------------------------|
| Semi Anechoic Chamber (966 Chamber_C) /<br>Radiated Emission, 30 to 1000 MHz | +/- 3.97                    |
| Semi Anechoic Chamber (966 Chamber_C) /<br>Radiated Emission, 1 to 18GHz     | +/- 3.58                    |
| Semi Anechoic Chamber (966 Chamber_C) /<br>Radiated Emission, 18 to 26 GHz   | +/- 3.59                    |
| Semi Anechoic Chamber (966 Chamber_C) /<br>Radiated Emission, 26 to 40 GHz   | +/- 3.81                    |
| Conducted Emission (Mains Terminals),<br>9kHz to 30MHz                       | +/- 2.48                    |
| 6dB Bandwidth, Conducted                                                     | +/- 2.6906*10 <sup>-5</sup> |
| RF Output Power, Conducted                                                   | +/- 1.3860                  |
| Power Spectral Density, Conducted                                            | +/- 2.5290                  |
| Conducted Spurious Emission                                                  | +/- 2.2727                  |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than  $U_{CISPR}$  which is 3.6dB and 5.2dB respectively. CCS values (called  $U_{Lab}$  in CISPR 16-4-2) is less than  $U_{CISPR}$  as shown in the table above. Therefore, MU need not be considered for compliance.

# 6. SETUP OF EQUIPMENT UNDER TEST

## SUPPORT EQUIPMENT

| No. | D. Product Manufacturer |         | No. Product Manufactu |           | Model No. | Serial No. |
|-----|-------------------------|---------|-----------------------|-----------|-----------|------------|
| 1   | Notebook PC             | TOSHIBA | PORTEGE R30-A         | 7F097011H |           |            |
| 2   | LED Monitor             | SONY    | KDL22EX420            | 3711349   |           |            |

## SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

# **EUT OPERATING CONDITION**

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. TX mode:
  - ⇒ Data Rate: 1Mbps Bandwidth 20 (IEEE 802.11b Mode)

6Mbps Bandwidth 20 (IEEE 802.11g Mode)

6.5Mbps Bandwidth 20 (IEEE 802.11gn HT20 MCS0 Mode)

13.5Mbps Bandwidth 40 (IEEE 802.11gn HT40 MCS0 Mode)

### ⇒ Power control

| Mode                       | Channel | Frequency (MHz) | Power Set |
|----------------------------|---------|-----------------|-----------|
|                            | Low     | 2412            | 42        |
| IEEE 802.11b               | Middle  | 2437            | 39        |
|                            | High    | 2462            | 39        |
|                            | Low     | 2412            | 62        |
| IEEE 802.11g               | Middle  | 2437            | 63        |
|                            | High    | 2462            | 62        |
|                            | Low     | 2412            | 60        |
| IEEE 802.11gn HT20<br>MCS0 | Middle  | 2437            | 63        |
| 11000                      | High    | 2462            | 60        |
|                            | Low     | 2422            | 56        |
| IEEE 802.11gn HT40<br>MCS0 | Middle  | 2437            | 63        |
|                            | High    | 2452            | 60        |

3. All of the functions are under run.

4. Start test.

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

# 7. FCC PART 15.247 REQUIREMENTS

# 7.1 DUTY CYCLE CORRECTION FACTOR

| Product Name SiME Smart Q |         | Test By          | Rex Chiu   |
|---------------------------|---------|------------------|------------|
| Test Model SiME Q1        |         | Test Date        | 2016/11/28 |
| Test Mode                 | TX Mode | Temp. & Humidity | 25°C, 50%  |

| Mode               | TX on<br>(ms) | TX on + off<br>(ms) | Duty Cycle<br>(%) | Duty Factor<br>(dB) | 1/T Minimum<br>VBW (kHz) |
|--------------------|---------------|---------------------|-------------------|---------------------|--------------------------|
| IEEE 802.11b       | 1.000         | 1.000               | 100.00%           | 0.00                | 0.010                    |
| IEEE 802.11g       | 1.000         | 1.000               | 100.00%           | 0.00                | 0.010                    |
| IEEE 802.11gn HT20 | 1.000         | 1.000               | 100.00%           | 0.00                | 0.010                    |
| IEEE 802.11gn HT40 | 1.000         | 1.000               | 100.00%           | 0.00                | 0.010                    |

# 7.2 6dB BANDWIDTH

# LIMITS

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

# TEST EQUIPMENT

| Name of Equipment   | Manufacturer | Model  | Serial Number | Calibration<br>Due |
|---------------------|--------------|--------|---------------|--------------------|
| EXA Signal Analyzer | Agilent      | N9010A | MY52220817    | 03/15/2017         |
| Test S/W            | N/A          |        |               |                    |

Remark: Each piece of equipment is scheduled for calibration once a year.

# TEST SETUP



# TEST PROCEDURE

- 1. The transmitter output was connected to a spectrum analyzer.
- 2. Set RBW = 100 kHz.
- 3. Set the video bandwidth (VBW)  $\ge$  3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

# TEST RESULTS

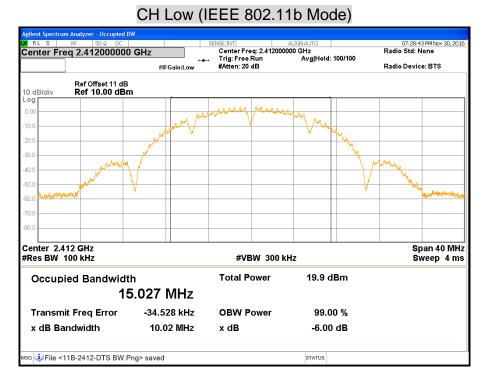
| Product Name | SiME Smart Q | Test By          | Waternil Guan |
|--------------|--------------|------------------|---------------|
| Test Model   | SiME Q1      | Test Date        | 2016/11/30    |
| Test Mode    | TX Mode      | Temp. & Humidity | 25°C, 50%     |

## IEEE 802.11b Mode

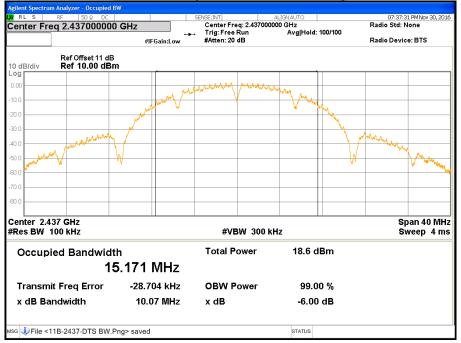
| Channel | Channel<br>Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) | Minimum Limit<br>(kHz) | Result |
|---------|-------------------------------|------------------------|------------------------|--------|
| Low     | 2412                          | 10.02                  | 500                    | PASS   |
| Middle  | 2437                          | 10.07                  | 500                    | PASS   |
| High    | 2462                          | 10.06                  | 500                    | PASS   |

## IEEE 802.11g Mode

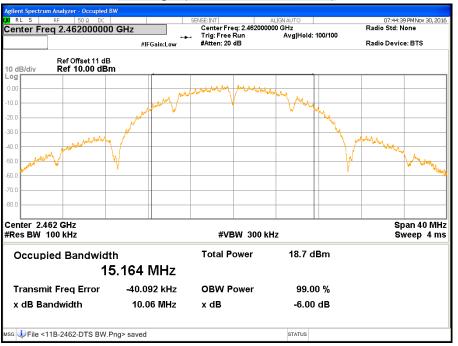
| Channel | Channel<br>Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) | Minimum Limit<br>(kHz) | Result |
|---------|-------------------------------|------------------------|------------------------|--------|
| Low     | 2412                          | 16.57                  | 500                    | PASS   |
| Middle  | 2437                          | 16.55                  | 500                    | PASS   |
| High    | 2462                          | 16.56                  | 500                    | PASS   |


# IEEE 802.11gn HT20 MCS0 Mode

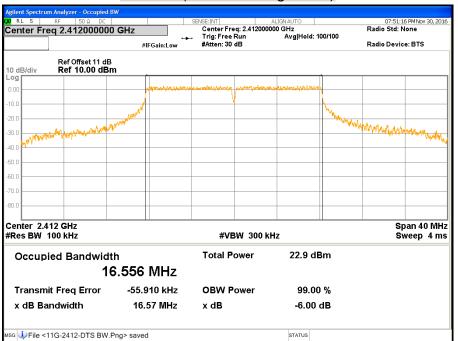
| Channel | Channel<br>Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) | Minimum Limit<br>(kHz) | Result |
|---------|-------------------------------|------------------------|------------------------|--------|
| Low     | 2412                          | 17.82                  | 500                    | PASS   |
| Middle  | 2437                          | 17.80                  | 500                    | PASS   |
| High    | 2462                          | 17.83                  | 500                    | PASS   |


# IEEE 802.11gn HT40 MCS0 Mode

| Channel | Channel<br>Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) | Minimum Limit<br>(kHz) | Result |
|---------|-------------------------------|------------------------|------------------------|--------|
| Low     | 2422                          | 36.38                  | 500                    | PASS   |
| Middle  | 2437                          | 36.37                  | 500                    | PASS   |
| High    | 2452                          | 36.40                  | 500                    | PASS   |

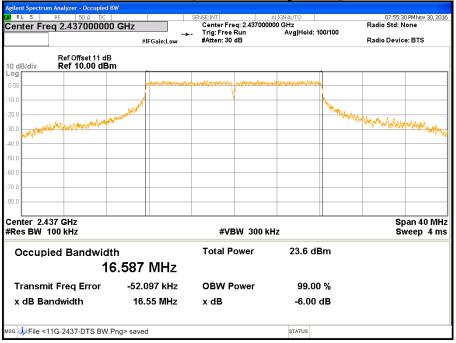

# 6dB BANDWIDTH

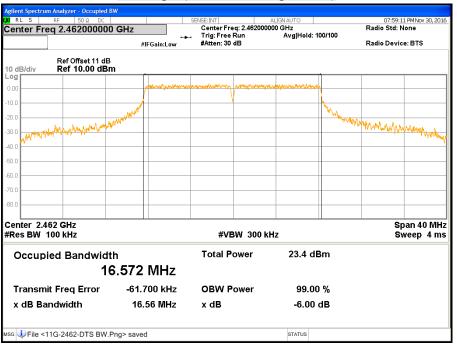



## CH Middle (IEEE 802.11b Mode)

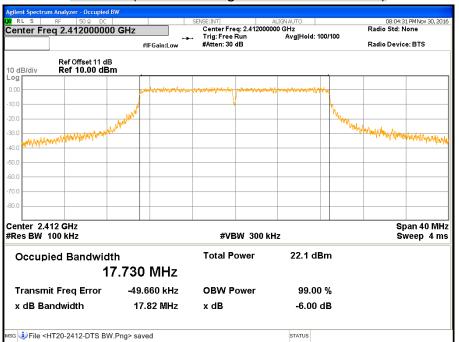


### Page 14 / 96 This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.



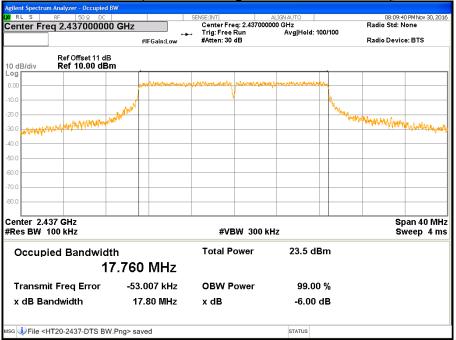


## CH High (IEEE 802.11b Mode)

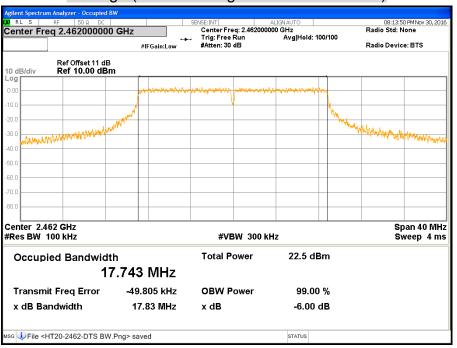



### CH Low (IEEE 802.11g Mode)

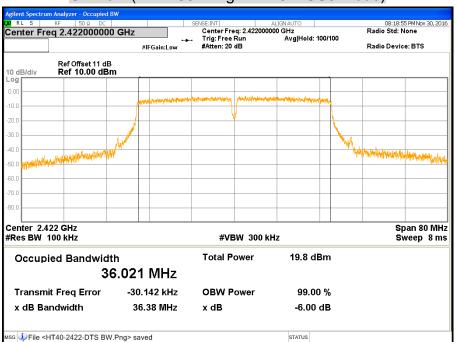
### CH Middle (IEEE 802.11g Mode)





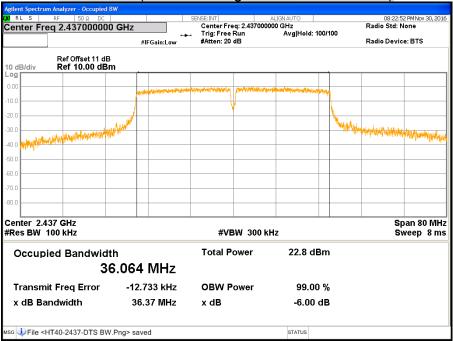


## CH High (IEEE 802.11g Mode)

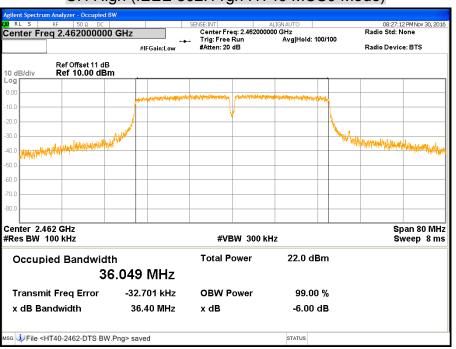



### CH Low (IEEE 802.11gn HT20 MCS0 Mode)

### CH Middle (IEEE 802.11gn HT20 MCS0 Mode)







### CH High (IEEE 802.11gn HT20 MCS0 Mode)



### CH Low (IEEE 802.11gn HT40 MCS0 Mode)

### CH Middle (IEEE 802.11gn HT40 MCS0 Mode)





### CH High (IEEE 802.11gn HT40 MCS0 Mode)

# 7.3 MAXIMUM PEAK OUTPUT POWER

# LIMITS

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following:

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§ KDB 662911:

If all antennas have the same gain,  $G_{ANT}$ , Directional gain =  $G_{ANT}$  + Array Gain, where Array Gain is as follows.

Array Gain = 0 dB (i.e., no array gain) for  $N_{ANT} \le 4$ ;

Array Gain = 0 dB (i.e., no array gain) for channel widths  $\geq$  40 MHz for any N<sub>ANT</sub>;

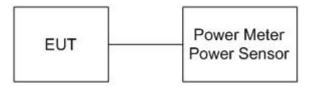
Array Gain = 5 log(N<sub>ANT</sub>/N<sub>SS</sub>) dB or 3 dB, whichever is less for 20-MHz channel widths with  $N_{ANT} \ge 5$ .

If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream:

Directional gain may be calculated by using the formulas applicable to equal gain antennas with  $G_{ANT}$  set equal to the gain of the antenna having the highest gain; or,

$$DirectionalGain = 10 \cdot \log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

# TEST EQUIPMENT


| Name of Equipment | Manufacturer | Model   | Serial Number | Calibration<br>Due |
|-------------------|--------------|---------|---------------|--------------------|
| Power Meter       | Anritsu      | ML2495A | 1149001       | 12/05/2017         |
| Power Sensor      | Anritsu      | MA2411B | 1126148       | 12/05/2017         |
| Test S/W          | N/A          |         |               |                    |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.



# TEST SETUP



## TEST PROCEDURE

The transmitter output is connected to the power meter. The power meter is set to the peak power detection.

## TEST RESULTS

| Product Name | SiME Smart Q | Test By          | Waternil Guan |
|--------------|--------------|------------------|---------------|
| Test Model   | SiME Q1      | Test Date        | 2016/11/30    |
| Test Mode    | TX Mode      | Temp. & Humidity | 24°C, 58%     |

### IEEE 802.11b Mode

| Channel<br>Channel Frequency |       | Maximum Peak Output<br>Power |        | Limit |       | Result |
|------------------------------|-------|------------------------------|--------|-------|-------|--------|
|                              | (MHz) | (dBm)                        | (W)    | (dBm) | (W)   |        |
| Low                          | 2412  | 15.90                        | 0.0389 | 30    | 1.000 | PASS   |
| Middle                       | 2437  | 14.70                        | 0.0295 | 30    | 1.000 | PASS   |
| High                         | 2462  | 14.80                        | 0.0302 | 30    | 1.000 | PASS   |

#### Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

3. The maximum antenna gain is 1.24 dBi which is less than 6dBi, the limit should be 30 dBm.

### IEEE 802.11g Mode

| Channel<br>Channel Frequency |       | hannel Frequency Power |        | Limit |       | Result |
|------------------------------|-------|------------------------|--------|-------|-------|--------|
|                              | (MHz) | (dBm)                  | (W)    | (dBm) | (W)   |        |
| Low                          | 2412  | 24.73                  | 0.2972 | 30    | 1.000 | PASS   |
| Middle                       | 2437  | 25.10                  | 0.3236 | 30    | 1.000 | PASS   |
| High                         | 2462  | 25.06                  | 0.3206 | 30    | 1.000 | PASS   |

### Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

3. The maximum antenna gain is 1.24 dBi which is less than 6dBi, the limit should be 30 dBm.

| Channel | Channel<br>Frequency |       | Peak Output<br>wer | Lir   | nit   | Result |
|---------|----------------------|-------|--------------------|-------|-------|--------|
|         | (MHz)                | (dBm) | (W)                | (dBm) | (W)   |        |
| Low     | 2412                 | 23.77 | 0.2382             | 30    | 1.000 | PASS   |
| Middle  | 2437                 | 25.02 | 0.3177             | 30    | 1.000 | PASS   |
| High    | 2462                 | 24.34 | 0.2716             | 30    | 1.000 | PASS   |

### IEEE 802.11gn HT20 MCS0 Mode

#### Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

3. The maximum antenna gain is 1.24 dBi which is less than 6dBi, the limit should be 30 dBm.

| Channel | Channel<br>Frequency |       | Peak Output<br>wer | Lir   | nit   | Result |
|---------|----------------------|-------|--------------------|-------|-------|--------|
|         | (MHz)                | (dBm) | (W)                | (dBm) | (W)   |        |
| Low     | 2422                 | 22.70 | 0.1862             | 30    | 1.000 | PASS   |
| Middle  | 2437                 | 24.62 | 0.2897             | 30    | 1.000 | PASS   |
| High    | 2452                 | 23.92 | 0.2466             | 30    | 1.000 | PASS   |

### IEEE 802.11gn HT40 MCS0 Mode

### Remark:

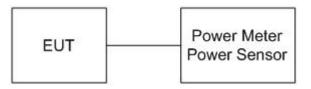
1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

3. The maximum antenna gain is 1.24 dBi which is less than 6dBi, the limit should be 30 dBm.

# 7.4 AVERAGE POWER

# LIMITS


None: For reporting purposes only.

# TEST EQUIPMENT

| Name of Equipment | Manufacturer | Model   | Serial Number | Calibration<br>Due |
|-------------------|--------------|---------|---------------|--------------------|
| Power Meter       | Anritsu      | ML2495A | 1149001       | 12/05/2017         |
| Power Sensor      | Anritsu      | MA2411B | 1126148       | 12/05/2017         |
| Test S/W          | N/A          |         |               |                    |

Remark: Each piece of equipment is scheduled for calibration once a year.

## TEST SETUP



## TEST PROCEDURE

The transmitter output is connected to the power meter. The power meter is set to the average power detection.

## TEST RESULTS

| Product Name | SiME Smart Q | Test By          | Waternil Guan |
|--------------|--------------|------------------|---------------|
| Test Model   | SiME Q1      | Test Date        | 2016/11/30    |
| Test Mode    | TX Mode      | Temp. & Humidity | 24°C, 58%     |

### IEEE 802.11b Mode

| Channel | Channel Frequency<br>(MHz) | Average Power<br>(dBm) |
|---------|----------------------------|------------------------|
| Low     | 2412                       | 13.78                  |
| Middle  | 2437                       | 12.45                  |
| High    | 2462                       | 12.69                  |

#### Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

### IEEE 802.11g Mode

| Channel | Channel Frequency<br>(MHz) | Average Power<br>(dBm) |
|---------|----------------------------|------------------------|
| Low     | 2412                       | 17.52                  |
| Middle  | 2437                       | 18.30                  |
| High    | 2462                       | 18.19                  |

### Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

### IEEE 802.11gn HT20 MCS0 Mode

| Channel | Channel Frequency<br>(MHz) | Average Power<br>(dBm) |
|---------|----------------------------|------------------------|
| Low     | 2412                       | 16.74                  |
| Middle  | 2437                       | 18.14                  |
| High    | 2462                       | 17.47                  |

#### Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

### IEEE 802.11gn HT40 MCS0 Mode

| Channel | Channel Frequency<br>(MHz) | Average Power<br>(dBm) |
|---------|----------------------------|------------------------|
| Low     | 2422                       | 14.45                  |
| Middle  | 2437                       | 17.65                  |
| High    | 2452                       | 16.53                  |

#### Remark:

1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

# 7.5 POWER SPECTRAL DENSITY

# <u>LIMITS</u>

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

# § KDB 662911:

If all antennas have the same gain,  $G_{ANT}$ , Directional gain =  $G_{ANT}$  + Array Gain, where Array Gain is as follows.

Array Gain =  $10 \log(N_{ANT}/N_{SS}) dB$ .

If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream:

Directional gain may be calculated by using the formulas applicable to equal gain antennas with  $G_{ANT}$  set equal to the gain of the antenna having the highest gain; or,

$$DirectionalGain = 10 \cdot \log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

## TEST EQUIPMENT

| Name of Equipment   | Manufacturer | Model  | Serial Number | Calibration<br>Due |
|---------------------|--------------|--------|---------------|--------------------|
| EXA Signal Analyzer | Agilent      | N9010A | MY52220817    | 03/15/2017         |
| Test S/W            | N/A          |        |               |                    |

**Remark:** Each piece of equipment is scheduled for calibration once a year.

# TEST SETUP



# TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set analyzer center frequency to DTS channel center frequency.
- 3. Set the span to 1.5 times the DTS channel bandwidth.
- 4. Set the RBW to:  $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$ .
- 5. Set the VBW  $\ge$  3 x RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

## TEST RESULTS

| Product Name | Product Name SiME Smart Q |                  | Waternil Guan |  |
|--------------|---------------------------|------------------|---------------|--|
| Test Model   | SiME Q1                   | Test Date        | 2016/11/30    |  |
| Test Mode    | TX Mode                   | Temp. & Humidity | 24°C, 58%     |  |

### IEEE 802.11b Mode

| Channel | Channel<br>Frequency | Final RF Power Level in 3KHz BW<br>(dBm) |       | Result |
|---------|----------------------|------------------------------------------|-------|--------|
|         | (MHz)                | Measured Value                           | Limit |        |
| Low     | 2412                 | -6.76                                    | 8     | PASS   |
| Middle  | 2437                 | -8.06                                    | 8     | PASS   |
| High    | 2462                 | -7.90                                    | 8     | PASS   |

#### Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

3. The maximum antenna gain is 1.24 dBi which is less than 6dBi, the limit should be 8 dBm.

### IEEE 802.11g Mode

| Channel | Channel<br>Frequency<br>(MHz) | Final RF Power Level in 3KHz BW<br>(dBm) |       | Result |
|---------|-------------------------------|------------------------------------------|-------|--------|
|         |                               | Measured Value                           | Limit |        |
| Low     | 2412                          | -5.03                                    | 8     | PASS   |
| Middle  | 2437                          | -4.33                                    | 8     | PASS   |
| High    | 2462                          | -4.53                                    | 8     | PASS   |

### Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

3. The maximum antenna gain is 1.24 dBi which is less than 6dBi, the limit should be 8 dBm.

### IEEE 802.11gn HT20 MCS0 Mode

| Channel | Channel<br>Frequency | Final RF Power Level in 3KHz BW<br>(dBm) |       | Result |
|---------|----------------------|------------------------------------------|-------|--------|
|         | (MHz)                | Measured Value                           | Limit |        |
| Low     | 2412                 | -5.30                                    | 8     | PASS   |
| Middle  | 2437                 | -3.57                                    | 8     | PASS   |
| High    | 2462                 | -4.40                                    | 8     | PASS   |

### Remark:

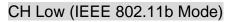
1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

3. The maximum antenna gain is 1.24 dBi which is less than 6dBi, the limit should be 8 dBm.

| Channel | Channel<br>Frequency | Final RF Power Level in 3KHz BW<br>(dBm) |       | Result |
|---------|----------------------|------------------------------------------|-------|--------|
|         | (MHz)                | Measured Value                           | Limit |        |
| Low     | 2422                 | -9.90                                    | 8     | PASS   |
| Middle  | 2437                 | -5.85                                    | 8     | PASS   |
| High    | 2452                 | -7.47                                    | 8     | PASS   |

### IEEE 802.11gn HT40 MCS0 Mode


### Remark:

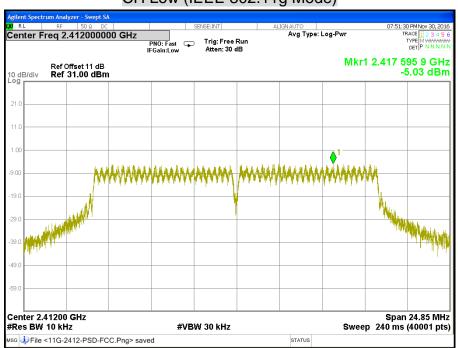
1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

3. The maximum antenna gain is 1.24 dBi which is less than 6dBi, the limit should be 8 dBm.


# **POWER SPECTRAL DENSITY**






### CH Middle (IEEE 802.11b Mode)



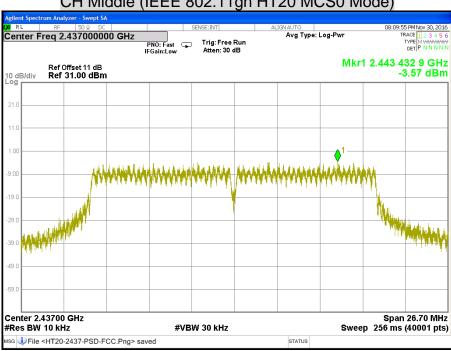



CH High (IEEE 802.11b Mode)




CH Low (IEEE 802.11g Mode)

# CH Middle (IEEE 802.11g Mode)






CH High (IEEE 802.11g Mode)

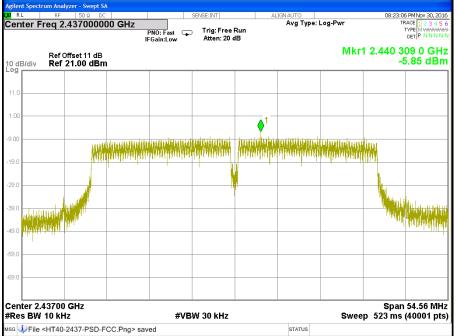


#### CH Low (IEEE 802.11gn HT20 MCS0 Mode)



## CH Middle (IEEE 802.11gn HT20 MCS0 Mode)




# CH High (IEEE 802.11gn HT20 MCS0 Mode)

Page 38 / 96 This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.



#### CH Low (IEEE 802.11gn HT40 MCS0 Mode)

# CH Middle (IEEE 802.11gn HT40 MCS0 Mode)





# CH High (IEEE 802.11gn HT40 MCS0 Mode)

# 7.6 CONDUCTED SPURIOUS EMISSION

# LIMITS


§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

# TEST EQUIPMENT

| Name of Equipment   | Manufacturer | Model  | Serial Number | Calibration<br>Due |
|---------------------|--------------|--------|---------------|--------------------|
| EXA Signal Analyzer | Agilent      | N9010A | MY52220817    | 03/15/2017         |
| Test S/W            |              | N/A    | l.            |                    |

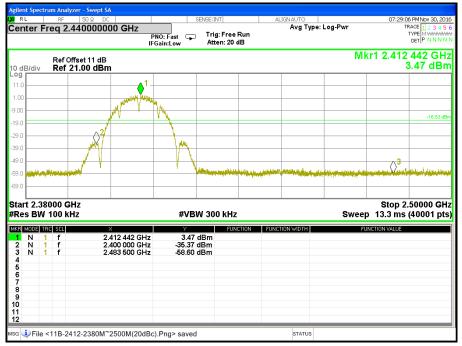
**Remark:** Each piece of equipment is scheduled for calibration once a year.

# TEST SETUP

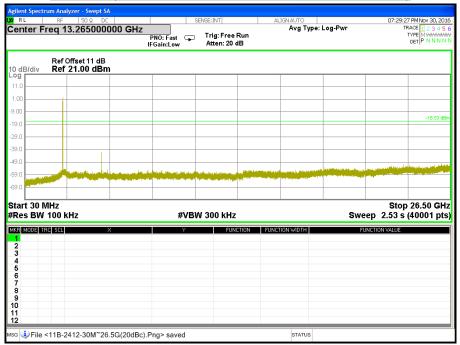


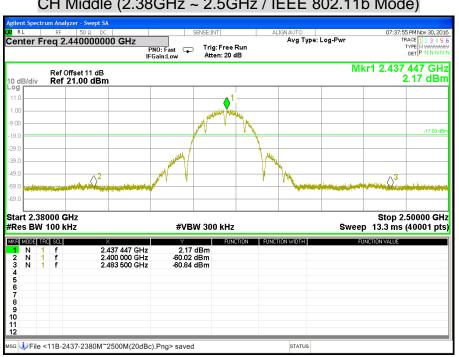
# TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

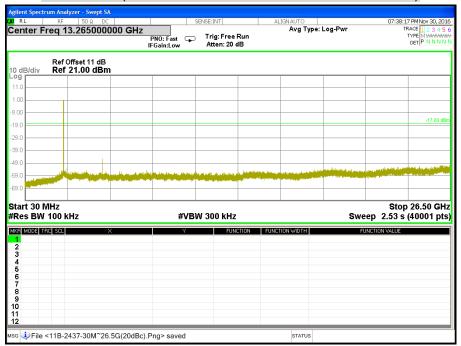
# TEST RESULTS

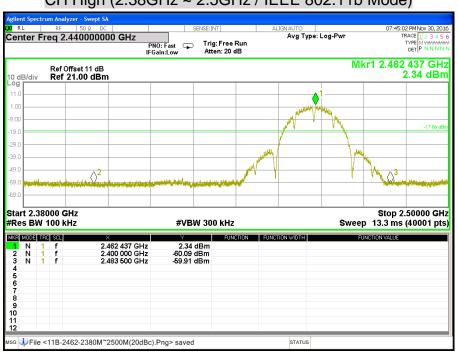

| Product Name | SiME Smart Q | Test By          | Waternil Guan |
|--------------|--------------|------------------|---------------|
| Test Model   | SiME Q1      | Test Date        | 2016/11/30    |
| Test Mode    | TX Mode      | Temp. & Humidity | 24°C, 58%     |


# **OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT**

## CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11b Mode)

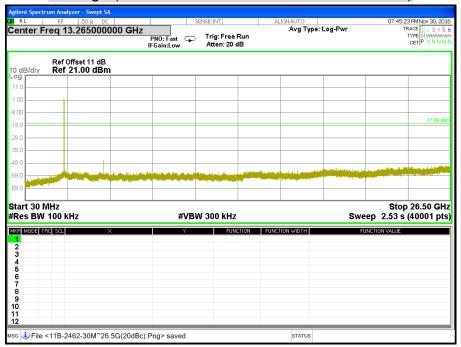


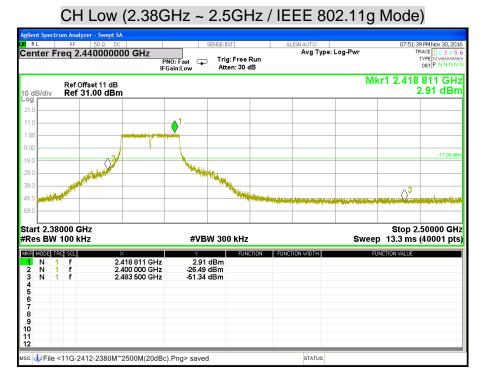

## CH Low (30MHz ~ 26.5GHz / IEEE 802.11b Mode)





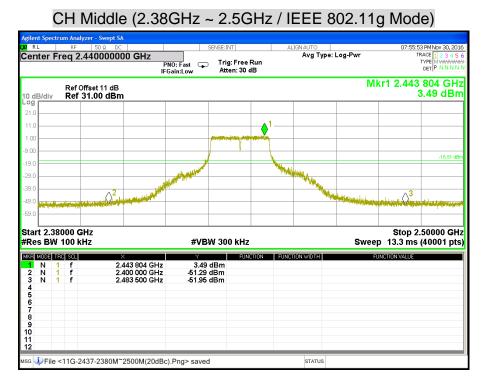

# CH Middle (2.38GHz ~ 2.5GHz / IEEE 802.11b Mode)


#### CH Middle (30MHz ~ 26.5GHz / IEEE 802.11b Mode)



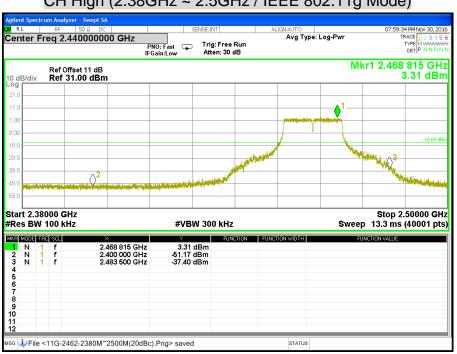



#### CH High (2.38GHz ~ 2.5GHz / IEEE 802.11b Mode)


## CH High (30MHz ~ 26.5GHz / IEEE 802.11b Mode)



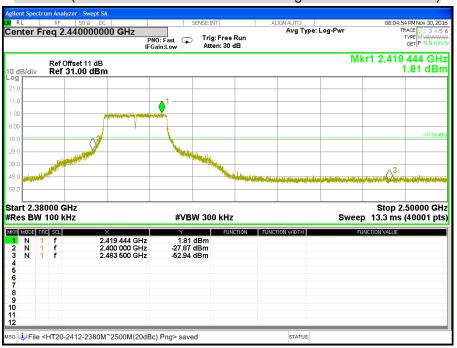



# CH Low (30MHz ~ 26.5GHz / IEEE 802.11g Mode)

| RL             | RF 50 Ω E                        | DC |                          | SENSE:INT                    | AL                              | IGNAUTO                                                                                                            |         | 07:52                                                                                                                                                                                                                               | :00 PM Nov 30, 20                                                                                              |
|----------------|----------------------------------|----|--------------------------|------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| nter Fr        | req 13.265000                    |    | PNO: Fast 😱<br>FGain:Low | Trig: Free R<br>Atten: 30 dE |                                 | Avg Type:                                                                                                          | Log-Pwr |                                                                                                                                                                                                                                     | TRACE 1 2 3 4<br>TYPE MWWW<br>DET P N N N                                                                      |
| B/div          | Ref Offset 11 dE<br>Ref 31.00 dB |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     | -17.09                                                                                                         |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                | and the second second second     |    | a last stand palot       | Salara Lands and             | مرامين (۲۹۹ مېرو<br>د رايو د رو | terre aller og det som at besteret.<br>Men som at s |         | وروا در المراجع المراجع<br>منابعة مستقدم المراجع ال | 1988 - Constanting and a second s |
| and the second |                                  |    | 1                        |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
| L              | 1H7                              |    |                          |                              |                                 |                                                                                                                    |         | Sto                                                                                                                                                                                                                                 | p 26.50 G                                                                                                      |
|                | 100 kHz                          |    | #VB                      | W 300 kHz                    |                                 |                                                                                                                    | Swe     |                                                                                                                                                                                                                                     | s (40001 p                                                                                                     |
| MODE TR        | C SCL                            | Х  | Y                        | FUNCT                        | ION FUNCT                       | ION WIDTH                                                                                                          | F       | UNCTION VALUE                                                                                                                                                                                                                       |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |
|                |                                  |    |                          |                              |                                 |                                                                                                                    |         |                                                                                                                                                                                                                                     |                                                                                                                |



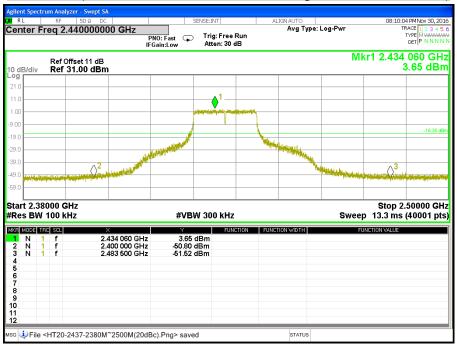
## CH Middle (30MHz ~ 26.5GHz / IEEE 802.11g Mode)


|          | RF 50 Ω                         |           |                                     | SENSE:INT                       | ALIGN                                 |                                                                                                                  |                                          | 07:56:14 PM N              |       |
|----------|---------------------------------|-----------|-------------------------------------|---------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|-------|
| er Fre   | eq 13.2650(                     | 00000 GH2 | Z<br>PNO: Fast<br>IFGain:Low        | Trig: Free Ru<br>Atten: 30 dB   | un                                    | Avg Type: L                                                                                                      | og-Pwr                                   | TRACE TYPE                 | 1 644 |
|          | Ref Offset 11 c<br>Ref 31.00 dl |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            | -16.  |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           | مريع المريح المريح المريح           | and a state of the state of the | alle and aller an and a second second | and the second | and along the second second              | -to-re-balanta and loke on | den i |
|          |                                 |           | Desta <sup>Ma</sup> blanda ang Bara |                                 | he has been fire to a before the for  |                                                                                                                  | a an |                            |       |
| t 30 MI  | Hz                              |           |                                     |                                 |                                       |                                                                                                                  |                                          | Stop 26.                   | 50    |
| 5 BW 1   | 00 kHz                          |           | #VE                                 | 300 kHz                         |                                       |                                                                                                                  | Swee                                     | p 2.53 s (400              | 01    |
| MODE TRC | SCL                             | ×         | Y                                   | FUNCTI                          | ION FUNCTION                          | WIDTH                                                                                                            | FUN                                      | CTION VALUE                |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |
|          |                                 |           |                                     |                                 |                                       |                                                                                                                  |                                          |                            |       |



#### CH High (2.38GHz ~ 2.5GHz / IEEE 802.11g Mode)

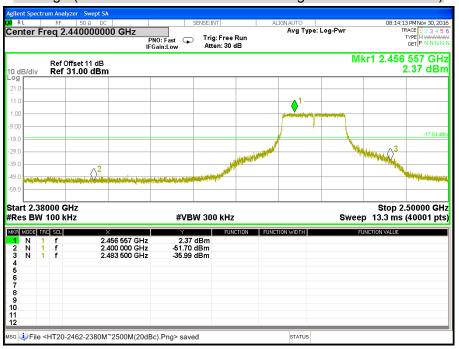
## CH High (30MHz ~ 26.5GHz / IEEE 802.11g Mode)


|                        | RF 50 Ω                         |                                                                                                                  |                              | SENSE:INT                   | AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .IGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                   | 56 PM Nov 30, 20            |
|------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|-----------------------------|
| enter Fre              | eq 13.26500                     | )0000 GHz                                                                                                        | PNO: Fast 🖵<br>IFGain:Low    | Trig: Free l<br>Atten: 30 c | Run<br>1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Avg Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Log-Pwr               | 1                 | TYPE MWWWW<br>DET P N N N N |
|                        | Ref Offset 11 c<br>Ref 31.00 df |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |                             |
|                        |                                 |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                             |
| .0                     |                                 |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                             |
|                        |                                 |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                             |
|                        |                                 |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                             |
|                        |                                 |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   | -16.69 d                    |
|                        |                                 |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                             |
|                        |                                 |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                             |
|                        | and the second second           | and a second second second                                                                                       | and the theory of party days | Medical subscription of the | ير                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d. Laborer Maile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a distantion listenal |                   |                             |
|                        |                                 | and the second system of the second |                              | Norther tyles and the same  | a second s | Instanting the Print of the Pri |                       |                   |                             |
|                        |                                 |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                             |
| art 30 Mi              |                                 |                                                                                                                  | #VB                          | W 300 kHz                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Swe                   | Stoj<br>ep 2.53 s | p 26.50 GH<br>(40001 pt     |
|                        | 100 kHz                         |                                                                                                                  |                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                             |
| ant 30 mil<br>Res BW 1 |                                 | X                                                                                                                | Y                            | FUNC                        | CTION FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FI                    | JNCTION VALUE     |                             |
| es BW 1                |                                 | X                                                                                                                | Y                            | FUNC                        | CTION FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                     | JNCTION VALUE     |                             |
| es BW 1                |                                 | ×                                                                                                                | Y                            | FUNC                        | CTION FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                     | UNCTION VALUE     |                             |
| es BW 1                |                                 | ×                                                                                                                | Y                            | FUNC                        | CTION FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                     | UNCTION VALUE     |                             |
| Res BW 1               |                                 | X                                                                                                                | Y                            | FUNC                        | CTION FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                     | JNCTION VALUE     |                             |
| tes BW 1               |                                 | ×                                                                                                                | Y                            | FUNC                        | CTION FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                     | UNCTION VALUE     |                             |
| es BW 1                |                                 | ×                                                                                                                |                              | FUNC                        | CTION FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                     | UNCTION VALUE     |                             |



#### CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

#### CH Low (30MHz ~ 26.5GHz / IEEE 802.11gn HT20 MCS0 Mode)


| lent Spectrum                        | Analyzer - Swept S                | Δ.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
|--------------------------------------|-----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|
|                                      |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
| RL                                   | RF 50 Ω DC                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT                   | AL                        | IGNAUTO                             |                                                                                                                  | 08:05:        | 15 PM Nov 30, 20           |
| enter Fred                           | q 13.265000                       |                       | PNO: Fast 😱<br>FGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trig: Free F<br>Atten: 30 d |                           | Avg Type:                           | Log-Pwr                                                                                                          |               | TYPE M WWWW<br>DET P N N N |
|                                      | Ref Offset 11 dB<br>Ref 31.00 dBn | n                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
| .0                                   |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
|                                      |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
| .0                                   |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
| 00                                   |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
| 0                                    |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
| 0                                    |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               | -18.19 c                   |
| 0                                    |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
|                                      |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
|                                      |                                   | t reside to sentences | and the sector of the sector o | and and a subscription      | يع يحمل مع الأسلامين في   | ألوجه وأرجعا ومراجع والمحام         | astronations (co                                                                                                 | and the state |                            |
|                                      |                                   | and the second state  | a the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for the second second       | a believed a set of a set | and the second states in the second | and the second |               |                            |
| 0                                    |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
|                                      |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  | Stor          | p 26.50 GI                 |
| TT 30 MH                             | 7                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           |                                     |                                                                                                                  |               |                            |
|                                      |                                   |                       | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W 300 kHz                   |                           |                                     | Swe                                                                                                              | ep 2.53 s     |                            |
| art 30 MH;<br>es BW 10<br>MODE HEC S | 00 kHz                            | ×                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W 300 kHz                   | TION FUNCT                | ION WIDTH                           |                                                                                                                  |               |                            |
| es BW 10<br>MODE TRC S               | 00 kHz                            | ×                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                | ION WIDTH                           |                                                                                                                  | eep 2.53 s    |                            |
| es BW 10                             | 00 kHz                            | ×                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                | ION WIDTH                           |                                                                                                                  | eep 2.53 s    |                            |
| es BW 10                             | 00 kHz                            | X                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                | ION WIDTH                           |                                                                                                                  | eep 2.53 s    |                            |
| es BW 10                             | 00 kHz                            | X                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                | ION WIDTH                           |                                                                                                                  | eep 2.53 s    |                            |
| es BW 10                             | 00 kHz                            | X                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                | ION WIDTH                           |                                                                                                                  | eep 2.53 s    |                            |
| es BW 10                             | 00 kHz                            | ×                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                | ION WIDTH                           |                                                                                                                  | eep 2.53 s    |                            |
| es BW 10                             | 00 kHz                            | ×                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                | ION WIDTH                           |                                                                                                                  | eep 2.53 s    |                            |
| es BW 10                             | 00 kHz                            | ×                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                | ION WIDTH                           |                                                                                                                  | eep 2.53 s    |                            |
| es BW 10                             | 00 kHz                            | ×                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | TION FUNCT                |                                     |                                                                                                                  | eep 2.53 s    |                            |



#### CH Middle (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

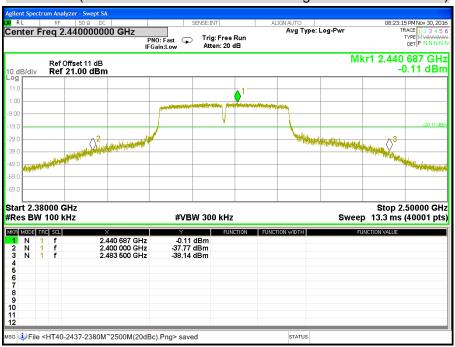
#### CH Middle (30MHz ~ 26.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

| lent Spectru          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
|-----------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------|-----------|------------------|--------------------------|------------------------------------------|
|                       | m Analyzer - Swept S             | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| RL                    | RF 50 Ω D                        | )c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   | SENSE:INT                                                                                                          | AL          | IGNAUTO   |                  | 08:10:2                  | 5 PM Nov 30, 20                          |
| iter Fre              | eq 13.265000                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PNO: Fast 😱<br>FGain:Low                                                                                                                                                                                                          | Trig: Free l<br>Atten: 30 d                                                                                        |             | Avg Type: | Log-Pwr          |                          | RACE 1 2 3 4<br>TYPE MWWW<br>DET P N N N |
|                       | Ref Offset 11 dB<br>Ref 31.00 dB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          | 1                                        |
|                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
|                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| ) ——                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| <u> </u>              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          | -16.35 c                                 |
|                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
|                       | <mark>   </mark>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| <u> </u>              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           | and a show a set | and entering to all      | والمتعروف والمتحد والمتحد                |
|                       |                                  | Here all and the second field of the second s | a da ante da production de la companya de la compa<br>Na companya de la com | ta la provincia de la com<br>Norma de la composición de la composición de la composición de la composición de la c |             |           |                  | The second second second | in Selfonda (San La n Ja dan San San S   |
| Charles Street Street |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| rt 30 Mi              | Hz<br>100 kHz                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #\/B                                                                                                                                                                                                                              | W 300 kHz                                                                                                          |             |           | <b>.</b>         |                          | 26.50 G                                  |
| SBW1                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #VB                                                                                                                                                                                                                               |                                                                                                                    |             |           |                  | ep 2.53 s                | (40001 p                                 |
|                       |                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y                                                                                                                                                                                                                                 | FUN                                                                                                                | CTION FUNCT | ION WIDTH | FL               | INCTION VALUE            |                                          |
| MODE TRC              | SCL                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| MODE TRC              | SCL                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| MODE TRO              | SCL                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| MODE TRO              | SCL                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| MODE TRC              | SCL                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| MODE TRO              | ) SCL                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| MODE TRO              | 361                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |
| MODE                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                    |             |           |                  |                          |                                          |



#### CH High (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT20 MCS0 Mode)

#### CH High (30MHz ~ 26.5GHz / IEEE 802.11gn HT20 MCS0 Mode)


|                     | m Analyzer - Swept S                  |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|---------------------|---------------------------------------|-------------------------------|--------------------------|------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|----------------------------------------------------------------------------------------------------------------|
| RL                  | RF 50 Ω DC                            |                               |                          | SENSE:INT                    | AL                       | IGNAUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 08:14         | 4:34 PM Nov 30, 20                                                                                             |
| enter Fro           | eq 13.265000                          |                               | PNO: Fast 🖵<br>FGain:Low | Trig: Free R<br>Atten: 30 dE |                          | Avg Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Log-Pwr |               | TRACE 1 2 3 4<br>TYPE M WWW<br>DET P N N N                                                                     |
|                     | Ref Offset 11 dB<br>Ref 31.00 dBn     | n                             | 1                        |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |               |                                                                                                                |
| .0                  |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
| .0                  |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
| 10                  |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
| 0                   |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               | -17.63 0                                                                                                       |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
| 0                   |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|                     |                                       | والمراجع والمحالي والمرجع وال | الرياد والأومينية والأر  | والم ومقدومة والقد           | مر واحد والمحاصر المراجع |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               | and a local state of the second s |
| .U<br>.O            | and a literation of the second states |                               |                          |                              |                          | and the set of the set |         |               |                                                                                                                |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
| art 30 M<br>es BW 1 |                                       |                               | #VB                      | W 300 kHz                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sw      |               | op 26.50 GI<br>s (40001 pi                                                                                     |
| MODE TRO            | C SCL                                 | X                             | Y                        | FUNCT                        | ION FUNCT                | ION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f       | UNCTION VALUE |                                                                                                                |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|                     |                                       |                               |                          |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |                                                                                                                |
|                     | HT20-2462-30M~2                       |                               |                          |                              |                          | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |               |                                                                                                                |



#### CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

#### CH Low (30MHz ~ 26.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

| ent Spectrum                    | n Analyzer - Swept S        | ٨                            |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|-----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RL                              | RF 50 Ω D                   | c                            |                                                                                                                 | SENSE:INT                           | AL                                                                                                              | IGNAUTO   |                                         | 08:19:                                                                                                          | 39 PM Nov 30, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nter Fre                        | q 13.265000                 |                              |                                                                                                                 |                                     |                                                                                                                 | Avg Type: | Log-Pwr                                 |                                                                                                                 | TRACE 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 | 9 10.200000                 |                              | PNO: Fast                                                                                                       | Trig: Free R                        | un                                                                                                              | •         | •                                       |                                                                                                                 | TYPE M WWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                             | 1                            | FGain:Low                                                                                                       | Atten: 20 dE                        | 3                                                                                                               |           |                                         |                                                                                                                 | DET P N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| F                               | Ref Offset 11 dB            |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B/div                           | Ref 21.00 dBr               | n                            |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                               | 4                           |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 | -23.25 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u> </u>                        | 1.                          |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         | هي رائليو ۽ ۽ ا                                                                                                 | فمتدانس للتق والمراسية أخليت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                               |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           | البرر المسالية فيتحال المتحال المتحالين |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| h litebra                       | and the state of the second | بخلافا مبعان تشاريكم ومأدأتك | a handa da anta | والأبر والمطالب ومرير المعريكا الأط | in the second |           | and the state of the second second      | Inclusion in the second second second                                                                           | And the second sec |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         | a second and the second se  | and a flamma and a state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         | Julie and the second | 144 o th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH                        |                             |                              |                                                                                                                 |                                     |                                                                                                                 |           |                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH                        |                             |                              |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           |                                         | Sto<br>eep 2.53 s                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      |                              |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH                        | 00 kHz                      | X                            |                                                                                                                 |                                     |                                                                                                                 |           | Swe                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      | X                            |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      |                              |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      | ×                            |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      | X                            |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      | X                            |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      |                              |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>s BW 10             | 00 kHz                      |                              |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      | X                            |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      | p 26.50 GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rt 30 MH<br>es BW 10            | 00 kHz                      |                              |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>es BW 10            | 00 kHz                      |                              |                                                                                                                 | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rt 30 MH<br>s BW 10<br>MODE 17R | 00 kHz                      |                              | #VB                                                                                                             | W 300 kHz                           |                                                                                                                 |           | Swe                                     | eep 2.53 s                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



#### CH Middle (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

#### CH Middle (30MHz ~ 26.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

|                                 | Analyzer - Swept S                |                    |                          |                              |                            |                      |         |              |                              |
|---------------------------------|-----------------------------------|--------------------|--------------------------|------------------------------|----------------------------|----------------------|---------|--------------|------------------------------|
|                                 | RF 50 Ω D                         |                    |                          | SENSE:INT                    | AL                         | IGNAUTO<br>Avg Type: |         | 08:23:37 P   | M Nov 30, 20<br>)E 1 2 3 4 5 |
| iter Frec                       | q 13.265000                       |                    | PNO: Fast 🖵<br>FGain:Low | Trig: Free F<br>Atten: 20 d  |                            | Avg Type.            | Log-Pwr | TYF          |                              |
|                                 | tef Offset 11 dB<br>tef 21.00 dBr | n                  |                          |                              |                            |                      |         |              |                              |
| o                               |                                   |                    |                          |                              |                            |                      |         |              |                              |
| 0                               | - 1                               |                    |                          |                              |                            |                      |         |              |                              |
| )                               |                                   |                    |                          |                              |                            |                      |         |              |                              |
| ·                               |                                   |                    |                          |                              |                            |                      |         |              | -20.11                       |
|                                 | _                                 |                    |                          |                              |                            |                      |         |              |                              |
| L                               |                                   |                    |                          |                              |                            |                      |         |              |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |
| and the other states            | A Manager and                     | a deserve and dese |                          | Notatilina ana <sub>ao</sub> | And the ball of the second |                      |         |              |                              |
| Constraint State State of State |                                   |                    |                          |                              |                            |                      |         |              |                              |
| rt 30 MHz                       | z                                 |                    |                          |                              |                            |                      |         | Stop 2       | 6.50 G                       |
| s BW 10                         | 0 kHz                             |                    | #VB                      | W 300 kHz                    |                            |                      | Swe     | ep 2.53 s (4 |                              |
| MODE TRC S                      | SCL                               | х                  | Y                        | FUNC                         | TION FUNCT                 | ION WIDTH            | FU      | NCTION VALUE |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |
|                                 |                                   |                    |                          |                              |                            |                      |         |              |                              |



#### CH High (2.38GHz ~ 2.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

#### CH High (30MHz ~ 26.5GHz / IEEE 802.11gn HT40 MCS0 Mode)

|                         | lyzer - Swept S/<br>50 Ω DC |         |             | SENSE:INT | - AI                      | IGNAUTO                   |                        | 08:27:            | 56 PM Nov 30.       |
|-------------------------|-----------------------------|---------|-------------|-----------|---------------------------|---------------------------|------------------------|-------------------|---------------------|
| ter Freq 1              |                             | 000 GHz | PNO: Fast 🕞 |           | Run                       | Avg Type:                 | Log-Pwr                |                   | TYPE NN             |
|                         | Offset 11 dB<br>21.00 dBm   | 1       |             |           |                           |                           | 1                      | 1                 |                     |
|                         |                             |         |             |           |                           |                           |                        |                   |                     |
|                         |                             |         |             |           |                           |                           |                        |                   |                     |
|                         |                             |         |             |           |                           |                           |                        |                   | 21.2                |
|                         |                             |         |             |           |                           |                           |                        |                   |                     |
|                         |                             |         |             |           | contraction of the second | n hanna a dhannan ha      | a hara ta data sa a sa |                   |                     |
|                         |                             |         |             |           | 1                         | Proved production and the |                        |                   |                     |
| rt 30 MHz<br>s BW 100 k | (Hz                         |         | #VB         | W 300 kHz |                           |                           | Swe                    | Stop<br>ep 2.53 s | p 26.50 C<br>(40001 |
| MODE TRC SCL            |                             | ×       | Y           | FUNC      | TION FUNCT                | ION WIDTH                 | F                      | UNCTION VALUE     |                     |
|                         |                             |         |             |           |                           |                           |                        |                   |                     |
|                         |                             |         |             |           |                           |                           |                        |                   |                     |
|                         |                             |         |             |           |                           |                           |                        |                   |                     |
|                         |                             |         |             |           |                           |                           |                        |                   |                     |
|                         |                             |         |             |           |                           |                           |                        |                   |                     |

# 7.7 RADIATED EMISSION

# <u>LIMITS</u>

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                      | MHz             | GHz              |
|----------------------------|--------------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423           | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525      | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475      | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67             | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25             | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6                | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2              | 1660 -1710      | 10.6 -12.7       |
| 6.26775 - 6.26825          | 108 -121.94              | 1718.8 - 1722.2 | 13.25 -13.4      |
| 6.31175 - 6.31225          | 123 - 138                | 2200 - 2300     | 14.47 – 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05           | 2310 - 2390     | 15.35 -16.2      |
| 8.362 - 8.366              | 156.52475 -<br>156.52525 | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.7 - 156.9            | 2655 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 162.0125 - 167.17        | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 167.72 - 173.2           | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 240 - 285                | 3345.8 - 3338   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 322 -335.4               | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              |                          |                 |                  |

#### Remark:

1. <sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2. <sup>2</sup> Above 38.6

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. (3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

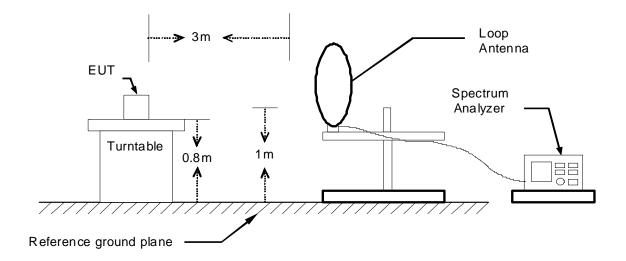
| Frequency<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|--------------------|--------------------------------------|----------------------------------|
| 0.009 - 0.490      | 2400/F(KHz)                          | 300                              |
| 0.490 – 1.705      | 24000/F(KHz)                         | 30                               |
| 1.705 – 30.0       | 30                                   | 30                               |
| 30 - 88            | 100 **                               | 3                                |
| 88 - 216           | 150 **                               | 3                                |
| 216 - 960          | 200 **                               | 3                                |
| Above 960          | 500                                  | 3                                |

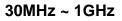
**Remark:** \*\*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

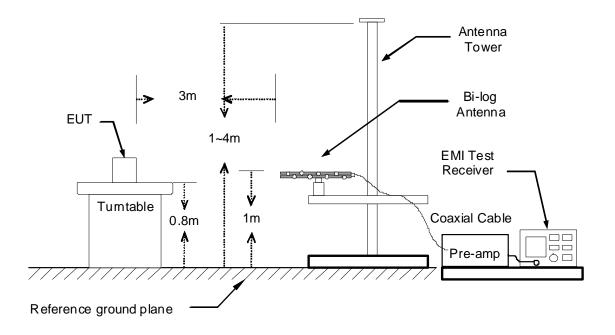
(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

# TEST EQUIPMENT

## Radiated Emission / 966Chamber\_C


| Name of Equipment               | Manufacturer    | Model       | Serial Number | Calibration<br>Due |
|---------------------------------|-----------------|-------------|---------------|--------------------|
| Spectrum Analyzer               | Agilent         | E4446A      | MY48250064    | 04/21/2017         |
| EMI Test Receiver               | Rohde & Schwarz | ESCI        | 101387        | 10/04/2017         |
| Bi-log Antenna                  | TESEQ           | CBL 6112D   | 35404         | 07/22/2017         |
| Broad-Band Horn<br>Antenna      | Schwarzbeck     | BBHA 9120 D | 9120D-285     | 04/17/2017         |
| Double-Ridged<br>Waveguide Horn | ETS-LINDGREN    | 3117        | 00078732      | 07/10/2017         |
| Horn Antenna                    | COM-POWER       | AH-840      | 03077         | 12/01/2017         |
| Pre-Amplifier                   | EMCI            | EMC001625   | 980243        | 04/11/2017         |
| Pre-Amplifier                   | COM-POWER       | PAM-118A    | 551043        | 04/11/2017         |
| LOOP Antenna                    | COM-POWER       | AL-130      | 121060        | 05/23/2017         |
| Test S/W                        |                 | E3.815206a  | a             |                    |


Remark: Each piece of equipment is scheduled for calibration once a year.


# TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission below 1GHz.

# 9kHz ~ 30MHz







The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.



# TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 and 1.5 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

## Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

# TEST RESULTS

# Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

## Below 1 GHz (30MHz ~ 1GHz)

| Product Name | SiME Smart Q | Test By          | Rex Chiu   |
|--------------|--------------|------------------|------------|
| Test Model   | SiME Q1      | Test Date        | 2016/11/29 |
| Test Mode    | Mode 1       | Temp. & Humidity | 25°C, 50%  |

## 966Chamber\_C at 3Meter / Horizontal

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|--------|
|              |                 |              |                  |                 |              |                |              |        |
| 30.00        | 35.49           | -7.43        | 28.06            | 40.00           | -11.94       | 111            | 100          | Peak   |
| 148.34       | 49.00           | -15.15       | 33.85            | 43.50           | -9.65        | 293            | 200          | Peak   |
| 222.06       | 51.60           | -16.03       | 35.57            | 46.00           | -10.43       | 68             | 100          | Peak   |
| 296.75       | 51.92           | -11.89       | 40.03            | 46.00           | -5.97        | 133            | 100          | Peak   |
| 446.13       | 50.50           | -8.10        | 42.40            | 46.00           | -3.60        | 360            | 200          | QP     |
| 786.60       | 41.59           | -4.32        | 37.27            | 46.00           | -8.73        | 334            | 100          | Peak   |
| 817.64       | 41.52           | -4.13        | 37.39            | 46.00           | -8.61        | 292            | 100          | Peak   |
| 870.02       | 41.26           | -3.58        | 37.68            | 46.00           | -8.32        | 329            | 100          | Peak   |

# 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|--------|
|              |                 |              |                  |                 |              |                |              |        |
| 30.00        | 41.21           | -7.43        | 33.78            | 40.00           | -6.22        | 124            | 100          | Peak   |
| 55.22        | 51.00           | -19.26       | 31.74            | 40.00           | -8.26        | 214            | 100          | Peak   |
| 125.06       | 47.32           | -13.89       | 33.43            | 43.50           | -10.07       | 266            | 100          | Peak   |
| 240.49       | 50.65           | -13.92       | 36.73            | 46.00           | -9.27        | 177            | 200          | Peak   |
| 314.21       | 48.04           | -11.70       | 36.34            | 46.00           | -9.66        | 193            | 200          | Peak   |
| 445.16       | 49.31           | -8.12        | 41.19            | 46.00           | -4.81        | 40             | 100          | Peak   |
| 594.54       | 45.57           | -5.82        | 39.75            | 46.00           | -6.25        | 268            | 100          | Peak   |
| 870.02       | 39.65           | -3.58        | 36.07            | 46.00           | -9.93        | 81             | 200          | Peak   |

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) – PreAmp.Gain (dB)

3. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)

4. Margin (dB) = Remark result (dBuV/m) - Quasi-peak limit (dBuV/m).

#### Above 1 GHz

| Product Name | SiME Smart Q                       | Test By          | Rex Chiu               |  |
|--------------|------------------------------------|------------------|------------------------|--|
| Test Model   | SiME Q1                            | Test Date        | 2016/11/25             |  |
| Test Mode    | IEEE 802.11b Mode / TX /<br>CH Low | Temp. & Humidity | 25 <sup>°</sup> C, 50% |  |

## 966Chamber\_C at 3Meter / Horizontal

| Freq.<br>MHz    | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|-----------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|                 |                 |              |                  |                 |              |                |              |         |
| 1870.00         | 50.82           | -2.39        | 48.43            | 74.00           | -25.57       | 326            | 200          | Peak    |
| 2566 <b>.00</b> | 49.53           | 0.17         | 49.70            | 74.00           | -24.30       | 328            | 200          | Peak    |
| 3480.00         | 44.49           | 2.06         | 46.55            | 74.00           | -27.45       | 315            | 200          | Peak    |
| 4824.00         | 46.20           | 5.74         | 51.94            | 54.00           | -2.06        | 328            | 200          | Average |
| 4824.00         | 48.25           | 5.74         | 53.99            | 74.00           | -20.01       | 328            | 200          | Peak    |
| 7020.00         | 43.19           | 2.80         | 45.99            | 74.00           | -28.01       | 62             | 100          | Peak    |
| 11160.00        | 42.23           | 7.16         | 49.39            | 74.00           | -24.61       | 344            | 200          | Peak    |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz       | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB     | Azimuth<br>deg | Height<br>cm | Remark       |
|--------------------|-----------------|--------------|------------------|-----------------|------------------|----------------|--------------|--------------|
|                    |                 |              |                  |                 |                  |                |              |              |
| 2088.00            | 53.33           | -1.72        | 51.61            | 74.00           | -22.39           | 357            | 100          | Peak         |
| 2538.00            | 50.10           | 0.08         | 50.18            | 74.00           | -23.82           | 256            | 100          | Peak         |
| 3480.00            | 44.04           | 2.06         | 46.10            | 74.00           | -27.90           | 24             | 100          | Peak         |
| 4824.00            | 47.20           | 5.74         | 52.94            | 54.00           | -1.06            | 241            | 200          | Average      |
| 4824.00<br>6960.00 | 48.22<br>44.31  | 5.74<br>2.81 | 53.96<br>47.12   | 74.00<br>74.00  | -20.04<br>-26.88 | 241<br>37      | 200<br>100   | Peak<br>Peak |
| 11148.00           | 41.70           | 7.16         | 48.86            | 74.00           | -25.14           | 334            | 100          | Peak         |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                          | Test By          | Rex Chiu               |
|--------------|---------------------------------------|------------------|------------------------|
| Test Model   | SiME Q1                               | Test Date        | 2016/11/25             |
| Test Mode    | IEEE 802.11b Mode / TX /<br>CH Middle | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 2390.00      | 50.14           | -0.49        | 49.65            | 74.00           | -24.35       | 277            | 100          | Peak    |
| 2874.00      | 48.36           | 1.14         | 49.50            | 74.00           | -24.50       | 241            | 100          | Peak    |
| 3480.00      | 45.11           | 2.06         | 47.17            | 74.00           | -26.83       | 341            | 100          | Peak    |
| 4875.00      | 46.20           | 5.89         | 52.09            | 54.00           | -1.91        | 349            | 256          | Average |
| 4875.00      | 46.89           | 5.89         | 52.78            | 74.00           | -21.22       | 349            | 200          | Peak    |
| 6960.00      | 43.70           | 2.81         | 46.51            | 74.00           | -27.49       | 119            | 200          | Peak    |
| 10968.00     | 42.72           | 6.97         | 49.69            | 74.00           | -24.31       | 38             | 100          | Peak    |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz    | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBu√/m | Margin<br>dB    | Azimuth<br>deg | Height<br>cm | Remark  |
|-----------------|-----------------|--------------|------------------|-----------------|-----------------|----------------|--------------|---------|
|                 |                 |              |                  |                 |                 |                |              |         |
| 233 <b>4.00</b> | 49.49           | -0.72        | 48.77            | 74.00           | -25.23          | 360            | 100          | Peak    |
| 2732.00         | 48.91           | 0.69         | 49.60            | 74.00           | -24.40          | 287            | 200          | Peak    |
| 3480.00         | 45.08           | 2.06         | 47.14            | 74.00           | -26.86          | 148            | 100          | Peak    |
| 4875.00         | 46.80           | 5.89         | 52.69            | 54.00           | -1.31           | 241            | 200          | Average |
| 4875.00         | 47.33           | 5.89         | 53.22            | 74.00           | -20.78          | 241            | 200          | Peak -  |
| 7032.00         | 43.94           | 2.81         | 46.75            | 74.00           | -27.25          | 24             | 100          | Peak    |
| 10020.00        | 43.82           | 5.15         | 48.97            | 74.00           | -2 <b>5.0</b> 3 | 233            | 100          | Peak    |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

 Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                        | Test By          | Rex Chiu               |
|--------------|-------------------------------------|------------------|------------------------|
| Test Model   | SiME Q1                             | Test Date        | 2016/11/25             |
| Test Mode    | IEEE 802.11b Mode / TX /<br>CH High | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 2340.00      | 50.72           | -0.69        | 50.03            | 74.00           | -23.97       | 23             | 200          | Peak    |
| 2982.00      | 47.75           | 1.48         | 49.23            | 74.00           | -24.77       | 16             | 200          | Peak    |
| 3480.00      | 46.25           | 2.06         | 48.31            | 74.00           | -25.69       | 326            | 200          | Peak    |
| 4923.00      | 46.60           | 6.03         | 52.63            | 54.00           | -1.37        | 334            | 207          | Average |
| 4923.00      | 47.03           | 6.03         | 53.06            | 74.00           | -20.94       | 334            | 200          | Peak    |
| 6996.00      | 43.54           | 2.79         | 46.33            | 74.00           | -27.67       | 56             | 200          | Peak    |
| 10068.00     | 43.25           | 5.23         | 48.48            | 74.00           | -25.52       | 292            | 100          | Peak    |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 2380.00      | 48.73           | -0.53        | 48.20            | 74.00           | -25.80       | 343            | 200          | Peak    |
| 2972.00      | 48.12           | 1.45         | 49.57            | 74.00           | -24.43       | 330            | 100          | Peak    |
| 3480.00      | 44.60           | 2.06         | 46.66            | 74.00           | -27.34       | 33             | 100          | Peak    |
| 4923.00      | 46.70           | 6.03         | 52.73            | 54.00           | -1.27        | 241            | 195          | Average |
| 4923.00      | 47.24           | 6.03         | 53.27            | 74.00           | -20.73       | 241            | 200          | Peak -  |
| 7032.00      | 43.40           | 2.81         | 46.21            | 74.00           | -27.79       | 213            | 100          | Peak    |
| 10812.00     | 42.80           | 6.66         | 49.46            | 74.00           | -24.54       | 0              | 200          | Peak    |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

 Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                       | Test By          | Rex Chiu               |
|--------------|------------------------------------|------------------|------------------------|
| Test Model   | SiME Q1                            | Test Date        | 2016/11/25             |
| Test Mode    | IEEE 802.11g Mode / TX /<br>CH Low | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBu√/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 2278.00      | 49.65           | -0.95        | 48.70            | 74.00           | -25.30       | 298            | 100          | Peak    |
| 2536.00      | 49.77           | 0.07         | 49.84            | 74.00           | -24.16       | 281            | 100          | Peak    |
| 3480.00      | 43.80           | 2.06         | 45.86            | 74.00           | -28.14       | 290            | 200          | Peak    |
| 4824.00      | 40.20           | 5.74         | 45.94            | 54.00           | -8.06        | 353            | 200          | Average |
| 4824.00      | 48.34           | 5.74         | 54.08            | 74.00           | -19.92       | 353            | 200          | Peak    |
| 6984.00      | 44.57           | 2.80         | 47.37            | 74.00           | -26.63       | 117            | 100          | Peak    |
| 10956.00     | 43.08           | 6.95         | 50.03            | 74.00           | -23.97       | 150            | 200          | Peak    |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 2088.00      | 51.48           | -1.72        | 49.76            | 74.00           | -24.24       | 22             | 100          | Peak    |
| 2784.00      | 48.87           | 0.86         | 49.73            | 74.00           | -24.27       | 256            | 200          | Peak    |
| 3480.00      | 44.60           | 2.06         | 46.66            | 74.00           | -27.34       | 358            | 100          | Peak    |
| 4827.00      | 36.70           | 5.75         | 42.45            | 54.00           | -11.55       | 83             | 200          | Average |
| 4827.00      | 46.97           | 5.75         | 52.72            | 74.00           | -21.28       | 83             | 200          | Peak    |
| 7236.00      | 44.25           | 2.96         | 47.21            | 74.00           | -26.79       | 243            | 100          | Peak    |
| 10068.00     | 44.75           | 5.23         | 49.98            | 74.00           | -24.02       | 151            | 100          | Peak    |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                          | Test By          | Rex Chiu               |
|--------------|---------------------------------------|------------------|------------------------|
| Test Model   | SiME Q1                               | Test Date        | 2016/11/25             |
| Test Mode    | IEEE 802.11g Mode / TX /<br>CH Middle | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.    | Reading | C.F.  | Result | Limit  | Margin | Azimuth     | Height      | Remark  |
|----------|---------|-------|--------|--------|--------|-------------|-------------|---------|
| MHz      | dBuV    | dB/m  | dBuV/m | dBuV/m | dB     | deg         | cm          |         |
| 2390.00  | 41.20   | -0.49 | 40.71  | 54.00  | -13.29 | 275         | 100         | Average |
| 2390.00  | 53.23   | -0.49 | 52.74  | 74.00  | -21.26 | 2 <b>75</b> | 100         | Peak    |
| 2484.00  | 50.09   | -0.11 | 49.98  | 74.00  | -24.02 | 192         | 100         | Peak    |
| 3480.00  | 43.66   | 2.06  | 45.72  | 74.00  | -28.28 | 29 <b>0</b> | 2 <b>00</b> | Peak    |
| 4875.00  | 40.20   | 5.89  | 46.09  | 54.00  | -7.91  | 349         | 2 <b>00</b> | Average |
| 4875.00  | 47.59   | 5.89  | 53.48  | 74.00  | -20.52 | 349         | 200         | Peak    |
| 6996.00  | 43.89   | 2.79  | 46.68  | 74.00  | -27.32 | 29 <b>0</b> | 200         | Peak    |
| 10140.00 | 43.38   | 5.36  | 48.74  | 74.00  | -25.26 | 346         | 200         | Peak    |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 2390.00      | 48.46           | -0.49        | 47.97            | 74.00           | -26.03       | 246            | 100          | Peak    |
| 2600.00      | 49.73           | 0.28         | 50.01            | 74.00           | -23.99       | 68             | 200          | Peak    |
| 3480.00      | 43.02           | 2.06         | 45.08            | 74.00           | -28.92       | 36             | 100          | Peak    |
| 4875.00      | 40.30           | 5.89         | 46.19            | 54.00           | -7.81        | 239            | 200          | Average |
| 4875.00      | 51.88           | 5.89         | 57.77            | 74.00           | -16.23       | 239            | 200          | Peak    |
| 6996.00      | 43.75           | 2.79         | 46.54            | 74.00           | -27.46       | 184            | 100          | Peak    |
| 10176.00     | 44.23           | 5.43         | 49.66            | 74.00           | -24.34       | 159            | 200          | Peak    |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

 Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                        | Test By          | Rex Chiu               |
|--------------|-------------------------------------|------------------|------------------------|
| Test Model   | SiME Q1                             | Test Date        | 2016/11/25             |
| Test Mode    | IEEE 802.11g Mode / TX /<br>CH High | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
| 0000 00      | <b>F1 F4</b>    | <b>a</b> 75  | F.D. 81          | 74 00           | 10           | 20             |              | Deele   |
| 2330.00      | 51.54           | -0.73        | 50.81            | 74.00           | -23.19       | 30             | 200          | Peak    |
| 2956.00      | 48.73           | 1.40         | 50.13            | 74.00           | -23.87       | 89             | 100          | Peak    |
| 3480.00      | 43.21           | 2.06         | 45.27            | 74.00           | -28.73       | 355            | 100          | Peak    |
| 4917.00      | 41.00           | 6.01         | 47.01            | 54.00           | -6.99        | 334            | 200          | Average |
| 4917.00      | 48.02           | 6.01         | 54.03            | 74.00           | -19.97       | 334            | 200          | Peak    |
| 7644.00      | 43.95           | 3.26         | 47.21            | 74.00           | -26.79       | 359            | 100          | Peak    |
| 10776.00     | 42.55           | 6.58         | 49.13            | 74.00           | -24.87       | 9              | 200          | Peak    |

## 966Chamber\_C at 3Meter / Vertical

| Reading<br>dBuV | C.F.<br>dB/m                                               | Result<br>dBuV/m                                                                               | Limit<br>dBuV/m                                                                                                                     | Margin<br>dB                                                                                                                                                                   | Azimuth<br>deg                                                                                                                                                                                                             | Height<br>cm                                                                                                                                                                                                                                         | Remark                                                                                                                                                                                                                                                                          |
|-----------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                            |                                                                                                |                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 51.05           | -1.72                                                      | 49.33                                                                                          | 74.00                                                                                                                               | -24.67                                                                                                                                                                         | 353                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                            |
| 48.69           | 1.44                                                       | 50.13                                                                                          | 74.00                                                                                                                               | -23.87                                                                                                                                                                         | 328                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                            |
| 40.98           | 3.83                                                       | 44.81                                                                                          | 74.00                                                                                                                               | -29.19                                                                                                                                                                         | 360                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                            |
| 42.10           | 6.03                                                       | 48.13                                                                                          | 54.00                                                                                                                               | -5.87                                                                                                                                                                          | 292                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                         |
| 48.90           | 6.03                                                       | 54.93                                                                                          | 74.00                                                                                                                               | -19.07                                                                                                                                                                         | 292                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                            |
| 43.84           | 3.24                                                       | 47.08                                                                                          | 74.00                                                                                                                               | -26.92                                                                                                                                                                         | 1                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                            |
| 42.17           | 6.83                                                       | 49.00                                                                                          | 74.00                                                                                                                               | -25.00                                                                                                                                                                         | 184                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                            |
|                 | dBuV<br>51.05<br>48.69<br>40.98<br>42.10<br>48.90<br>43.84 | dBuV dB/m<br>51.05 -1.72<br>48.69 1.44<br>40.98 3.83<br>42.10 6.03<br>48.90 6.03<br>43.84 3.24 | dBuV dB/m dBuV/m   51.05 -1.72 49.33   48.69 1.44 50.13   40.98 3.83 44.81   42.10 6.03 48.13   48.90 6.03 54.93   43.84 3.24 47.08 | dBuv dB/m dBuV/m dBuV/m   51.05 -1.72 49.33 74.00   48.69 1.44 50.13 74.00   40.98 3.83 44.81 74.00   42.10 6.03 48.13 54.00   48.90 6.03 54.93 74.00   43.84 3.24 47.08 74.00 | dBuv dB/m dBuV/m dBuV/m dB   51.05 -1.72 49.33 74.00 -24.67   48.69 1.44 50.13 74.00 -23.87   40.98 3.83 44.81 74.00 -29.19   42.10 6.03 48.13 54.00 -5.87   48.90 6.03 54.93 74.00 -19.07   43.84 3.24 47.08 74.00 -26.92 | dBuv dB/m dBuV/m dBuV/m dB deg   51.05 -1.72 49.33 74.00 -24.67 353   48.69 1.44 50.13 74.00 -23.87 328   40.98 3.83 44.81 74.00 -29.19 360   42.10 6.03 48.13 54.00 -5.87 292   48.90 6.03 54.93 74.00 -19.07 292   43.84 3.24 47.08 74.00 -26.92 1 | dBuv dB/m dBuv/m dBuv/m dB deg cm   51.05 -1.72 49.33 74.00 -24.67 353 200   48.69 1.44 50.13 74.00 -23.87 328 200   40.98 3.83 44.81 74.00 -29.19 360 100   42.10 6.03 48.13 54.00 -5.87 292 200   48.90 6.03 54.93 74.00 -19.07 292 200   43.84 3.24 47.08 74.00 -26.92 1 100 |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                                  | Test By          | Rex Chiu               |
|--------------|-----------------------------------------------|------------------|------------------------|
| Test Model   | SiME Q1                                       | Test Date        | 2016/11/25             |
| Test Mode    | IEEE 802.11gn HT20 MCS0<br>Mode / TX / CH Low | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|--------|
| 1872.00      | 54.73           | -2.39        | 52.34            | 74.00           | -21.66       | 330            | 200          | Peak   |
| 2558.00      | 49.30           | 0.14         | 52.54<br>49.44   | 74.00           | -21.66       | 360<br>360     | 200          | Peak   |
| 3480.00      | 43.83           | 2.06         | 45.89            | 74.00           | -28.11       | 360            | 200          | Peak   |
| 4821.00      | 45.65           | 5.73         | 51.38            | 74.00           | -22.62       | 317            | 100          | Peak   |
| 6948.00      | 43.49           | 2.82         | 46.31            | 74.00           | -27.69       | 142            | 100          | Peak   |
| 10044.00     | 43.62           | 5.19         | 48.81            | 74.00           | -25.19       | 344            | 100          | Peak   |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|--------|
|              |                 |              |                  |                 |              |                |              |        |
| 2086.00      | 50.36           | -1.73        | 48.63            | 74.00           | -25.37       | 22             | 100          | Peak   |
| 2742.00      | 48.52           | 0.72         | 49.24            | 74.00           | -24.76       | 279            | 100          | Peak   |
| 3480.00      | 44.61           | 2.06         | 46.67            | 74.00           | -27.33       | 144            | 100          | Peak   |
| 4824.00      | 45.30           | 5.74         | 51.04            | 74.00           | -22.96       | 269            | 200          | Peak   |
| 6948.00      | 44.10           | 2.82         | 46.92            | 74.00           | -27.08       | 1              | 200          | Peak   |
| 10116.00     | 43.23           | 5.32         | 48.55            | 74.00           | -25.45       | 91             | 100          | Peak   |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

 Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name SiME Smart Q |                                                  | Test By          | Rex Chiu               |
|---------------------------|--------------------------------------------------|------------------|------------------------|
| Test Model                | SiME Q1                                          | Test Date        | 2016/11/25             |
| Test Mode                 | IEEE 802.11gn HT20 MCS0<br>Mode / TX / CH Middle | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 2390.00      | 38.90           | -0.49        | 38.41            | 54.00           | -15.59       | 279            | 200          | Average |
| 2390.00      | 53.90           | -0.49        | 53.41            | 74.00           | -20.59       | 279            | 200          | Peak    |
| 2490.00      | 51.52           | -0.08        | 51.44            | 74.00           | -22.56       | 302            | 100          | Peak    |
| 3480.00      | 43.35           | 2.06         | 45.41            | 74.00           | -28.59       | 344            | 100          | Peak    |
| 4878.00      | 39.80           | 5.90         | 45.70            | 54.00           | -8.30        | 348            | 200          | Average |
| 4878.00      | 47.84           | 5.90         | 53.74            | 74.00           | -20.26       | 348            | 200          | Peak    |
| 6960.00      | 43.28           | 2.81         | 46.09            | 74.00           | -27.91       | 150            | 200          | Peak    |
| 10308.00     | 43.55           | 5.67         | 49.22            | 74.00           | -24.78       | 144            | 200          | Peak    |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz       | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB     | Azimuth<br>deg | Height<br>cm | Remark       |
|--------------------|-----------------|--------------|------------------|-----------------|------------------|----------------|--------------|--------------|
| 2390.00            | 49.29           | -0.49        | 48.80            | 74.00           | -25.20           | 250            | 100          | Peak         |
| 2784.00            | 50.50           | 0.86         | 51.36            | 74.00           | -22.64           | 253            | 200          | Peak         |
| 3828.00            | 43.45           | 2.87         | 46.32            | 74.00           | -27.68           | 203            | 100          | Peak         |
| 4875.00            | 38.20           | 5.89         | 44.09            | 54.00           | -9.91            | 237            | 200          | Average      |
| 4875.00<br>7092.00 | 47.22<br>43.32  | 5.89<br>2.86 | 53.11<br>46.18   | 74.00<br>74.00  | -20.89<br>-27.82 | 237<br>311     | 200<br>200   | Peak<br>Peak |
| 10248.00           | 43.39           | 5.56         | 48.95            | 74.00           | -25.05           | 180            | 200          | Peak         |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

 Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                                   | Test By          | Rex Chiu               |
|--------------|------------------------------------------------|------------------|------------------------|
| Test Model   | SiME Q1                                        | Test Date        | 2016/11/25             |
| Test Mode    | IEEE 802.11gn HT20 MCS0<br>Mode / TX / CH High | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 2332.00      | 50.98           | -0.73        | 50.25            | 74.00           | -23.75       | 17             | 200          | Peak    |
| 2978.00      | 47.56           | 1.47         | 49.03            | 74.00           | -24.97       | 172            | 200          | Peak    |
| 3480.00      | 44.18           | 2.06         | 46.24            | 74.00           | -27.76       | 325            | 100          | Peak    |
| 4923.00      | 38.50           | 6.03         | 44.53            | 54.00           | -9.47        | 195            | 100          | Average |
| 4923.00      | 47.30           | 6.03         | 53.33            | 74.00           | -20.67       | 195            | 100          | Peak    |
| 6900.00      | 43.62           | 2.85         | 46.47            | 74.00           | -27.53       | 346            | 200          | Peak    |
| 10164.00     | 43.63           | 5.41         | 49.04            | 74.00           | -24.96       | 5              | 100          | Peak    |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz    | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|-----------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|                 |                 |              |                  |                 |              |                |              |         |
| 2088.00         | 52.14           | -1.72        | 50.42            | 74.00           | -23.58       | 338            | 200          | Peak    |
| 2966 <b>.00</b> | 47.94           | 1.43         | 49.37            | 74.00           | -24.63       | 144            | 100          | Peak    |
| 3480.00         | 44.34           | 2.06         | 46.40            | 74.00           | -27.60       | 277            | 200          | Peak    |
| 4926.00         | 39.20           | 6.04         | 45.24            | 54.00           | -8.76        | 239            | 200          | Average |
| 4926.00         | 47.66           | 6.04         | 53.70            | 74.00           | -20.30       | 239            | 200          | Peak    |
| 6960.00         | 43.74           | 2.81         | 46.55            | 74.00           | -27.45       | 47             | 100          | Peak    |
| 10068.00        | 44.19           | 5.23         | 49.42            | 74.00           | -24.58       | 359            | 200          | Peak    |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                                  | E Smart Q Test By |                        |
|--------------|-----------------------------------------------|-------------------|------------------------|
| Test Model   | SiME Q1                                       | Test Date         | 2016/11/25             |
| Test Mode    | IEEE 802.11gn HT40 MCS0<br>Mode / TX / CH Low | Temp. & Humidity  | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|--------|
|              |                 |              |                  |                 |              |                |              |        |
| 1872.00      | 53.41           | -2.39        | 51.02            | 74.00           | -22.98       | 77             | 200          | Peak   |
| 2566.00      | 49.83           | 0.17         | 50.00            | 74.00           | -24.00       | 197            | 100          | Peak   |
| 3480.00      | 45.86           | 2.06         | 47.92            | 74.00           | -26.08       | 68             | 200          | Peak   |
| 4845.00      | 41.71           | 5.80         | 47.51            | 74.00           | -26.49       | 330            | 100          | Peak   |
| 7020.00      | 43.61           | 2.80         | 46.41            | 74.00           | -27.59       | 167            | 200          | Peak   |
| 9252.00      | 43.13           | 4.49         | 47.62            | 74.00           | -26.38       | 327            | 200          | Peak   |

## 966Chamber\_C at 3Meter / Vertical

| Freq.<br>MHz    | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|-----------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|                 |                 |              |                  |                 |              |                |              |         |
| 2088.00         | 38.90           | -1.72        | 37.18            | 54.00           | -16.82       | 359            | 100          | Average |
| 2088.00         | 55.97           | -1.72        | 54.25            | 74.00           | -19.75       | 359            | 100          | Peak    |
| 2504.00         | 49.40           | -0.03        | 49.37            | 74.00           | -24.63       | 140            | 200          | Peak    |
| 3480.00         | 41.89           | 2.06         | 43.95            | 74.00           | -30.05       | 68             | 100          | Peak    |
| 4845.00         | 41.66           | 5.80         | 47.46            | 74.00           | -26.54       | 243            | 200          | Peak    |
| 6876.00         | 43.77           | 2.87         | 46.64            | 74.00           | -27.36       | 203            | 100          | Peak    |
| 9336 <b>.00</b> | 43.47           | 4.57         | 48.04            | 74.00           | -25.96       | 145            | 200          | Peak    |

#### Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

| Product Name | SiME Smart Q                                     | Test By          | Rex Chiu               |
|--------------|--------------------------------------------------|------------------|------------------------|
| Test Model   | SiME Q1                                          | Test Date        | 2016/11/25             |
| Test Mode    | IEEE 802.11gn HT40 MCS0<br>Mode / TX / CH Middle | Temp. & Humidity | 25 <sup>°</sup> C, 50% |

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|              |                 |              |                  |                 |              |                |              |         |
| 1872.00      | 41.80           | -2.39        | 39.41            | 54.00           | -14.59       | 278            | 200          | Average |
| 1872.00      | 55.84           | -2.39        | 53.45            | 74.00           | -20.55       | 278            | 200          | Peak    |
| 2390.00      | 51.30           | -0.49        | 50.81            | 54.00           | -3.19        | 282            | 100          | Average |
| 2390.00      | 62.46           | -0.49        | 61.97            | 74.00           | -12.03       | 282            | 100          | Peak    |
| 2484.00      | 48.20           | -0.11        | 48.09            | 54.00           | -5.91        | 185            | 100          | Average |
| 2484.00      | 59.59           | -0.11        | 59.48            | 74.00           | -14.52       | 185            | 100          | Peak -  |
| 3480.00      | 42.63           | 2.06         | 44.69            | 74.00           | -29.31       | 336            | 200          | Peak    |
| 4875.00      | 43.86           | 5.89         | 49.75            | 74.00           | -24.25       | 327            | 200          | Peak    |
| 6948.00      | 43.74           | 2.82         | 46.56            | 74.00           | -27.44       | 338            | 200          | Peak    |
| 10152.00     | 43.48           | 5.39         | 48.87            | 74.00           | -25.13       | 359            | 100          | Peak    |

## 966Chamber C at 3Meter / Vertical

| Freq.<br>MHz    | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark  |
|-----------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|---------|
|                 |                 |              |                  |                 |              |                |              |         |
| 2390.00         | 47.20           | -0.49        | 46.71            | 54.00           | -7.29        | 183            | 100          | Average |
| 2390.00         | 59.55           | -0.49        | 59.06            | 74.00           | -14.94       | 183            | 100          | Peak    |
| 2484.00         | 46.70           | -0.11        | 46.59            | 54.00           | -7.41        | 357            | 100          | Average |
| 2484.00         | 58.17           | -0.11        | 58.06            | 74.00           | -15.94       | 357            | 100          | Peak    |
| 3480.00         | 44.97           | 2.06         | 47.03            | 74.00           | -26.97       | 16             | 100          | Peak    |
| 4875.00         | 45.61           | 5.89         | 51.50            | 74.00           | -22.50       | 82             | 200          | Peak    |
| 7056.00         | 43.84           | 2.83         | 46.67            | 74.00           | -27.33       | 43             | 100          | Peak    |
| 932 <b>4.00</b> | 42.70           | 4.56         | 47.26            | 74.00           | -26.74       | 77             | 200          | Peak    |

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

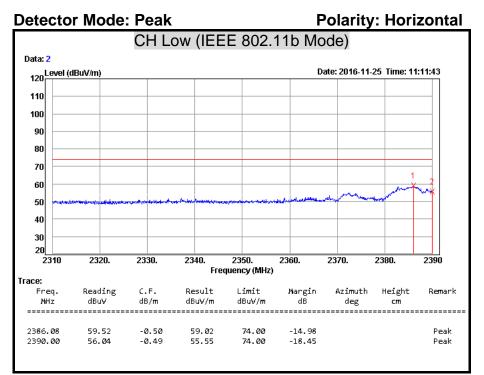
2. Average test would be performed if the peak result were greater than the average limit.

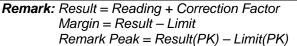
3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

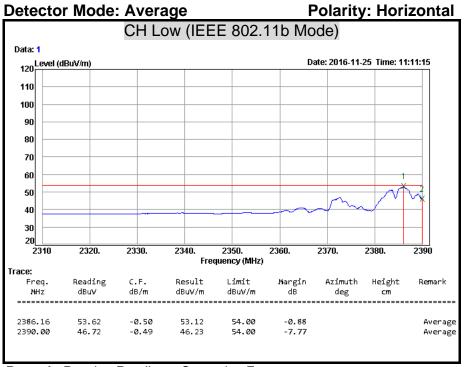
4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

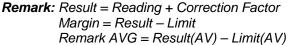
| Product Name | SiME Smart Q                                   | Test By          | Rex Chiu               |  |
|--------------|------------------------------------------------|------------------|------------------------|--|
| Test Model   | SiME Q1                                        | Test Date        | 2016/11/25             |  |
| Test Mode    | IEEE 802.11gn HT40 MCS0<br>Mode / TX / CH High | Temp. & Humidity | 25 <sup>°</sup> C, 50% |  |

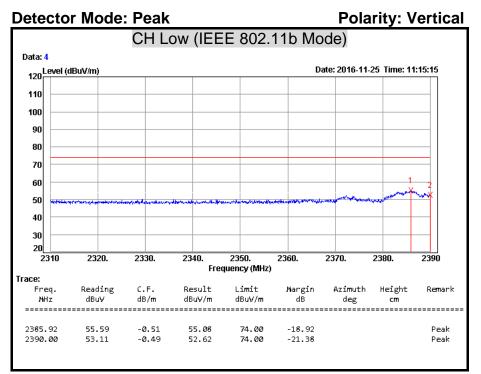
| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|--------|
| 1874.00      | 52.46           | -2.38        | 50.08            | 74.00           | -23.92       | 291            | 200          | Peak   |
| 2340.00      | 51.13           | -0.69        | 50.44            | 74.00           | -23.56       | 12             | 200          | Peak   |
| 2954.00      | 48.44           | 1.39         | 49.83            | 74.00           | -24.17       | 242            | 200          | Peak   |
| 3480.00      | 44.45           | 2.06         | 46.51            | 74.00           | -27.49       | 353            | 100          | Peak   |
| 4905.00      | 45.08           | 5.98         | 51.06            | 74.00           | -22.94       | 312            | 200          | Peak   |
| 7008.00      | 44.31           | 2.80         | 47.11            | 74.00           | -26.89       | 40             | 200          | Peak   |
| 10128.00     | 44.07           | 5.34         | 49.41            | 74.00           | -24.59       | 231            | 100          | Peak   |

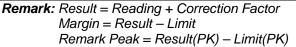

## 966Chamber\_C at 3Meter / Vertical

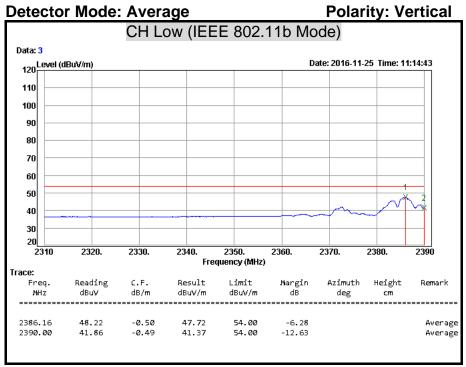

| Freq.<br>MHz | Reading<br>dBuV | C.F.<br>dB/m | Result<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Azimuth<br>deg | Height<br>cm | Remark |
|--------------|-----------------|--------------|------------------|-----------------|--------------|----------------|--------------|--------|
|              |                 |              |                  |                 |              |                |              |        |
| 1872.00      | 53.06           | -2.39        | 50.67            | 74.00           | -23.33       | 26             | 100          | Peak   |
| 2980.00      | 48.01           | 1.48         | 49.49            | 74.00           | -24.51       | 342            | 200          | Peak   |
| 3480.00      | 44.31           | 2.06         | 46.37            | 74.00           | -27.63       | 251            | 100          | Peak   |
| 4905.00      | 44.86           | 5.98         | 50.84            | 74.00           | -23.16       | 281            | 200          | Peak   |
| 6936.00      | 44.05           | 2.83         | 46.88            | 74.00           | -27.12       | 206            | 200          | Peak   |
| 10068.00     | 44.08           | 5.23         | 49.31            | 74.00           | -24.69       | 70             | 100          | Peak   |

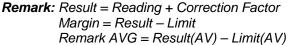

#### Remark:

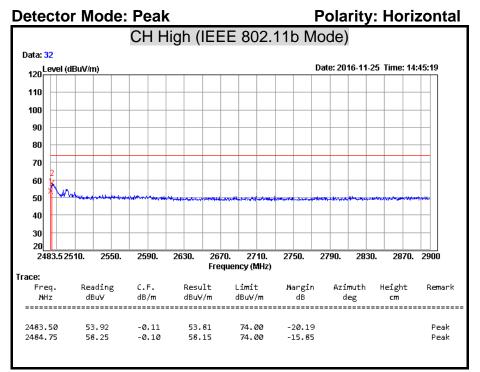

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

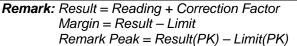

# **Restricted Band Edges**

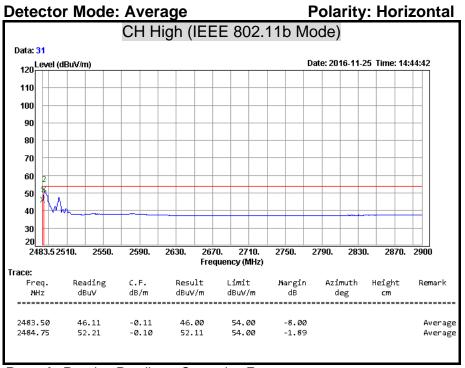


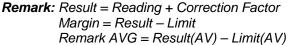



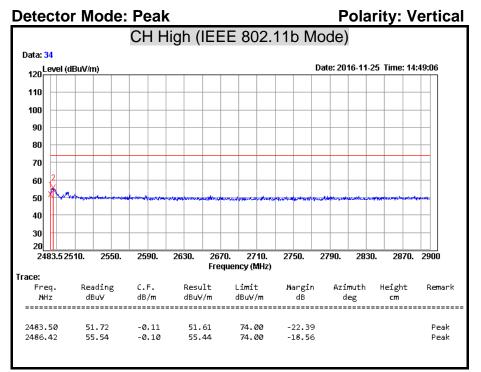



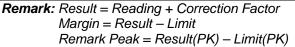



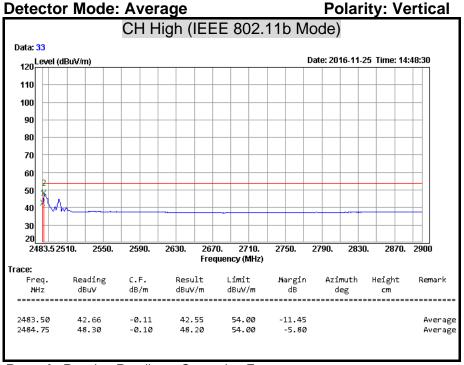



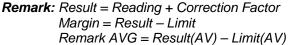



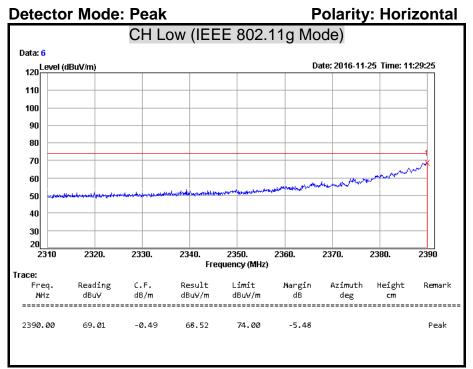



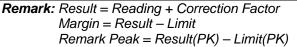



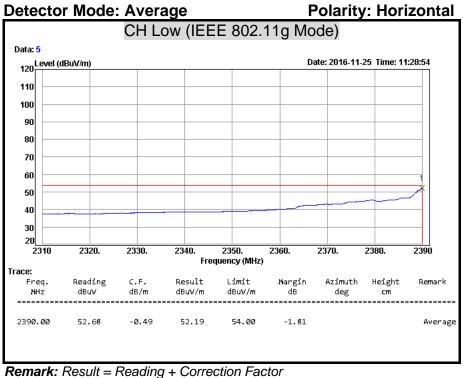



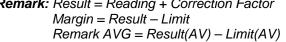



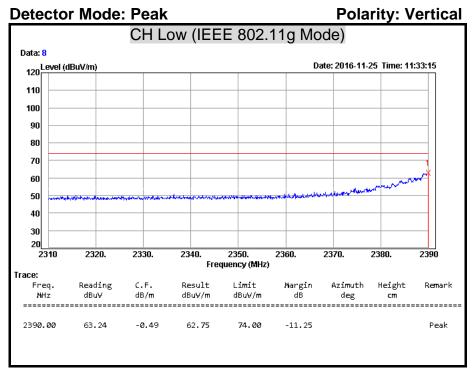



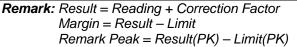



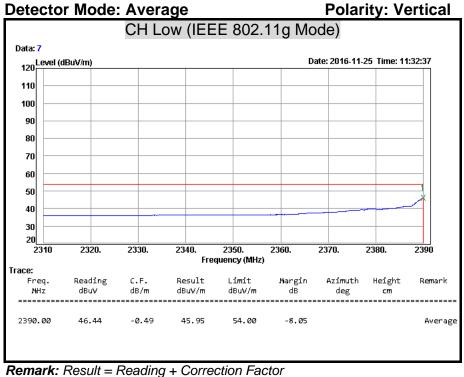



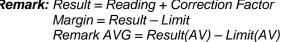



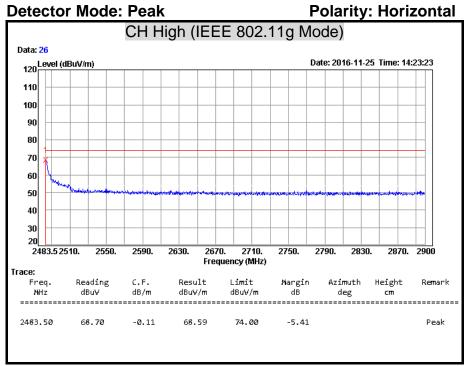



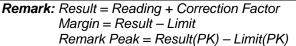



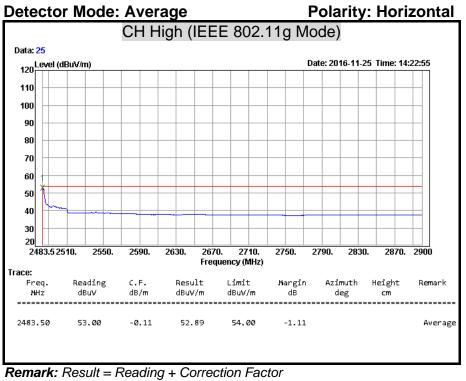



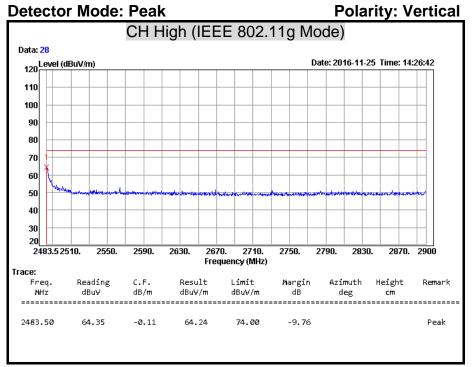



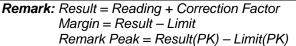



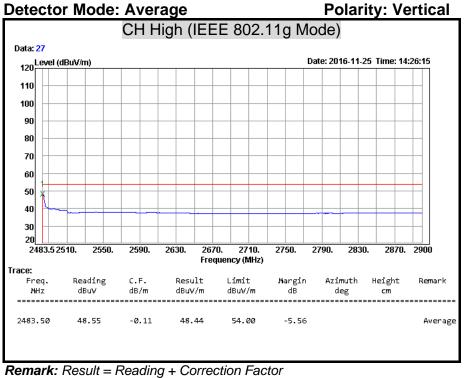



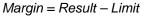




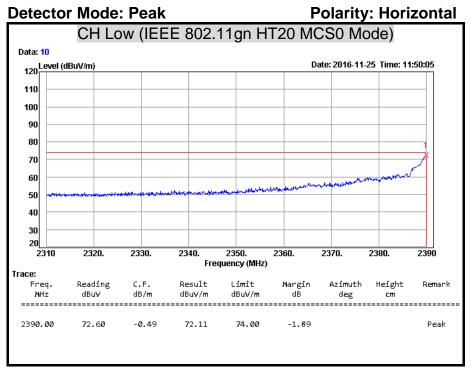



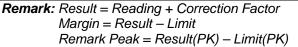



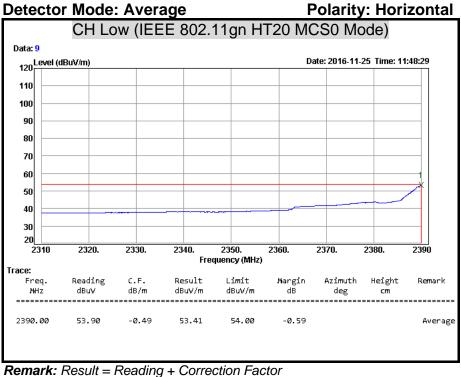



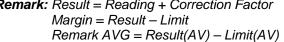


Margin = Result – Limit

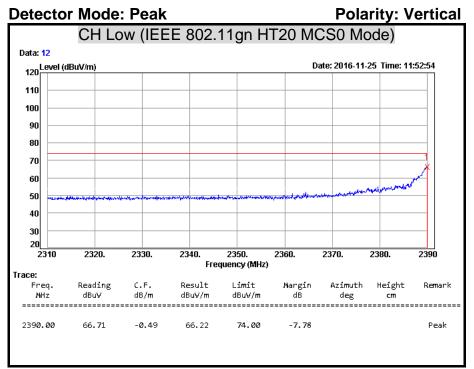
Remark AVG = Result(AV) – Limit(AV)

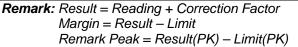


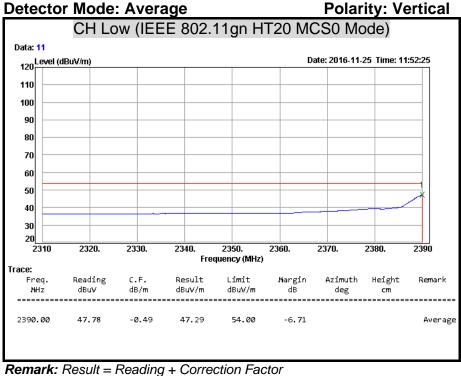



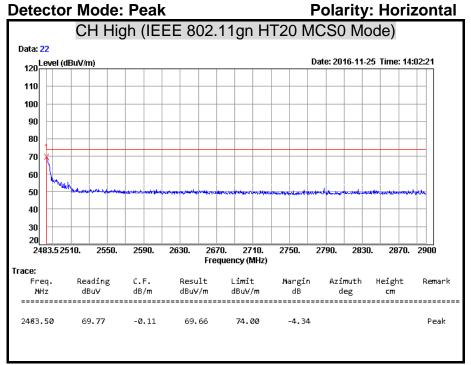



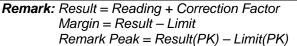


Remark AVG = Result(AV) – Limit(AV)

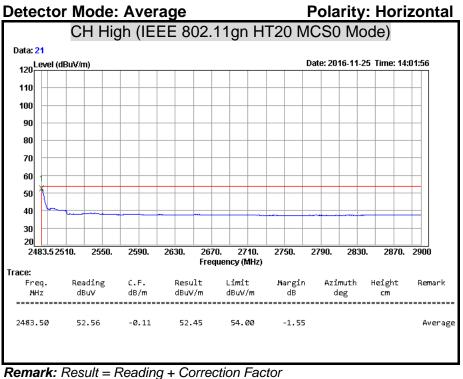


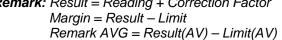



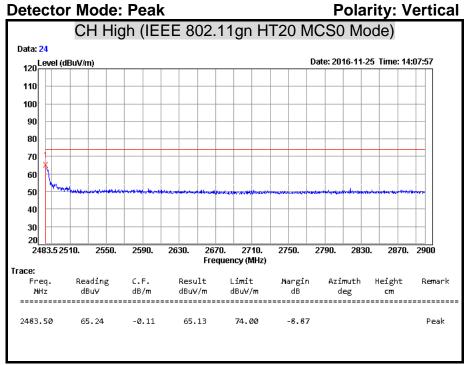


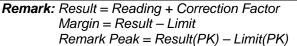



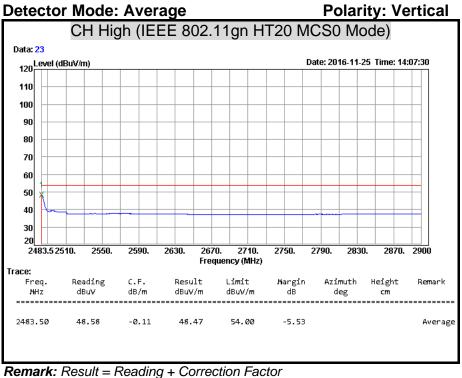



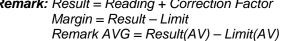



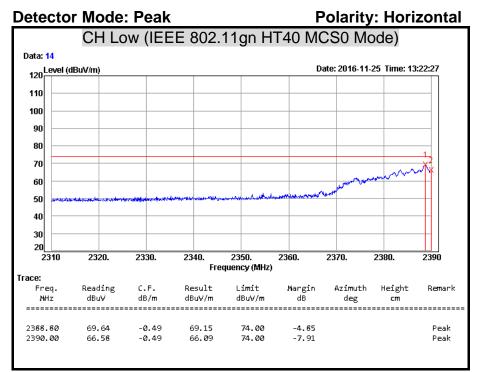



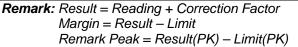


Remark: Result = Reading + Correction Factor Margin = Result – Limit Remark AVG = Result(AV) – Limit(AV)

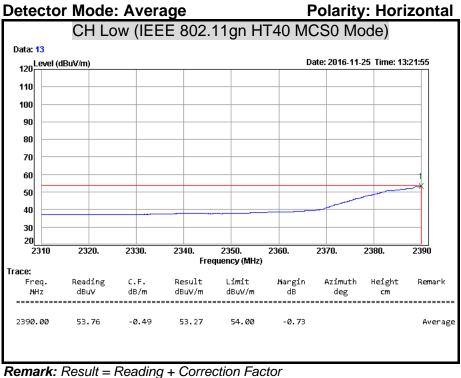


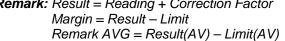



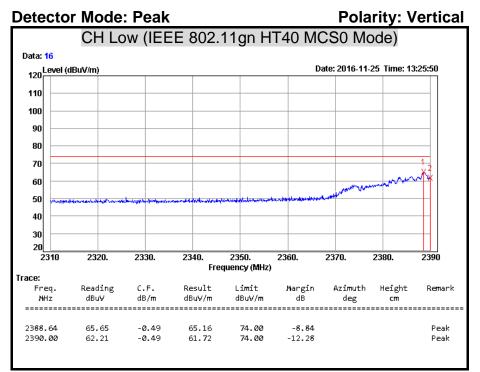



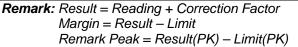



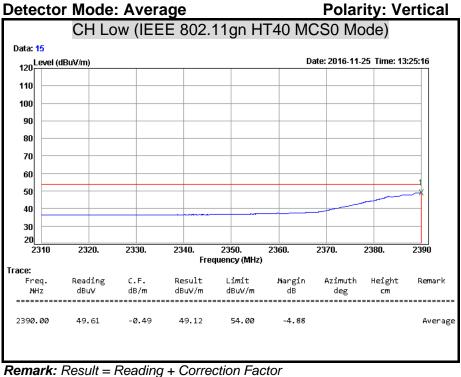



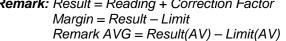



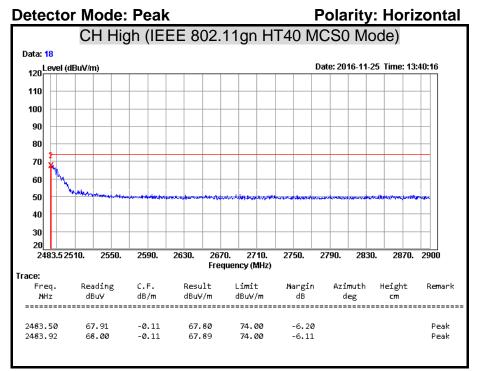



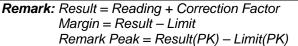



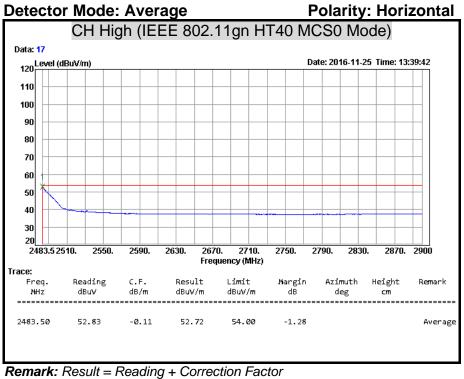



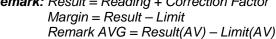



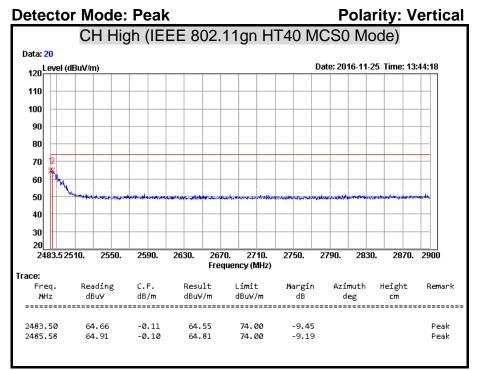



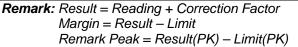



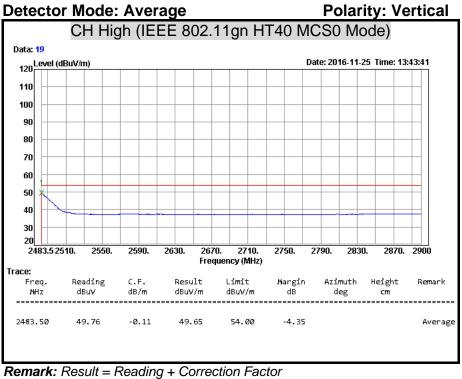



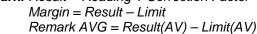









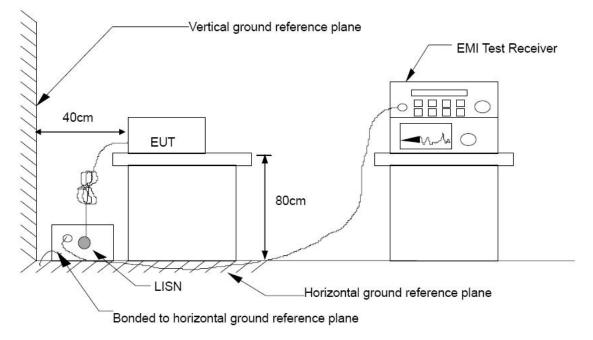


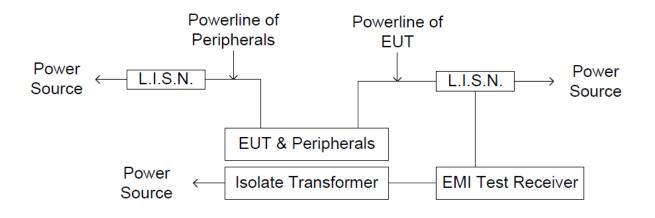



# 7.8 CONDUCTED EMISSION

## LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.


| Frequency Range | Conducted Limit (dBµv) |          |  |
|-----------------|------------------------|----------|--|
| (MHz)           | Quasi-peak             | Average  |  |
| 0.15 - 0.50     | 66 to 56               | 56 to 46 |  |
| 0.50 - 5.00     | 56                     | 46       |  |
| 5.00 - 30.0     | 60                     | 50       |  |


### TEST EQUIPMENT

| Name of Equipment | Manufacturer    | Model     | Serial Number | Calibration<br>Due |
|-------------------|-----------------|-----------|---------------|--------------------|
| L.I.S.N           | Schwarzbeck     | NSLK 8127 | 8127465       | 07/28/2017         |
| L.I.S.N           | Schwarzbeck     | NSLK 8127 | 8127473       | 03/10/2017         |
| EMI Test Receiver | Rohde & Schwarz | ESHS 30   | 838550/003    | 10/25/2017         |
| Pulse Limiter     | Rohde & Schwarz | ESH3-Z2   | 100111        | 06/27/2017         |
| Test S/W          | E3.815206a      |           |               |                    |

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

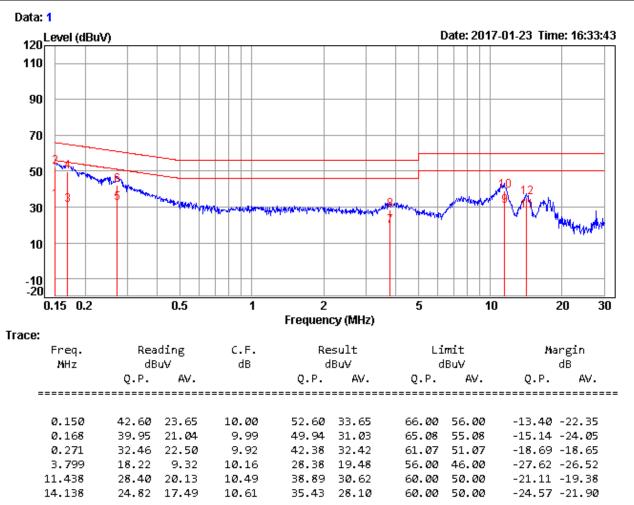




# TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.10:2013.

The test procedure is performed in a  $4m \times 3m \times 2.4m$  (L×W×H) shielded room. The EUT along with its peripherals were placed on a 1.0m (W) × 1.5m (L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.


The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

### TEST RESULTS

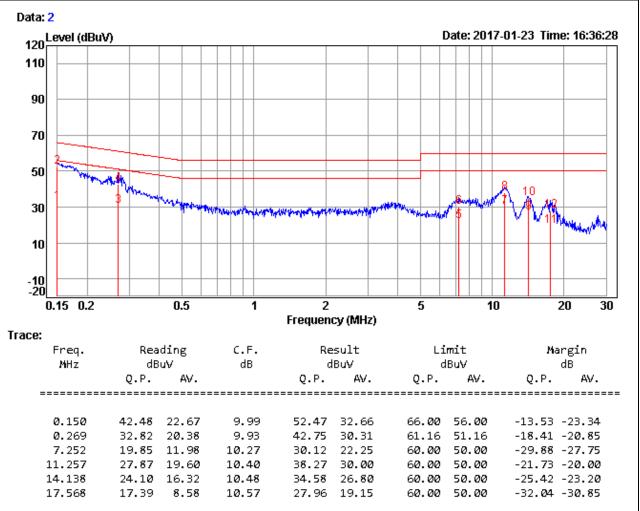
| Product Name | SiME Smart Q | Test By          | Gill Yeh   |
|--------------|--------------|------------------|------------|
| Test Model   | SiME Q1      | Test Date        | 2017/01/23 |
| Test Mode    | Mode 1       | Temp. & Humidity | 25°C, 52%  |

### LINE



#### Remark:

1. Correction Factor = Insertion loss + Cable loss


2. Emission level = Reading Value + Correction factor

3. Margin value = Emission level – Limit value

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

| Product Name | SiME Smart Q | Test By          | Gill Yeh   |
|--------------|--------------|------------------|------------|
| Test Model   | SiME Q1      | Test Date        | 2017/01/23 |
| Test Mode    | Mode 1       | Temp. & Humidity | 25°C, 52%  |

#### NEUTRAL



#### Remark:

1. Correction Factor = Insertion loss + Cable loss

2. Emission level = Reading Value + Correction factor

Margin value = Emission level – Limit value

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.